ebook img

Glycolaldehyde in Perseus young solar analogs PDF

0.8 MB·
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Glycolaldehyde in Perseus young solar analogs

Astronomy&Astrophysicsmanuscriptno.desimone (cid:13)cESO2017 January4,2017 ⋆ Glycolaldehyde in Perseus young solar analogs M.DeSimone1,C.Codella1,L.Testi1,2,3,4,A.Belloche5,A.J.Maury6,S.Anderl7,8,Ph.André6,S.Maret7,8,andL. Podio1 1 INAF,OsservatorioAstrofisicodiArcetri,LargoE.Fermi5,50125Firenze,Italy 2 ESO,KarlSchwarzchildStr.2,85748GarchingbeiMünchen,Germany 3 ExcellenceCluster‘Universe’,Boltzmannstr.2,D-85748GarchingbeiMuenchen,Germany 4 GothenburgCenterforAdvanceStudiesinScienceandTechnology,DepartmentofMathematicalSciences,ChalmersUniversity ofTechnologyandUniversityofGothenburg,SE-41296Gothenburg,Sweden 7 5 Max-Planck-InstitutfürRadioastronomie,AufdemHügel69,53121Bonn,Germany 1 6 LaboratoireAIM-Paris-Saclay,CEA/DSM/Irfu-CNRS-UniversitéParisDiderot,CESaclay,91191Gif-sur-YvetteCedex,France 0 7 Univ.GrenobleAlpes,CNRS,IPAG,38000,Grenoble,France 2 8 CNRS,IPAG,38000,Grenoble,France n Receiveddate;accepteddate a J ABSTRACT 3 Context.Theearliestevolutionarystagesoflow-massprotostarsarecharacterisedbytheso-calledhot-corinostage,whenthenewly ] R bornstarheatsthesurroundingmaterialandenrichthegaschemically.Studyingthisevolutionaryphaseofsolarprotostarsmayhelp understandtheevolutionofprebioticcomplexmoleculesinthedevelopmentofplanetarysystems. S Aims.In this paper we focus on the occurrence of glycolaldehyde (HCOCH OH) in young solar analogs by performing the first 2 h. homogeneousandunbiasedstudyofthismoleculeintheClass0protostarsofthenearbyPerseusstarformingregion. p Methods.Weobtainedsub-arcsecangularresolutionmapsat1.3mmand1.4mmofglycolaldehydeemissionlinesusingtheIRAM - PlateaudeBure(PdB)interferometerintheframeworkoftheCALYPSOIRAMlargeprogram. o Results.Glycolaldehydehasbeendetectedtowards3Class0and1ClassIprotostarsoutofthe13continuumsourcestargetedin r Perseus:NGC1333-IRAS2A1,NGC1333-IRAS4A2,NGC1333-IRAS4B1,andSVS13-A.TheNGC1333starformingregionlooks t s particularly glycolaldehyde rich, with a rate of occurrence up to 60%. The glycolaldehyde spatial distribution overlaps with the a continuumone,tracingtheinner100auaroundtheprotostar.Alargenumberoflines(upto18),withupper-levelenergiesE from u [ 37Kupto375Khasbeendetected.Wederivedcolumndensities≥1015 cm−2 androtationaltemperaturesT between115Kand rot 236K,imagingforthefirsttimehot-corinosaroundNGC1333-IRAS4B1andSVS13-A. 1 Conclusions.In multiple systems glycolaldehyde emission is detected only in one component. The case of the SVS13-A+B and v IRAS4-A1+A2systemssupportthatthedetectionofglycolaldehyde(atleastinthepresentPerseussample)indicatesolderprotostars 4 (i.e.SVS13-AandIRAS4-A2),evolvedenoughtodevelopthehot-corinoregion(i.e.100Kintheinner100au).However,onlytwo 2 systems do not allow us to firmlyconclude whether the primary factor leading to the detection of glycolaldehyde emission isthe 7 environmentshostingtheprotostars,evolution(e.g.lowvalueofL /L ),oraccretionluminosity(highL ). 0 submm int int 0 Key words. Stars: formation – ISM: jets and outflows – ISM: molecules – individual objects: NGC1333-IRAS2A, –IRAS4A, . –IRAS4B,andSVS13-A 1 0 7 11. Introduction in the chemical processes leading to ribose (e.g. Weber 1998; : Jalboutetal.2007),inturnthebackboneofterrestrialRNA. vThe gas surrounding a new born star can reach temperatures i The first detection of interstellar glycolaldehydewas made Xhigherthan100K,dueto thermalheatingbythe protostar(the in the hot core Sagittarius B2(N) located in the high-mass star so called hot-corinossee e.g. Ceccarelli et al. 2007) as well as r formingregionSagittariusB2closetotheGalacticCentre(Hol- ashocksproducedby both accretionand ejectionprocesses (e.g. lis et al. 2000, 2004; Halfen et al. 2006; Requena-Torreset al. Codellaetal.2009;Sakaietal.2014).Inturn,suchtemperatures 2008). Later on, Beltrán et al. (2009) imaged glycolaldehyde favourarichcomplexorganicchemistry,withaconsequentdra- emissionforthefirsttimetowardsastarformingregion,namely matic increase of the abundance of the so-called Complex Or- the massive hot core (the scaled-up version of a hot-corino) ganic Molecules (COMs; i.e. organicmoleculeswith at least 6 G31.41+0.31, while Calcutt et al. (2014) reported glycolalde- atoms detected in space, Herbst & van Dishoeck 2009), which hyde towards further hot cores. However, the large distance of can be considered the first bricks to build biologically relevant theobservedhigh-massstarformingregions(≥1kpc)hampers molecules.AmongtheCOMs,glycolaldehyde(HCOCH OH)is 2 (i)toassessareliableassociationwithoneormoreyoungstellar thesimplestsugar-likemoleculeanditisexpectedtobeinvolved objectsduetomultiplicity,and(ii)ananalysisonspatialscales comparable to that of a protoplanetary disk (i.e. ∼ 100 au). In Send offprint requests to: C. Codella, e-mail: [email protected] addition, the study of the formation and evolution of complex ⋆ BasedonobservationscarriedoutwiththeIRAMPlateaudeBure organic molecules (including glycolaldehyde) in young Solar interferometer. IRAM is supported by INSU/CNRS (France), MPG analogsisessentialtounderstandthepotentialofformationand (Germany),andIGN(Spain) evolutionofpre-bioticmaterialinthesesystems. Articlenumber,page1of24 A&Aproofs:manuscriptno.desimone Jørgensenetal.(2026)reportedthefirstdetectionofglyco- lines2 wereobservedusingtheWideXbackendtocovertwo4- laldehydeemissionwithALMAtowardstheyoungSolaranalog GHz spectralwindows (one at 1.3mm and one at 1.4mm)with low-mass Class 0 protostellar system IRAS 16293-2422.They a spectral resolution of 2 MHz (∼ 2.6 km s−1 at 1.4 mm). The detected13emissionlinesindicatingthepresenceofglycolalde- observed spectral ranges are the following: 217.0–220.5 GHz hyde in the warm gas (200–300 K) in the inner regions of the (1.4mmhereafter),and229.0–233.0GHz(1.3mm).Calibration system,within∼50aufromeachprotostar.Thisstudypavedthe wascarriedoutfollowingstandardprocedures,usingGILDAS- waytothestudyofglycolaldehydearoundSun-likestarforming CLIC3. The phase rms was ≤ 65◦, the precipitablewater vapor regions(see also therecentworkbyJørgensenetal. 2016).In- (PWV) was typically less than 2mm, the system temperatures deed, Coutens et al. (2015) and Taquet et al. (2015) detected, lessthan200K.Thefinaluncertaintyontheabsolutefluxscale usingtheIRAMPdBarray,upto8glycolaldehydelinestowards is ≤ 15%. The continuumemission was removedfromthe vis- twootherswellknowhot-corinosassociatedwiththeNCC1333- ibilitytablestoproducecontinuum-freelinetables.Thetypical IRAS2A and NGC1333-IRAS4A protostars, finding tempera- rmsnoiseinthe2-MHzchannelswas3–9mJybeam−1.Images tureshigherthan100K. Goingbeyondthese initialfindings,it wereproducedusingnaturalweighting,andrestoredwithaclean is important to perform a more systematic study to understand beamof≤1′′,reported,foreachsourceandforeachwavelength, howcommonistheoccurrenceofglycolaldehydearoundsolar- inTable1. typeprotostars,andwhetherthepresenceofrelativelyabundant gas-phaseglycolaldehydecanbelinkedtoa specific evolution- aryphase.Auniformsensitivityandhighangularresolutionsur- 3. Thesample veyofprotostarsisthebestapproachtoattempttoanswerthese Thesampleofsourcesisbasedonallthe peaksdetectedinthe questions. 1.3mm and 1.4mm continuum images of CALYPSO targets in TheCALYPSO1surveyofClass0protostars(i.e.104–105yr Perseus (see Codella et al. 2014; Santangelo et al. 2015; An- solaranalogprotostars;Andréetal.1993,2000),whichwascar- derl et al. 2016; Maury et al., in preparation). We selected the ried out with the IRAM-PdB interferometer (see Maury et al. sourcesinthePerseuscomplex,whichisaclassicallaboratoryto 2014,formoredetails),offersauniquedatasetforstudyinggly- studylow-massstarformation;inparticular,theselectedsources colaldehyde.ThesourcesaremainlyClass0protostarswiththe belong to the most active sites of current star formation in the exceptionofSVS13-AwhichhasapparentlyenteredintheClass Perseuscloud:theNGC-1333andL1448clusters.Weobserved I stage (Lada 1987). CALYPSO includes all Solar-mass proto- 4multiplesystemsinNGC-1333(IRAS2A,IRAS4A,IRAS4B, stellarsystemsinthePerseusL1448(d =232±18pc;Hirotaet andSVS13)aswellas4protostarsinL1448(2A,NB,NA,and al. 2011) and NGC-1333 (d = 235±18 pc; Hirota et al. 2008) C objects), for a total number of 13 objects to be analysed to regions.The dataset(see Sect. 2) includeshigh angularresolu- search for glycolaldehyde emission. In Table 1 we report the tion(≤1′′)spectralmapsat1.3and1.4mm,whichcoverabroad continuumpeaks detected at 1.4 mm in Perseus using the CA- rangeofglycolaldehydelinesandupper-levelenergyandaread- LYPSOdatabase;foreverysourcearereportedthepositionsof equateforaninitialstatisticalstudy.Inthispaperwepresentan the peaks and the systemic velocities (V ) extracted from the sys analysis of these data, limited to the glycolaldehydemolecule, CALYPSOdataset,the1.4mmpeakflux,theinternalluminos- a detailed analysis of the continuum data will be presented in ity(L ),andthecleanbeams(HBPW )foreachwavelength. int syn Maury et al. (in preparation), and the analysis of all complex Theinternalluminositiesarederivedusingthe70µmmeasure- organic molecules detected in the survey in Belloche et al. (in mentsprovidedbytheHerschelGouldBeltsurvey(Andréetal. preparation). 2010).Inparticular,Dunhametal.(2008),inthecontextofthe The goal of the present paper is: (i) to perform a first sta- SpitzerSpaceTelescopeLegacyProject"FromMolecularCores tistical analysis of the occurrence of glycolaldehyde emission toPlanetFormingDisks",showedhowthe70µmfluxandinter- towards Class 0 protostellar sources, and (ii) to take advantage nalluminosityofaprotostararetightlycorrelated.Astheformer ofthecombinationofhighsensitivityandhighspatialresolution isadirectlyobservablequantitybutthelatterisnot,thiscorrela- provided by the CALYPSO database to detect a large number tiongivesapowerfulmethodforestimatingprotostellarinternal oflinescoveringawiderangeofupper-levelenergy,leadingto luminosities. L isexpectedto be a morereliable probeofac- int reliableestimatesoftherotational(excitation)temperaturesand cretionluminositythanthebolometricluminosityL (seealso bol glycolaldehydecolumndensities.Theobservationsarereported Ladjelateetal.,inpreparation),whichrequiresafullcoverageof inSect.2,whileinSect.3wedescribetheselectedsample.The theSpectralEnergyDistribution(SED)athigh-spatialresolution obtained images, the derived physical conditions, and the esti- (8′′). mate of the glycolaldehydeabundancesare reportedin Sect. 4. ThecontinuummapofNGC1333-IRAS2Arevealsthemain OurconclusionsaresummarizedinSect.5. protostar IRAS2-A1, plus two weaker peaks, IRAS2-A2 and IRAS2-A3 (see Codella et al. 2014).The nature of A2 and A3 is still debated, being possibly dust fragments associated with the molecular cloud and swept up by the outflows driven by 2. Observations the nearbyIRAS2-A1protostar(see Codella et al. 2014;Tobin et al. 2016). For the purpose of the analysis presented in this ThePerseussources(listedinTable1)wereobservedat1.3mm paper, we have considered these as genuine protostars, except and1.4mmwiththeIRAMPdBsix-elementarrayduringseveral where explicitly mentioned otherwise. The NGC-1333-IRAS4 tracks between November 2010 and February 2012 using both system has two main objects: IRAS4A and IRAS4B. In turn, the A and C configurations.The shortest and longest baselines IRAS4AisabinarycomposedbytwoClass0objects,separated are 19mand762m, respectively,allowingusto recoveremis- sion at scales from ∼ 8′′ down to ∼ 0′.′4. The glycolaldehyde 2 Spectroscopic parameters havebeen extracted fromtheJet Propul- sionLaboratorymolecular database(Pickettetal.1998),seeTables2 to5. 1 http://irfu.cea.fr/Projects/Calypso 3 http://www.iram.fr/IRAMFR/GILDAS Articlenumber,page2of24 DeSimoneetal.:GlycolaldehydeinPerseusyoungsolaranalogs Table1.Continuumpeakemissionat1.4mm,detectedinPerseususingtheCALYPSOsurvey,whereglycolaldehydeemissionhasbeensearched for. Source α(J2000)a δ(J2000)a V a db F L c HPBW sys 1.4mm int syn (hm s) (◦′′′) (kms−1) (pc) (mJy/beam) (L ) ′′×′′(◦) ⊙ 1.4mm 1.3mm L1448-2A 03:25:22.406 +304513.28 +4.2 232 31 2.7 0′.′99×0′.′71(28◦) 1′.′03×0′.′81(39◦) L1448-NB 03:25:36.364 +304514.84 +4.7 232 25 4.1 0′.′81×0′.′67(67◦) 0′.′65×0′.′48(48◦) L1448-NA 032536.503 +304521.87 +4.7 232 139 - 0′.′81×0′.′67(67◦) 0′.′65×0′.′48(48◦) L1448-C 032538.878 +304405.32 +5.2 232 102 6.8 0′.′77×0′.′63(22◦) 0′.′61×0′.′38(33◦) IRAS2A3 032855.514 +311434.84 +7.3 235 16 - 0′.′82×0′.′80(32◦) 0′.′75×0′.′74(168◦) IRAS2A1 032855.575 +311437.05 +7.3 235 99 26.7 0′.′82×0′.′80(32◦) 0′.′75×0′.′74(168◦) IRAS2A2 032855.677 +311435.56 +7.3 235 12 - 0′.′82×0′.′80(32◦) 0′.′75×0′.′74(168◦) SVS13-B 032903.075 +311551.71 +8.4 235 122 1–2c 1′.′06×0′.′80(20◦) 0′.′70×0′.′42(20◦) SVS13-A 032903.759 +311603.74 +8.4 235 123 24.5 1′.′06×0′.′80(20◦) 0′.′70×0′.′42(20◦) IRAS4A2 032910.429 +311332.10 +7.2 235 284 - 1′.′10×0′.′81(20◦) 0′.′70×0′.′42(20◦) IRAS4A1 032910.531 +311330.96 +7.2 235 795 2.8 1′.′10×0′.′81(20◦) 0′.′70×0′.′42(20◦) IRAS4B1 032912.012 +311308.07 +6.7 235 449 1.0 1′.′08×0′.′83(20◦) 0′.′70×0′.′42(20◦) IRAS4B2 032912.840 +311306.98 +6.7 235 53 - 1′.′08×0′.′83(20◦) 0′.′70×0′.′42(20◦) aPositionsofthe1.3mmcontinuumpeakemissionandsystemicvelocitiesareextractedfromtheCALYPSOdataset(Codellaet al.2014;Santangeloetal.2015;Anderletal.2016;Mauryetal.,inpreparation).bFromHirotaetal.(2008,2011).c Internal luminositieswerederivedfromtheobservedfluxat70µm(Dunhametal.2008),awavelengthatwhichHerschelGouldBelt surveyobservations(Andréetal.2010)providedataat8′′spatialresolution(seealsoLadjelateetal.,inpreparation).Theinternal luminosityofSVS13-BismoreuncertainduetotheproximitytoSVS13-A. by 1′.′8: IRAS4-A1 and IRAS4-A2 (e.g. Looney et al. 2000). Table2.NumberofglycolaldehydelinesandresultsoftheLTEanalysis forthedetectedsources. While IRAS4-A1 is more than three times brighterin the mm- fluxthanitscompanion,onlyIRAS4-A2showsahighmolecular Source N E T N trans u rot tot complexity(seeTaquetetal.2015;Coutensetal.2015;Santan- (K) (K) (1014cm−2) geloetal.2015).IRAS4Bislocated∼30′′southeastofIRAS4A, IRAS2A1 13 37–318 159(24) 46(20) anditisassociatedwithtwocompactcontinuumsources,B1and IRAS4A2 18 37–375 236(74) 88(70) B2,withanangularseparationof11′′ (e.g.Looneyetal.2000; IRAS4B1 13 37–271 152(35) 15(9) Choi et al. 2011). NGC1333-SVS13 is a cluster dominated at SVS13-A 11 37–375 115(13) 21(8) millimeterwavelengthsbytwosources:SVS13-A,andSVS13- aInseveralcases(3forIRAS2A1,1forIRAS4A2,IRAS4B1, B.SVS13AisaprotostaralreadyintheClassIstageanddrives andSVS13-A;seeTablesA1toA4),thedetectedlinesaredue an extended outflow associated with the well-known HH7-11 totwoglycolaldehydetransitionsatfrequenciesblendedatthe chain (e.g.Lefloch et al. 1998;Chen et al. 2009).On the other presentspectralresolution. hand,SVS13-BisanearlierprotostarlyingsouthwestofSVS13- A ata distanceof15′′ (e.g.Bachilleretal. 1998;Looneyetal. 2000).Finally,theL1448-NA,L1448-NB,andL1448-2Aproto- starsarelocatedinthenorthernportionoftheL1448complex,at about∼1◦southwestofNGC1333,whileL1448-Cislocatedat ofatleast3.Wethenselectedonlythosetransitionswithacor- thecenteroftheL1148complex(seeLooneyetal.2000;Tobin respondingsyntheticline(derivedusingtherotationdiagramso- etal.2016,andreferencestherein). lutions, see below) that reproduces at least 50% of a detected peaktemperature.ThelineswereidentifiedusingtheJetPropul- sionLaboratory(JPL)moleculardatabase(Marstokk&Møllen- 4. Resultsanddiscussion dal1970,1973;Pickettetal. 1998;Butleret al. 2001;Widicus Theresultsofthepresentsearchtowardsthecoordinateslistedin Weaveretal.2005;Carrolletal.2010).Figure1showsexamples Table 1 indicatesthe presence ofglycolaldehydetowards4 out of glycolaldehydeemission lines (in TB scale) observed in the ofthe13observedcontinuumpeaks.Ifweconsiderthattheclas- 1.3mmand1.4mmspectral windowstowardsthe fourdetected sificationoftheIRAS2-A3andIRAS2-A2continuumpeaksas sources.FiguresA.1,A.3,A.5,andA.7showallthelinesused genuineprotostarsisdebated(seetherecentpaperbyTobinetal. for the following analysis. Tables A.1-A.4 report the observed 2016),thedetectionrateis∼36%.Interestingly,glycolaldehyde line parameters; we list both peak line intensities (Tpeak) and hasonlybeendetectedtowardstheNGC1333sources,wherethe velocities (Vpeak, consistent with the LSR velocities of the ob- detectionrateisashighas∼60%. jects),linewidth(FWHM),andtheintegratedemission( Tdv). Figures A.1 to A.9 report the spectra at the frequencies of All the values are in T scale and are derived from GRaussian B theglycolaldehydelinesobservedtowardsIRAS2A1,SVS13-A, fits.Awideupper-levelenergyrangeisobserved(seeTable2), IRAS4A2,andIRAS4B1.Thespectralresolutiondoesnotallow withE from37Kupto375K:thisallowsus(i)toimproveon u us to probe the profiles of the emission lines and the observed the results of Coutenset al. (2015)and Taquet et al. (2015)on spectraareaffectedbylineblending.Nevertheless,thereislittle IRAS2A1andIRAS4A2,byincreasingthenumberofdetected doubtthatthelargeWideXbandwidths(8GHzintotal)allowed linesandexpandingtherangeofupper-levelenergyprobed,and us to detecttowardsthe foursourcesa considerablenumberof (ii)tofirmlyassess,forthefirsttime,theglycolaldehydeoccur- glycolaldehydelines(upto18)withasignal-to-noiseratio(S/N) rencetowardsIRAS4B1andSVS13-A. Articlenumber,page3of24 A&Aproofs:manuscriptno.desimone Fig. 1. Examples of glycolaldehyde emission lines (inT scale) observed inthe 1.3mm and 1.4mm spectral windows (and at different upper- B level energy, E from 37 K to 135 K) towards NGC1333-IRAS2A1 (Upper-left panel), NGC1333-IRAS4A2 (Upper-right panel), NGC1333- u IRAS4B1(Lower-leftpanel),andNGC1333-SVS13A(Lower-rightpanel).Thehorizontalgreendottedlinesshowthe3σlevel.Inbluewemark theglycolaldehydelinesextractedfromTablesA1-A4.Thebrightlineat∼220190MHzisduetoCH OCHO(17 –16 )A(Mauryetal.2014; 3 4,13 4,12 Belloche et al.inpreparation). Thered lineshows thesynthetic spectrum obtained withtheGILDAS–Weedspackage (Maret et al.2011) and assumingtherotationdiagramsolutions(seeFig.3). 4.1.HCOCHOHspatialdistributions natedby emission dueto the SO17O(13 –13 ) transition at 2 2,12 1,13 220196.75MHz(E =93K,log(A /s−1)=-3.8).Weinspected u ij Figure 2 compares the spatial distribution of the glycolalde- the CALYPSO datasetsearchingfor emission lines due to SO 2 hyde emission (colour scale and green contours) with that isotopologues.Wehaveonlyaweak(lessthan3σ)34SO (4 – 2 2,2 of the 1.4mm continuum (white contours; see Codella et al. 3 ) emission at 229.9 GHz (E = 19 K, log (A /s−1) = -4.1), 1,3 u ij 2014; Maury et al., in preparation) towards (from top to butonlyaroundtheNGC1333-IRAS4A2protostar.Inaddition, bottom) NGC1333-IRAS2A1, NGC1333-IRAS4A, NGC1333- againonlyIRAS4A2,wehaveatentative(≥3sigma)detection IRAS4B1,andNGC1333SVS13-A.Theglycolaldehydedistri- of the SO (11 –12 ) line (E = 122 K) at 229.3 GHz, and, 2 5,7 4,8 u bution refers to emission lines in both the 1.3mm and 1.4mm not surprisingly, no detection of the SO (22 –23 ) line at 2 7,15 6,18 spectralwindows,i.e.thesumofthe76,2-65,1 and76,1-65,2 lines 219.3GHz(Eu=352K).Inanycase,thespectralresolutionand (220.2GHz, Eu =37K),andthe222,21-211,20 line(232.3GHz, sensitivityofthepresentdatasetisnothighenoughtoproperly Eu =135K).ConsistentwiththeresultsofTaquetetal.(2015), investigatethisintriguingpossibility,callingforfurtherinterfer- our images indicate that the glycolaldehyde emission is only ometricobservations.The analysispresentedin thispaperonly marginally resolved. For each source, we derived the emission referstothecompactcomponent. size of the brightest line at 1.3 mm shown in Fig. 2 by fit- ting an elliptical Gaussian in the uv domain: we obtain about 0′.′5 (IRAS2A1),0′.′4 (IRAS4A2, IRAS4B1), and0′.′3 (SVS13- 4.2.HCOCH2OHrotationdiagrams A), whichimpliesthattheglycolaldehydeemission isconfined Giventhattheglycolaldehydecollisionalratesarenotavailable in the inner 100 au around each protostar. The glycolaldehyde in the literature,we derivedexcitationtemperatureandcolumn emission peak is consistent, considered the angular resolution, densities by using a crude approach such as the classical rota- with the continuum peaks. Our results confirm the hot-corino tional diagram, assuming a unique temperature, optically thin natureofNGC1333-IRAS2A1andNGC1333-IRAS4A2,previ- emission,andLocalThermodynamicEquilibrium(LTE)condi- ouslynotedbyMauryetal.(2014)andTaquetetal.(2015),and tions.Weappliedacorrectionduetothebeamfillingfactorus- inadditionsupportsthesamenatureforIRAS4B1andSVS13-A ingthesizesreportedinSect.4.1.Undertheseassumptions,for (seeSect.4.2forthetemperaturemeasurements). agiventransitionthecolumndensityoftheupperlevel, N ,is up Finally,the image of the brightestglycolaldehydeemission relatedtotherotationaltemperatureTrot,asfollows: (at 220.2 GHz) of the IRAS4-A1+A2 system, shows, in addi- tion to the A2 compact core, a tentative detection at 5σ of a 8πkν2 more extended emission. If significant, either this could trace Nup = hc3A ff Z Tdv (1) part of the extended envelope hosting the two protostars; or it ul could be associated with the swept-upmaterialassociated with N E up up thetwoN-SoutflowsdrivenbytheA1andA2protostars(San- ln =lnN −lnQ(T )− (2) tot rot g kT tangeloetal.2015).Inthelattercase,thiswouldbethefirstsig- up rot nature of glycolaldehyde emission from a protostellar outflow. where:handk arethePlanckandBoltzmannconstants,re- However, note that this feature could be potentially contami- spectively, ff isthebeamfillingfactor(derivedusingthesizes Articlenumber,page4of24 DeSimoneetal.:GlycolaldehydeinPerseusyoungsolaranalogs Fig.2.Comparisonbetweenthe1.4mmcontinuum(whitecontours)andtheglycolaldehydespatialdistributions(colourscaleandgreencontours) towards(fromtoptobottom)NGC1333-IRAS2A1,NGC1333-IRAS4A,NGC1333-IRAS4B1,andNGC1333SVS13-A.Forcontinuum,firstcon- toursandstepscorrespondto5σ(14mJybeam−1)and10σ,respectively.TheellipsesshowthePdBIsynthesisedbeam(HPBW)forthecontinuum (white,seeTable1)andglycolaldehydeimages.TheHPBWsfortheglycolaldehydeimagesat1.4mmare:0′.′82×0′.′70,32◦(NGC1333-IRAS2A1), 1′.′08×0′.′81,19◦ (NGC1333-IRAS4A),1′.′08×0′.′83,20◦ (NGC1333-IRAS4B1),and1′.′06×0′.′80,20◦ (NGC1333SVS13-A).TheHPBWsforthe glycolaldehydeimagesat1.3mmare:0′.′82×0′.′70,32◦(NGC1333-IRAS2A1),0′.′72×0′.′44,21◦(NGC1333-IRAS4A),0′.′72×0′.′44,21◦(NGC1333- IRAS4B1),and0′.′71×0′.′43,21◦(NGC1333SVS13-A).Leftpanels:Theglycolaldehydedistributionreferstothesumofthe7 -6 and7 -6 6,2 5,1 6,1 5,2 emissionwith(220.2GHz, E =37K;seeTablesA1-A4).Firstcontours andstepscorrespond to5σ (90,90, 75,and55mJybeam−1 kms−1 u respectively forNGC1333-IRAS2A1, NGC1333-IRAS4A,NGC1333-IRAS4B1, andNGC1333 SVS13-A)and3σ, respectively. Right panels: Theglycolaldehydedistributionreferstothe22 -21 emission(232.3GHz,E =135K;seeTables2-5).Firstcontoursandstepscorrespond 2,21 1,20 u to5σ(100,110,50,and60mJybeam−1kms−1respectivelyforNGC1333-IRAS2A1,NGC1333–IRAS4A,NGC1333-IRAS4B1,andNGC1333 SVS13-A)and3σ,respectively. Articlenumber,page5of24 A&Aproofs:manuscriptno.desimone 27 IRAS2A1 1.4mm IRAS4A2 1.4mm 26.5 1.3mm 1.3mm 26 25.5 ) ) a a g g / /25 a24.5 a N N ( ( n n l l24 23.5 22.5 N=46(20) 1014cm−2 23 N=88(70) 1014cm−2 T=159(24) K T=236(74) K 50 100 150 200 250 300 50 100 150 200 250 300 350 E /K (K) E /K (K) u b u b 27 26 IRAS4B1 1.4mm SVS13-A 1.4mm 1.3mm 1.3mm 26 )a25 )a25 g g / / a a N N 24 ( ( n24 n l l 23 N=15(9) 1014cm−2 N=21(8) 1014cm−2 23 T=152(35) K 22 T=115(13) K 50 100 150 200 250 300 50 100 150 200 250 300 350 E /K (K) E /K (K) u b u b Fig.3.RotationdiagramfortheglycolaldehydetransitionsreportedinTable2forNGC1333-IRAS2A(Upper-leftpanel),NGC1333-IRAS4A2 (Upper-rightpanel),NGC1333-IRAS4B1(Lower-leftpanel),andNGC133-SVS13A(Lower-rightpanel).Thelineintensitieshavebeencorrected forbeamdilutionusingthesizesderivedinSect.4.1.TheparametersN ,g ,andE arerespectivelythecolumndensity,thedegeneracy,andthe up up up energyoftheupperlevel.Theerrorbarsonln(N /g )aregivenbytheverticalbarofthesymbols.Redandbluepointsrefertothelinesdetected up up inthe1.3mmand1.4mmspectralbands,respectively.Thedashedlinesrepresentthebestfits. reportedin Sect. 4.1), g is the degeneracyof the upper level, ofthepresentlineidentification.Ontheotherhand,thederived up N isthetotalcolumndensity,Q(T )isthepartitionfunction, N are lower than what Jørgensenet al. (2012, 2016) towards tot rot tot andE istheupperlevelenergy.Figure3showstherotationdi- theIRAS16293-2422binary(3–4×1016 cm−2)found,inOphi- up agramsobtainedusingboththe1.3mm(redpoints)and1.4mm uchus,onsmaller(≤60au)spatialscales.Thesourceswherewe (blue points) lines, while Table 2 reports the results, i.e. high reporta detection of glycolaldehydeare those with the highest temperatures,T between115K and236K,and N ≃ 1–9× numberofspectrallinesofcomplexorganicmoleculesdetected rot tot 1015cm−2.Thepresentdataimage,forthefirsttime,ahotcorino above 6 sigma in the 1.3 mm and 1.4 mm WIDEX spectra of aroundSVS13-AandNGC1333-IRAS4B1.Thesefindingscon- theCALYPSOsubsampleofPerseussources(Bellocheetal.,in firm thatthe glycolaldehydegasis presentin the regionwith a prep.). radius less than 100 au where the temperature is high enough Therotationdiagramsolutionshavebeenusedtocreatesyn- to sublimate the dust mantles. Thus, either glycolaldehyde is thetic spectra (see the red lines in Fig. 1 and Figs. A.1 to A.9) directly released from mantle sublimation or formed through to strengthen the detection using the GILDAS–Weeds package gas-phase reactions using simpler species directly formed on (Maret et al. 2011). We assumed a backgroundtemperature of the mantles and successively evaporated due to thermal heat- 2.73 K. In principle, for sources with a strong continuumsuch ing. Note that the sources where we report a detection of gly- as NGC1333-IRAS4B1,the columndensity obtainedusing the colaldehydeare thosewith thehighestnumberofspectrallines rotational diagram method can be underestimated, converting ofCOMs(e.g.HCOOCH3)detectedabove6σinthe1.3mmand the measurementin a lower limit. The synthetic intensities are 1.4mmWideX spectra of the CALYPSO subsampleof Perseus notsystematicallyover-orunder-estimatingtheobservedlines, sources(Bellocheetal.,inpreparation).InthecaseofIRAS2A1 confirmingthat the temperaturesderivedfrom the rotationdia- and IRAS4A2, the estimated rotational temperatures and col- gramsaregoodapproximations.Notethatallthedetectedlines umndensitiesarewellinagreement(afterapplyingcorrectlythe areopticallythin.However,eventhoughtherotationaldiagrams beam filling factor scaling) with what was previously reported showreasonableagreementbetweenmeasurementsandthesin- byTaquetetal.(2015)andCoutensetal.(2015)usingdifferent gletemperaturemodel,itisworthtopointoutheresomeshort- datasetsonsimilar spatialscales, thusconfirmingthegoodness comings of our models in reproducing the observed spectra. Articlenumber,page6of24 DeSimoneetal.:GlycolaldehydeinPerseusyoungsolaranalogs 4.3.HCOCHOHoccurrencearoundprotostars 2 16.0 Figure 4 compares the column densities measured towards the foursourcesdetectedinglycolaldehydewiththeupperlimitson 15.5 2) Ntot derived for the 9 objects in Perseus where glycolaldehyde − hasnotbeenrevealed.Assumingatypicaltemperatureof150K, m 15.0 c a size of 0′.′4 (see Sect. 4.1), and considering the 3σ values of / g14.5 the spectra where no glycolaldehydeemission has been found, N thetypicalupperlimit is ≤ 1015 cm−2, i.e. oneorderofmagni- ( 0 114.0 tude less than what found in IRAS2A1, IRAS4A2, IRAS4B1, g lo 1133..05 IRAS2A1 IRAS4A2 IRAS4B1 SVS13-A IRAS2A2 IRAS2A3 IRAS4A1 SVS13-B L1448-2A L1448-C L1448-NA L1448-NB IRAS4B2 athdonyisrddetaecSrtmsVlysSoha1loed3wci-uffAalee.srsTeiginhnnceiestfiheicenmagngeatlalysyscuphorhilegaamlhsdeeee.rnhHctysoodlswueumepavbpneuordnr,tedtnthahsniaiscttyemt.hoaefysgenlyfooctourlreaflpldreoec--t Source To estimate the possible enhancement (or deficit) of gas phaseglycolaldehydeabundanceinthesourcesinoursamplewe needtocomparewithanestimateofthetotalgascolumndensity Fig.4.Distributionoftheglycolaldehydecolumndensity(Ntot)derived ineachsource.Asaproxyforthetotalcolumndensitytowards towards the selected sample (see Table 1). Red arrows are for upper eachsourceweusethepeakcontinuumfluxat1.4mm.Themil- limits. limetrecontinuumfluxinthesesourcesisdominatedbythether- malemissionfromdustgrains.Theexactconversionofthemil- limeterfluxintototalgascolumndensitydependsonthreevery uncertainfactors: the dust properties(definingthe dust opacity per gram of dust), the dust density and temperature structure, and the gas to dust ratio. Comparing the observed glycolalde- hydecolumndensitieswiththecontinuumpeakfluxwillallow While we do not find large discrepancies, the spectral resolu- tosearchforsystematicabundancevariationsinoursampleonly tion of our observations is relatively low and the spectra very under the assumption that the sources in our sample have uni- rich of emission lines (especiallyof the foursourceswherewe formproperties.Whilethisisexpected,sinceoursourcesarean do detectglycolaldehydeline). Thisimplies thatin some cases homogeneoussetofprotostarsin thesame starformingregion, thelinesmaybecontaminedbyemissionfromothermolecules. inthefuturethisanalysiswillhavetoberefinedusingmoreex- FiguresA.1,A.3,A.5, andA.7showsthelinesselected forthe tensiveobservationsandmoreaccurateestimatesofthetotalgas analysis.Tobethorough,Figs.A.2,A.4,A.6,andA.8showall columndensityineachsource. the lines excluded from the present analysis because, although theyareconsistentwiththeobservedspectrum,theblendswith Figure5showstheratiobetweentheglycolaldehydecolumn otherspeciespreventsafirmidentificationoftheline.Notethat, density, Ntot, and the continuum peak flux at 1.4 mm (F1.4mm, in a few cases, our simple LTE model predicts higher fluxes fromMauryetal.inpreparation)againstthevalueofthe1.4mm thanobserved;a specialcase isrepresentedbythe 20 -19 peak flux itself. As mentioned above, if we assume that the 2,18 3,17 line at 220463 MHz observed towards NGC1333-IRAS4B1, - molecular hydrogen column density scales with the dust peak IRAS2A1, IRAS4A2, and -SVS13A (see Fig. A.9), and con- flux density, then the plot in Fig. 5 shows that the gas phase servatively excluded from the LTE analysis falling at the edge abundanceofglycolaldehyderelativetomolecularhydrogenhas of the observed WideX band. Beside this line, only in 2 cases aspreadofa factorofabout10amongthe sourceswithglyco- (overagrandtotalofabout90lines,countingalsothosenotused laldehydedetections.Evenif thenon-detectionof sourceswith herebecauseofblending)thediscrepancyreachesafactor3:the F1.4mmlessthan100mJymightsuggestthatadetectionrequires 22 −21 lineat∼232286MHzinIRAS2A1(seeFig.A.2), brightcontinuumemission,abrightcontinuumsourceisnotnec- 1,21 2,20 andthe9 −8 lineat∼217626MHzinSVS13-A(seeFig. essarilyassociatedwithglycolaldehydeemission.A typicalex- 5,5 4,4 A.8).Thedifferenceisevenlessonceconsideredboththeerrors ample is given by the IRAS4-A1+A2 system, where it is only associatedwiththeLTEfit(seeTable2)andtheerrorsontheob- theobjectshowingweakercontinuumemissionthatisdetected servedlinepeakintensity.Indeed,forlinesclosetothedetection in glycolaldehyde(see Fig. 2). If we consider the sources with limitthesystematicdiscrepancycouldbeunderstoodintermsof continuum peak flux above ∼100 mJy/beam, then the average thenoisefluctuationsandtheuncertaintyofthecontinuumsub- ratios for sources with detected glycolaldehyde are a factor of traction in a region of the spectrum very rich of lines. We also ∼10higherthanthesourceswithupperlimits.Thissuggeststhat notethatdeviationsfromthesimplifyingassumptionsofsingle the detected sources may have a significantly higher gas phase temperatureLTE,nonthermalexcitationandabsorptionmaybe abundance of glycolaldehyde compared with the non-detected the cause of some of the discrepancies. Obtaining higher sen- sources. sitivity and higher spectral and spatial resolution observations Theglycolaldehydedetectionindicatesthatthegasreached over a broader frequency range, together with a full spectrum a temperature of at least 100 K; at these high temperaturesthe modeling,willhelpderivingmoreaccurateestimatesofthegas gasis enrichedchemicallyby the release of moleculesdirectly parameters. Nonetheless, eventually the intrinsic linewidth, the fromthe dustmantlesand/orbytheovercomeof theactivation sourcechemicalcomplexityandrichnessofthespectraandthe barrierofgasphasereactionsusingwhatwasreleasedfromthe sourcephysicalcomplexitywillalwayslimittheabilitytoaccu- icydustmantles.Itisreasonabletoassumethatthetemperature ratelyidentifyandmeasureindividuallines.Overall,oursimple increaseswiththesourceluminosity,whichdependsonthepro- LTEanalysisandcomparisonwiththespectrashowthat,while tostellarmassandonthesourceaccretionrate,whichinturnis notperfect,itispossible toestimate a temperatureandcolumn related to the evolutionary stage. However, only three sources densityrepresentativeofthebulkofthemolecularemission. whereglycolaldehydehasbeendetectedcanbeassociatedwith Articlenumber,page7of24 A&Aproofs:manuscriptno.desimone formingregionisparticularlyrichinglycolaldehyde,witha 14 definitelyhigherrateofoccurrence:upto60%. y) A1 2. Theglycolaldehydeemissioniscompactandcoincidentwith 2N/F/cm/mJ−g1.4mm1132 IRAS2A2 IRAS2A3 L1448-NBL1448-2A IRAS4B2 IRAS2L1448-CVS13-BSVS13-AL1448-NA IRAS4A2 IRAS4B1 A1 tllpcb3hiaore7nleovtdewtKesecorheosiieyntnunandgtpdrie.in1actuWoea0lumt0aeem3rig7Kstdye5speipetoraKeiaanncckn,adtgielaosde2nsfti0doarze0afeaiclscnuaiKhdnrpog.igpfdceeWaet0rht(t-′ieu.e′len4cepgvtciesnetodhhonlnioeegfis1wronhr8muei1)nrtr0eggcn0amyeunt,.mhpadwTuaebthrieetaaexhtrtrhutobeeoErurnefuingdsgldl,fhiyrneTtcoteaehormsrsoe--t,t ( S S4 lierresultstowardsIRAS2A1andIRAS4A2,andrevealfor g10 RA thefirsttimethepresenceofhotcorinosaroundNGC1333- lo I IRAS4B1andSVS13-A.Thetotalcolumndensitiesofgly- 11 colaldehydeinthedetectedsourcesare≃1–9×1015cm−2. 1.0 1.5 2.0 2.5 3.0 3. We suggest that the four hot corinos imaged in glycolalde- log (F /mJy) 10 1.4mm hydeinNGC1333areassociatedwithasignificantlyhigher gas phase abundance of glycolaldehydewith respect to the Fig.5.Ratiobetweentheglycolaldehydecolumndensity(N )andthe tot restofthesample.TheSVS13-A+BandIRAS4-A1+A2sys- peak flux of the1.4mm continuum emission (F ; Maury et al., in 1.4mm temssuggestthatthedetectionofglycolaldehydeemissionis preparation) versus the 1.4mm peak flux. Red arrows are for sources duetothesourceevolution:thechemicalrichnesshighlights whereglycolaldehydehasnotbeendetected. those protostarsevolvedenoughto warma brightregionof ∼100 au at temperatures larger than 100 K. However, the presentsampledoesnotallowustoreachafirmconclusion a measurement of the internal luminosity hampering a reliable whethertheglycolaldehydedetectionisalwaysaquestionof checkforatrend(seeTable1).Inaddition,our1.4mmfluxesdo evolutionoraccretionluminosityand/orifitdependsonthe not allow us to derive a direct measurement of the protostellar environmenthostingtheprotostars. mass.Tryingtoshedlightonthisaspect,wenotethatinthecase oftheSVS13-A+Bsystem,glycolaldehydeisonlydetectedto- Ourinitialresultscanbeconfirmedandextendedwithmore wards the more evolved SVS13-A source, with L = 24.5 L , sensitiveobservationsofalargersampleofobjects.Inparticular, int ⊙ whereastheyoungerobjectSVS13-B,with L =1–2L .does more accurate determinationsof the possible variationsof gly- int ⊙ notshowevidenceofanenrichedchemistry.Therefore,atleast colaldehydeabundanceingasphasewillbeapowerfulprobeof in this case, the lack of a detectedhot-corinoin SVS13-Bsug- thechemicalevolutionofprotostarsandmayconfirmthepresent gests that the protostarhad notenoughtime to warm a portion results. of gas large/brightenough to be detectable. Interestingly, San- Acknowledgements. WeareverygratefultoalltheIRAMstaff,whosededication tangelo et al. (2015), using the SiO and CO jet properties im- allowedustocarryouttheCALYPSOproject.Thisworkwaspartlysupported agedinIRAS4-A1+A2system,proposedthatthechemicalrich- bythe PRIN INAF2012–JEDIandbythe Italian Ministero dell’Istruzione, nessobservedtowardsIRAS4-A2(andnottowardsIRAS4-A1), UniversitàeRicercathroughthegrantProgettiPremiali2012–iALMA(CUP C52I13000140001). AMissupportedbytheMagneticYSOs, grantagreement is due to a later evolutionary stage, inferred from the jet prop- n.679937. CC, LT,and AMhave been partially supported bythe Gothenburg erties driven by the two objects. Nevertheless, it is clear that a Centre for Advanced Studies in Science and Technology as part of the Go- more systematic comparativestudy of sources in differentevo- CASprogramOriginsofHabitablePlanets.Theresearchleadingtotheseresults lutionary phases is required to reach a firm conclusion: based hasreceivedfundingfromtheEuropeanCommunity’sSeventhFrameworkPro- only on a few sources (e.g. SVS13-A+B),it is verydifficultto gramme(FP7/2007-2013/)undergrantagreementsNo229517(ESOCOFUND) andNo291294(ERCORISTARS),andfromtheFrenchAgenceNationaledela tellwhethertheprimaryfactorleadingtothedetectionofglyco- Recherche(ANR),underreferenceANR-12-JS05-0005. laldehydeemissionisevolution(e.g.lowvalueofL /L )or submm int accretionluminosity(high L ) orenvironment(e.g.NGC1333 int vs.L1448).Thesefindingscallforfurtheranalysisofthechem- References ical contentof the protostellar environmentsof the whole CA- LYPSOsample,usingalltheemissionduetoalltheCOMsand[2016] AnderlS.,MaretS.,CabritS.,etal.2016,A&A591,A3 notonly to glycolaldehyde,which will be presentedin a forth-[1993] AndréP.,Ward-ThompsonD.,&BarsonyM.1993,ApJ,406,122 comingpaper(Bellocheetal.,inpreparation). [2000] AndréP.,Ward-ThompsonD.,&BarsonyM.2000,ProtostarsandPlanets IV,59 [2010] AndréP.,Men’shchikovA.,BontempsS.,etal.2010,A&A,518,L102 [1998] BachillerR.,GuilloteauS.,GuethF.,etal.1998,A&A339,L49 5. Conclusions [2009] BeltránM.T.,CodellaC.,Viti,S.,NeriR.,&CesaroniR.2009,ApJ690, L93 Wereportasurveyofglycolaldehydeemissiontowardsasample [2001] ButlerR.A.H.,DeLuciaF.C.,PetkieD.T.,etal.2001,ApJS134,319 of Class 0 protostars located in the L1448 and NGC1333 star[2014] CalcuttH.,VitiS.,CodellaC.,etal.2014,MNRAS443,3157 formingregions,inPerseus.Theanalysishasbeenperformedin[2010] CarrollP.B.,DrouinB.J.,&WidicusWeaverS.L.2010,ApJ723,845 theframeworkoftheIRAMPdBICALYPSOsurvey.Themain[2007] CeccarelliC.,CaselliP.,HerbstE.,TielensA.G.G.M.,$CauxE.2007Pro- tostarsandPlanetsV,47 findingscanbesummarisedasfollows: [2009] ChenX.,LaunhardtR.,&HenningT.2009,ApJ691,1729 [2011] ChoiM.,KangM.,TatematsuK.,Lee,J.-E.,&ParkG.2011,PASP63, 1. We found glycolaldehyde towards 3 Class 0 objects 1281 (NGC1333-IRAS2A1, NGC1333-IRAS4A2, NGC1333-[2009] CodellaC.,BenedettiniM.,Beltrán,M.T.,etal.2009,A&A507,L25 [2014] CodellaC.,MauryA.,GuethF.,etal.2014,A&A563,L3 IRA4B1) and 1 Class I source (SVS13-A). Once excluded [2015] Coutens A.,PerssonM.V.,JørgensenJ.K.,WampflerS.F.,&LykkeJ.M. the continuum peaks whose nature is still debated, this 2015,A&A576,A5 results in a detection rate of ∼ 36%. The NGC1333 star[2008] DunhamM.M.,CrapsiA.,EvansIIN.J.,etal.2008,ApJS179,249 Articlenumber,page8of24 DeSimoneetal.:GlycolaldehydeinPerseusyoungsolaranalogs [2006] HalfenD.T.,ApponiA.J.,WoolfN.,PoltR.,&ZiurysL.M.2006,ApJ639, 237 [2009] HerbstE.,&vanDishoeckE.F.2009,ARA&A47,427 [2008] HirotaT.,BushimataT.,ChoiY.K.,etal.2008,PASJ60,37 [2011] HirotaT.,HonmaN.,ImaiH.,etal.2011,PASJ63,1 [2000] Hollis,J.M.,LovasF.J.,&JewellP.R.2000,ApJ540,L107 [2004] HollisJ.M.,JewellP.R.,LovasF.J.,&RemijanA.2004,ApJ613,L45 [2007] JalboutA.F.,AbrellL.,&AdamowiczL.,etal.2007,Astrobiology7,433 [2012] JørgensenJ.K.,FavreC.,BisschopS.E.,etal.2012,ApJ757,L4 [2016] JørgensenJ.K.,vanderWielM.H.D.,CoutensA.,etal.2016,A&A595, A117 [1987] LadaC.J.1987,inIAUSymposium,Vol.115,StarFormingRegions,ed. M.Peimbert&J.Jugaku,1-17 [1998] LeflochB.,CastetsA.,CernicharoJ.,LangerW.D.,&ZylkaR.1998,A&A 334,269 [2000] LooneyL.W.,MundyL.G.,&WelchW.J.2000,ApJ529,L477 [2011] MaretS.,Hily-BlantP.,PetyJ.,Bardeau,S.,&ReynierE.2011,A&A526, 47 [1970] MarstokkK.-M.&MøllendalH.1970,JournalofMolecularStructure,5, 205 [1973] MarstokkK.-M.&MøllendalH.1970,JournalofMolecularStructure,16, 259 [2014] MauryA.J.,BellocheA.,AndréPh.,etal.2014,A&A563,L2 [1998] PickettH.M.,PoynterR.L.,CohenE.A.,etal.1998,J.Quant.Spectrosc.& Rad.Transfer60,883 [2008] Requena-TorresM.A.,Martín-PintadoJ.,MartínS.,&MorrisM.R.2008, ApJ672,352 [2014] SakaiN.,SakaiT.,HirotaT.,etal.2014,Nature507,78 [2015] SantangeloG.,CodellaC.,CabritS.,etal.2015,A&A584,216 [2015] TaquetV.,López-SepulcreA.,CeccarelliC.,etal.2015,ApJ804,81 [2016] TobinJ.J.,LooneyL.W.,LiZ.-Y.,etal.2016,ApJ818,73 [1998] WeberA.L.,1998,OriginsofLifeandEvolutionoftheBiosphere,28,259 [2005] WidicusWeaverS.L.,ButlerR.A.H.,DrouinB.J.,etal.2005,ApJS158, 188 Articlenumber,page9of24 A&Aproofs:manuscriptno.desimone AppendixA: ObservedHCOCH OHemissionlines 2 TablesA.1toA.4report,forthe4sourceswhereglycolaldehyde emissionhasbeendetected(IRAS2A,SVS13-A,IRAS4A2,and IRAS4B),theresultsoftheGaussianfitforallthedetectedlines. In particular,we first list the spectralparameters(frequency,ν, upperlevelenergy,E , andtheSµ2 product,alltakenfromthe u Jet Propulsion Laboratory database; Pickett et al. 1998), fol- lowed by the line parameters (in T scale), namely: the inte- MB grated emission ( Tdv), both peak line velocities (V ) and peak intensities(T ),Rlinewidth(FWHM),andr.m.s.noise.Figures peak A.1,A.3,A.5,andA.7showthelinesdetectedandusedforthe analysis, Figs. A.2, A.4, A.6, and A.8 show the lines excluded fromtheanalysisgiventhesevereblendingwithotheremission lines, while Fig. A.9 is for a line which has not been used be- causeitislocatedattheedgeoftheWideXbandwidth. Articlenumber,page10of24

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.