ebook img

Glycome Informatics : Methods and Applications PDF

264 Pages·2009·3.181 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Glycome Informatics : Methods and Applications

GLYCOME INFORMATICS METHODS AND APPLICATIONS CHAPMAN & HALL/CRC Mathematical and Computational Biology Series Aims and scope: This series aims to capture new developments and summarize what is known over the whole spectrum of mathematical and computational biology and medicine. It seeks to encourage the integration of mathematical, statistical and computational methods into biology by publishing a broad range of textbooks, reference works and handbooks. The titles included in the series are meant to appeal to students, researchers and professionals in the mathematical, statistical and computational sciences, fundamental biology and bioengineering, as well as interdisciplinary researchers involved in the field. The inclusion of concrete examples and applications, and programming techniques and examples, is highly encouraged. Series Editors Alison M. Etheridge Department of Statistics University of Oxford Louis J. Gross Department of Ecology and Evolutionary Biology University of Tennessee Suzanne Lenhart Department of Mathematics University of Tennessee Philip K. Maini Mathematical Institute University of Oxford Shoba Ranganathan Research Institute of Biotechnology Macquarie University Hershel M. Safer Weizmann Institute of Science Bioinformatics & Bio Computing Eberhard O. Voit The Wallace H. Couter Department of Biomedical Engineering Georgia Tech and Emory University Proposals for the series should be submitted to one of the series editors above or directly to: CRC Press, Taylor & Francis Group 4th, Floor, Albert House 1-4 Singer Street London EC2A 4BQ UK Published Titles Bioinformatics: A Practical Approach Knowledge Discovery in Proteomics Shui Qing Ye Igor Jurisica and Dennis Wigle Cancer Modelling and Simulation Meta-analysis and Combining Luigi Preziosi Information in Genetics and Genomics Rudy Guerra and Darlene R. Goldstein Combinatorial Pattern Matching Algorithms in Computational Biology Modeling and Simulation of Capsules Using Perl and R and Biological Cells Gabriel Valiente C. Pozrikidis Computational Biology: A Statistical Niche Modeling: Predictions from Mechanics Perspective Statistical Distributions Ralf Blossey David Stockwell Computational Neuroscience: A Normal Mode Analysis: Theory and Comprehensive Approach Applications to Biological and Chemical Jianfeng Feng Systems Qiang Cui and Ivet Bahar Data Analysis Tools for DNA Microarrays Optimal Control Applied to Biological Sorin Draghici Models Suzanne Lenhart and John T. Workman Differential Equations and Mathematical Biology Pattern Discovery in Bioinformatics: D.S. Jones and B.D. Sleeman Theory & Algorithms Laxmi Parida Engineering Genetic Circuits Chris J. Myers Python for Bioinformatics Sebastian Bassi Exactly Solvable Models of Biological Invasion Spatial Ecology Sergei V. Petrovskii and Bai-Lian Li Stephen Cantrell, Chris Cosner, and Shigui Ruan Gene Expression Studies Using Affymetrix Microarrays Spatiotemporal Patterns in Ecology Hinrich Göhlmann and Willem Talloen and Epidemiology: Theory, Models,  and Simulation Glycome Informatics: Methods and Horst Malchow, Sergei V. Petrovskii, and Applications Ezio Venturino Kiyoko F. Aoki-Kinoshita Stochastic Modelling for Systems Handbook of Hidden Markov Models in Biology Bioinformatics Darren J. Wilkinson Martin Gollery Structural Bioinformatics: An Introduction to Bioinformatics Algorithmic Approach Anna Tramontano Forbes J. Burkowski An Introduction to Systems Biology: The Ten Most Wanted Solutions in Design Principles of Biological Circuits Protein Bioinformatics Uri Alon Anna Tramontano Kinetic Modelling in Systems Biology Oleg Demin and Igor Goryanin GLYCOME INFORMATICS METHODS AND APPLICATIONS KIYOKO F. AOKI-KINOSHITA CRC Press Taylor & Francis Group 6000 Broken Sound Parkway NW, Suite 300 Boca Raton, FL 33487-2742 © 2009 by Taylor & Francis Group, LLC CRC Press is an imprint of Taylor & Francis Group, an Informa business No claim to original U.S. Government works Version Date: 20141217 International Standard Book Number-13: 978-1-4200-8336-1 (eBook - PDF) This book contains information obtained from authentic and highly regarded sources. Reasonable efforts have been made to publish reliable data and information, but the author and publisher cannot assume responsibility for the validity of all materials or the consequences of their use. The authors and publishers have attempted to trace the copyright holders of all material reproduced in this publication and apologize to copyright holders if permission to publish in this form has not been obtained. If any copyright material has not been acknowledged please write and let us know so we may rectify in any future reprint. Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced, transmit- ted, or utilized in any form by any electronic, mechanical, or other means, now known or hereafter invented, including photocopying, microfilming, and recording, or in any information storage or retrieval system, without written permission from the publishers. For permission to photocopy or use material electronically from this work, please access www.copyright. com (http://www.copyright.com/) or contact the Copyright Clearance Center, Inc. (CCC), 222 Rosewood Drive, Danvers, MA 01923, 978-750-8400. CCC is a not-for-profit organization that provides licenses and registration for a variety of users. For organizations that have been granted a photocopy license by the CCC, a separate system of payment has been arranged. Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are used only for identification and explanation without intent to infringe. Visit the Taylor & Francis Web site at http://www.taylorandfrancis.com and the CRC Press Web site at http://www.crcpress.com Contents List of Tables xi List of Figures xiii About the Author xvii 1 Introdu tion to Gly obiology 1 1.1 Roles of arbohydrates . . . . . . . . . . . . . . . . . . . . . 1 1.2 Gly an stru tures . . . . . . . . . . . . . . . . . . . . . . . . 2 1.3 Gly an lasses . . . . . . . . . . . . . . . . . . . . . . . . . . 6 1.4 Gly an biosynthesis . . . . . . . . . . . . . . . . . . . . . . . 13 1.4.1 N-linked gly ans . . . . . . . . . . . . . . . . . . . . . 13 1.4.2 O-linked gly ans . . . . . . . . . . . . . . . . . . . . . 16 1.4.3 Gly osaminogly ans (GAGs) . . . . . . . . . . . . . . 16 1.4.4 Gly osphingolipids (GSLs) . . . . . . . . . . . . . . . 17 1.4.5 GPI an hors . . . . . . . . . . . . . . . . . . . . . . . 19 1.4.6 LPS . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 1.5 Gly an motifs . . . . . . . . . . . . . . . . . . . . . . . . . . 20 1.6 Potential for drug dis overy . . . . . . . . . . . . . . . . . . . 22 2 Ba kground 25 2.1 Gly an nomen lature . . . . . . . . . . . . . . . . . . . . . . 25 TM 2.1.1 InChI . . . . . . . . . . . . . . . . . . . . . . . . . 25 2.1.2 (Extended) IUPAC format . . . . . . . . . . . . . . . 27 2.1.3 CarbBank format . . . . . . . . . . . . . . . . . . . . . 30 2.1.4 KCF format . . . . . . . . . . . . . . . . . . . . . . . . 31 2.1.5 LINUCS format . . . . . . . . . . . . . . . . . . . . . 32 2.1.6 BCSDB format . . . . . . . . . . . . . . . . . . . . . . 34 (cid:13)R 2.1.7 Linear Code . . . . . . . . . . . . . . . . . . . . . . 37 2.1.8 Gly oCT format . . . . . . . . . . . . . . . . . . . . . 40 2.1.9 XML representations . . . . . . . . . . . . . . . . . . . 46 2.2 Le tin-gly an intera tions . . . . . . . . . . . . . . . . . . . . 48 2.2.1 Families and types of le tins. . . . . . . . . . . . . . . 50 2.2.2 Carbohydrate-binding me hanism of le tins . . . . . . 57 2.3 Carbohydrate- arbohydrateintera tions . . . . . . . . . . . . 58 vii viii 3 Databases 61 3.1 Gly an stru ture databases . . . . . . . . . . . . . . . . . . . 61 3.1.1 KEGG GLYCAN . . . . . . . . . . . . . . . . . . . . . 62 3.1.2 GLYCOSCIENCES.de . . . . . . . . . . . . . . . . . . 68 3.1.3 CFG . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 3.1.4 BCSDB . . . . . . . . . . . . . . . . . . . . . . . . . . 82 3.1.5 GLYCO3D . . . . . . . . . . . . . . . . . . . . . . . . 85 3.1.6 MonoSa harideDB . . . . . . . . . . . . . . . . . . . 86 3.1.7 Gly omeDB . . . . . . . . . . . . . . . . . . . . . . . . 89 3.2 Gly o-gene databases . . . . . . . . . . . . . . . . . . . . . . 90 3.2.1 KEGG BRITE . . . . . . . . . . . . . . . . . . . . . . 91 3.2.2 CFG . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 3.2.3 GGDB . . . . . . . . . . . . . . . . . . . . . . . . . . . 94 3.2.4 CAZy . . . . . . . . . . . . . . . . . . . . . . . . . . . 94 3.3 Lipid databases . . . . . . . . . . . . . . . . . . . . . . . . . 96 (cid:13) 3.3.1 SphingoMAP . . . . . . . . . . . . . . . . . . . . . . 96 3.3.2 LipidBank . . . . . . . . . . . . . . . . . . . . . . . . . 97 3.3.3 LMSD . . . . . . . . . . . . . . . . . . . . . . . . . . . 98 3.4 Le tin databases . . . . . . . . . . . . . . . . . . . . . . . . . 101 3.4.1 Le tines . . . . . . . . . . . . . . . . . . . . . . . . . . 101 3.4.2 Animal Le tin DB . . . . . . . . . . . . . . . . . . . . 101 3.5 Others . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101 3.5.1 Gly oEpitopeDB . . . . . . . . . . . . . . . . . . . . . 101 3.5.2 ECODAB . . . . . . . . . . . . . . . . . . . . . . . . . 102 3.5.3 SugarBindDB . . . . . . . . . . . . . . . . . . . . . . . 106 4 Gly ome Informati s 107 4.1 Terminology and notations . . . . . . . . . . . . . . . . . . . 107 4.2 Algorithmi te hniques . . . . . . . . . . . . . . . . . . . . . 108 4.2.1 Tree stru ture alignment. . . . . . . . . . . . . . . . . 108 4.2.2 Linkage analysis using s ore matri es. . . . . . . . . . 110 4.2.3 Gly an variation map . . . . . . . . . . . . . . . . . . 112 4.3 Bioinformati methods . . . . . . . . . . . . . . . . . . . . . 114 4.3.1 Gly an stru ture predi tion from gly ogene mi roarrays 114 4.3.2 Gly o-gene sequen e and stru ture analysis . . . . . . 116 4.3.3 Gly o-related pathway analysis . . . . . . . . . . . . . 119 4.3.4 Mass spe tral data annotation . . . . . . . . . . . . . 124 4.4 Data mining te hniques . . . . . . . . . . . . . . . . . . . . . 130 4.4.1 Kernel methods . . . . . . . . . . . . . . . . . . . . . . 131 4.4.2 Frequent subtree mining . . . . . . . . . . . . . . . . . 138 4.4.3 Probabilisti models . . . . . . . . . . . . . . . . . . . 142 4.5 Gly omi s tools . . . . . . . . . . . . . . . . . . . . . . . . . 173 4.5.1 Visualization tools . . . . . . . . . . . . . . . . . . . . 173 4.5.2 Pathway analysis tools . . . . . . . . . . . . . . . . . . 177 4.5.3 PDB data analysis . . . . . . . . . . . . . . . . . . . . 178 ix 4.5.4 3D analysis tools . . . . . . . . . . . . . . . . . . . . . 179 4.5.5 Mole ular dynami s . . . . . . . . . . . . . . . . . . . 182 4.5.6 Spe tros opi tools . . . . . . . . . . . . . . . . . . . . 186 4.5.7 NMR tools . . . . . . . . . . . . . . . . . . . . . . . . 189 5 Potential Resear h Proje ts 193 5.1 Sequen e and stru tural analyses . . . . . . . . . . . . . . . . 193 5.1.1 Gly an s ore matrix . . . . . . . . . . . . . . . . . . . 194 5.1.2 Visualization . . . . . . . . . . . . . . . . . . . . . . . 194 5.2 Databases and te hniques to integrate heterogeneous data sets 195 5.3 Automated hara terizationof gly ans from MS data . . . . 196 5.4 Predi tion of gly ans from data other than MS . . . . . . . . 196 5.5 Biomarkerpredi tion . . . . . . . . . . . . . . . . . . . . . . 197 5.6 Systems analyses . . . . . . . . . . . . . . . . . . . . . . . . . 197 5.7 Drug dis overy . . . . . . . . . . . . . . . . . . . . . . . . . . 198 A Sequen e Analysis Methods 199 A.1 Pairwisesequen e alignment (dynami programming) . . . . 199 A.1.1 Dynami programming. . . . . . . . . . . . . . . . . . 199 A.1.2 Sequen e alignment . . . . . . . . . . . . . . . . . . . 202 A.2 BLOSUM (BLO ks Substitution Matrix) . . . . . . . . . . . 205 B Ma hine Learning Methods 207 B.1 Kernel methods and SVMs . . . . . . . . . . . . . . . . . . . 207 B.2 Hidden Markovmodels . . . . . . . . . . . . . . . . . . . . . 211 B.2.1 The three problems of interest for HMMs . . . . . . . 213 B.2.2 Expe tation-Maximization (EM) algorithm . . . . . . 215 B.2.3 Hidden tree Markovmodels . . . . . . . . . . . . . . . 216 B.2.4 Pro(cid:12)le Hidden Markovmodels (pro(cid:12)le HMMs) . . . . 218 C Gly omi s Te hnologies 221 C.1 Mass spe trometry (MS) . . . . . . . . . . . . . . . . . . . . 221 C.1.1 MALDI-MS . . . . . . . . . . . . . . . . . . . . . . . . 222 C.1.2 FT-ICR . . . . . . . . . . . . . . . . . . . . . . . . . . 223 C.1.3 LC-MS (HPLC) . . . . . . . . . . . . . . . . . . . . . 224 C.1.4 Tandem MS . . . . . . . . . . . . . . . . . . . . . . . . 224 C.2 Nu lear magneti resonan e (NMR) . . . . . . . . . . . . . . 225 Referen es 227 Index 241

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.