ebook img

gluon–gluon fusion or quark–antiquark annihilation? PDF

12 Pages·2016·0.78 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview gluon–gluon fusion or quark–antiquark annihilation?

Diphoton excess at 750 GeV: gluon–gluon fusion or quark–antiquark annihilation? The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. Citation Gao, Jun, Hao Zhang, and Hua Xing Zhu. “Diphoton Excess at 750 GeV: Gluon–gluon Fusion or Quark–antiquark Annihilation?” The European Physical Journal C 76.6 (2016): n. pag. As Published http://dx.doi.org/10.1140/epjc/s10052-016-4200-z Publisher Springer Berlin Heidelberg Version Final published version Accessed Thu Jan 03 17:56:14 EST 2019 Citable Link http://hdl.handle.net/1721.1/103629 Terms of Use Creative Commons Attribution Detailed Terms http://creativecommons.org/licenses/by/4.0/ Eur.Phys.J.C (2016) 76:348 DOI10.1140/epjc/s10052-016-4200-z RegularArticle-TheoreticalPhysics Diphoton excess at 750 GeV: gluon–gluon fusion or quark–antiquark annihilation? JunGao1,a,HaoZhang2,b,HuaXingZhu3,c 1HighEnergyPhysicsDivision,ArgonneNationalLaboratory,Argonne,IL60439,USA 2DepartmentofPhysics,UniversityofCalifornia,SantaBarbara,SantaBarbara,CA93106,USA 3CenterforTheoreticalPhysics,MassachusettsInstituteofTechnology,Cambridge,MA02139,USA Received:19May2016/Accepted:10June2016 ©TheAuthor(s)2016.ThisarticleispublishedwithopenaccessatSpringerlink.com Abstract Recently, ATLAS and CMS collaborations 19,26–30,32–34,38,41–45,48–57,59,63,65–69,71,72,75– reported an excess in the measurement of diphoton events, 80,83–87,89,90,93–109,115–128,130–133,136,139–141]. which can be explained by a new resonance with a mass Whilethemodelsproposedvarysignificantly,therearesome around 750 GeV. In this work, we explored the possibility commonfeaturessharedbymostofthem.Duetothequan- ofidentifyingifthehypotheticalnewresonanceisproduced tum number of photon pair, most of the proposals suggest throughgluon–gluonfusionorquark–antiquarkannihilation, thattheexcessiseitherduetogluon–gluonfusionorquark– or tagging the beam. Three different observables for beam antiquark annihilation. Different production mechanisms tagging,namelytherapidityandtransverse-momentumdis- can lead to very different UV models. Knowing the actual tribution of the diphoton, and one tagged bottom-jet cross production mechanism responsible for the potential excess section, are proposed. Combining the information gained is of great importance for understanding the underlying fromtheseobservables,acleardistinctionoftheproduction theory.Unfortunately,verylittlecanbesaidfromthecurrent mechanismforthediphotonresonanceispromising. data,exceptsomeconsiderationsbasedontheconsistencyof experimentaldatafromtheLHCRun1andRun2. In this work, we shall study the following problem: if 1 Introduction thediphotonexcesspersistsinfuturedata,andtheexistence of a new resonance is established, is it possible to distin- Very recently, both ATLAS and CMS collaborations pre- guishdifferentproductionmechanismswithenoughamount sentednewresultsfromLHCRun2.Althoughmostofthe of data? One can compare this question with the more fre- measurements can still be fit in the Standard Model (SM) quentlyaskedquestion,namely,howtotellwhetheranener- framework nicely, some intriguing excesses are reported. getic hadronic jet in the final state is due to a quark or a Of particular interest is the diphoton excess around 750 gluon produced from hard scattering. This is also known GeVseenbybothcollaborations.TheATLAScollaboration as the quark and gluon jet tagging problem; see e.g. Refs. reported an excess above the standard model (SM) dipho- [31,91,92,114].1 Onecanviewthequestionofdifferentiat- tonbackgroundwithalocal(global)significanceof3.9(2.3) ingtheggfusionandqq¯ annihilationmechanismasafinal- σ [3]. The CMS collaboration, with a little less integrated state-to-initial-statecrossingofthequarkandgluonjettag- luminosity,alsoreportedanexcessat760GeVwithalocal ging problem. For this reason we will call it the quark and (global)significanceof2.6(alittlelessthan1.2)σ [2]. gluonbeamtaggingprobleminthiswork,orbeamtagging Though further data is required to establish the exis- forshort.Whileourcurrentworkinthebeamtaggingprob- tence of a new resonance or other beyond the SM (BSM) lem was motivated by the diphoton excess, we believe that mechanism responsible for the diphoton excess, significant our results will be useful even if the excess disappear after theoretical efforts have been made to explain the possible moredataisaccumulated,becauseabumpmighteventually diphotonexcessinvariousBSMscenarios[4–9,11–13,15– showupatadifferentplaceand/orinadifferentchannel. ae-mail:[email protected] 1 Asomewhatrelateddiscussionhasalsobeenmadeintheliterature be-mail:[email protected] ofthecolorcontentofBSMresonanceproduction[14,138],andthe ce-mail:[email protected] taggingofinitial-stateradiation[112]. 123 348 Page 2 of 11 Eur.Phys.J.C (2016) 76:348 Animportantfeatureofthebeamtaggingproblemisthat Therecouldalsobeeffectiveoperatorswithapseudoscalar. mostoftheQCDradiationsfromtheinitial-statepartonsare But their long distance behavior is in-distinguishable from intheforwarddirection,andthereforearehardtomakeuse the scalar case. Also the scalar has to couple to photon in of.Thisiscontrastedwithfinal-statejettagging,inwhichthe order to be able to decay todiphoton. But that is irrelevant informationofQCDradiationsinthejetplaycrucialrolein tomostofourdiscussion. identifyingthepartonicoriginofthejet.Thisfeaturemakes Thanks to QCD factorization, the hadronic production the beam tagging problem difficult. Based on the consider- crosssectionforScanbewrittenas ation of general properties of initial-state QCD radiations, (cid:5) (cid:6) (cid:7) we explore different observables which are useful for the σ0(i) =τ τ1 dxx fi/N1(τ/x)fi¯/N2(x)+(i ↔i¯) σˆ0(i), beam tagging problem. First of all, we consider the rapid- (2) itydistributionofthediphotonsystem.Itiswellknownfrom Drell–Yanproductionthatfortheqq¯initialstate,contribution where τ = M2/E2 . The operator in Eq. (1) leads to the S CM fromvalencequarkandseaquarkcanhavedifferentshapein followingpartoniccrosssectiontothescalarproduction: rapiditydistribution.Usingthisinformation,wefindthatit (cid:3) (cid:4) ispossibletodistinguishthevalence-quark scatteringfrom π α 2 sea-quarkorgluonscattering.Second,weconsiderthetrans- σˆ(g) = s , 0 16(N2−1) 3π(cid:5) versemomentum(QT)distributionofthediphotonsystem. (cid:3)c (cid:4) g π v 2 It is well known that the QT distribution of a color neutral σˆ(q) = . (3) systemexhibitsaSudakovpeakatlowQ duetoinitial-state 0 2N (cid:5) M T c q S QCDradiation.Interestingly,thestrengthofinitial-stateradi- ationdiffersforquarkorgluoninducedhardscatteringand 2.1 Rapiditydistribution leadstosubstantialdifferenceinthepositionoftheSudakov peak. Using this information, it is possible to distinguish ItiswellknownthatforWandZbosonproductionintheSM, light-quark scattering from bottom-quark or gluon scatter- contributionsfromdifferentpartonicchannelshavedifferent ing.Lastly,tofurtherdifferentiatebottom-quarkinducedor shapes in rapidity distribution of the boson. Valence-quark gluoninducedscattering,weconsidertaggingab-quarkjet contributionshaveadoubleshoulderstructurewhilethesea- inthefinalstate. quarkcontributionspeakinthecentralregionduetodiffer- Thepaperisorganizedasfollows:InSect.2.1westudy ent slopes of the parton distribution functions (PDFs) with the rapidity distribution of the diphoton system, and pro- respecttoBjorkenx.Theresultsaresimilarforaresonance pose using centrality ratio,defined as ratio of cross section of750GeVproducedat13TeVLHC.Onewaytoquantify incentralrapidityregionandthetotalcrosssection,todis- theshapeofrapiditydistributionistousethecentralityratio, criminateproductionmechanismduetovalence-quarkscat- whichisdefinedasratioofcrosssectionsincentralrapidity tering from sea-quark or gluon scattering. In Sect. 2.2 we region |y| < y and the total cross sections. In Fig. 1 we cut studythetransverse-momentumdistributionofthediphoton showthecentralityratioasafunctionof y fora750GeV cut system, and propose the ratio of cumulative cross section resonance produced through different parton combinations in two different transverse-momentum bins to discriminate at leading order (LO). The hatched bands show the corre- light-quark scattering from bottom-quark or gluon scatter- sponding 68 % confidence level (C.L.) PDF uncertainties ing.InSect.2.3,westudyb-taggedcrosssectiontofurther as calculated according to the PDF4LHC recommendation discriminatebottom-quarkscatteringfromgluonscattering. [39],whicharesmallespeciallyforthevalence-quarkcon- WeconcludeinSect.3. tributions.Theratiosapproachonewheny approachesthe cut endpoint of the rapidity distribution ∼2.8. As expected the valence-quarkcontributionshavesmallervaluesfortheratio than the ones from gluon or bottom quarks. The ratios are 2 Threemethodsforthebeamtaggingproblem very close for gluon and bottom-quark or other sea-quark contributions, since the sea-quark PDFs are mostly driven Weconsiderthefollowingeffectiveoperatorswithanaddi- by the gluon through DGLAP evolution. Taken y to be cut tionalsingletscalar S: 1,thecentralityratiosare0.74,0.77,0.63and0.50,forgg, bb¯,dd¯,anduu¯channels,respectively.Assumingmostofthe L =−1 αs SGa Ga,μν experimental systematics will cancel in the ratio and with eff 43π(cid:5) μν highstatistics,itwillbepossibletodiscriminateunderlying g (cid:3) (cid:4) (cid:2) v theory with production initiated by valence quarks and by + (cid:5) Sq¯fqf +h.c. . (1) gluon or sea quarks. Higher-order perturbative corrections f=u,s,d,c,b f maychangeabovenumberswhichdependonthefulltheory. 123 Eur.Phys.J.C (2016) 76:348 Page 3 of 11 348 (cid:10) (cid:3) (cid:4) (cid:11) 1.0 ln(M2/Q2) 22 4 1 gg × 4CA QS2 T − 3 CA−3Nf Q2 _ T T 0.8 bb 2P (ξ ) _ + ga 1 δ δ(1−ξ ) σtot 0.6 dudu_ 2PQ2T(ξ )bg 2 (cid:12) ycut + gQb2T 2 δagδ(1−ξ1) +O(αs2) (4) 0.4 y σ forgg-fusionproduction.Similarly,forqq¯induceddiphoton 0.2 LHC13TeV,M 750GeV production,wehave (cid:8) 0.00.0 0.5 1.0 1.5 2.0 2.5 3.0 dσ(q)(cid:8)(cid:8)(cid:8) = (cid:6)αs (cid:7)τσˆ(q)(cid:2)(cid:5) 1dx (cid:5) 1dx δ(x x −τ) ycut dQ2T (cid:8)Q2>0 4π 0 a,b 0 1 0 2 1 2 T (cid:5) (cid:5) Fityigr.e1gioCne|nyt|ra<lityyrcauttioan,ddetfihneetdoataslractrioososfscercotsiosnse,catsioanfiunnccetniotrnalorfapyicdu-t ×(cid:9)x11 dξξ11 fa/N1(x1/ξ1) x21 dξξ22 fb/N2(x2/ξ2) × δaqδbq¯δ(1−ξ1)δ(1−ξ2) (cid:10) (cid:11) 2.2 Diphotonatsmalltransversemomentum ln(M2/Q2) 1 × 4C S T −6C F Q2 FQ2 WenextconsiderthetransversemomentumQ ofthedipho- T T T tfoonrdsiypshtoemto.nIhnasthbeeeSnMc,otnrsaindsevreerdsaet-mNeoxmt-etnot-uNmexrte-stou-mLmeaadtiinogn +2PqQa2(ξ1)δq¯gδ(1−ξ2) T (cid:12) Logarithm(NNLL)level[58].Fullydifferentialdistribution 2P (ξ ) isalsoknownatfixednext-to-next-to-leadingorder(NNLO) + gQb2 2 δagδ(1−ξ1) +(q ↔q¯)+O(αs2), [46]. Here we consider the case where the diphoton origi- T (5) natesfromthedecayofanewresonanceat750GeV.AtLO inQCD, Q isexactlyzeroduetomomentumconservation T where P (z)aretheLOQCDsplittingfunctions: inthetransverseplane.However,asiswellknownfromthe ij studyofDrell–Yanleptonpairtransverse-momentumdistri- (cid:13) (cid:14) bution, QT is not peaked at zero but rather at finite trans- P (z)=C 1+z2 , versemomentum.Theshiftfrom QT =0tonon-zerovalue qq F 1−z + (cid:15) (cid:16) is mostly due to initial-state QCD radiation. For example, 1 P (z)= (1−z)2+z2 , ifthediphotonisproducedfrom gg fusion,theinitial-state qg 2 (cid:13) (cid:14) gluoninoneprotoncansplitintotwogluonsbeforecolliding (1−z+z2)2 1 wisipthusthheedgtlouonnonf-rzoemrothQeoathsearrpersoutlotno.fTthheesdpilpihttointognpsroycsteesms. Pgg(z)=2C(cid:3)A z (cid:4) 1−z + T 11 1 Forlarge QT,thestrongcouplingissmallandperturbative + CA− Nf δ(1−z), 6 3 expansionworkswell.However,when Q ismuchsmaller T than M ,largelogarithmsoftheratiobetween M and Q 1+(1−z)2 S S T P (z)=C . (6) gq F couldarise,whichspoilstheconvergenceoftheperturbative z series.Asanexample,atNLO,thepartoniccrosssectionfor the QT distributionofthediphotonsystematleadingpower ItisclearfromEq.(4)thatwhen QTisverysmall,theloga- in Q2/M2 canbewrittenas rithmln(0,1)(M2/Q2)/Q2canbecomeverylargeandpertur- T S S T T bativeexpansioninα isnolongervalid.Theoriginofthese s (cid:8) large logarithms is due to long distance QCD effects: soft dσ(g)(cid:8)(cid:8)(cid:8) = (cid:6)αs (cid:7)2τσˆ(g)(cid:2)(cid:5) 1dx (cid:5) 1dx δ(x x −τ) and/orcollinearradiationfrominitial-statepartons.Thanks dQ2T (cid:8)Q2>0 4π 0 a,b 0 1 0 2 1 2 toQCDfactorization,thedynamicsofsoftand/orcollinear T (cid:5) (cid:5) radiation can be well separated from the dynamics of UV 1 dξ 1 dξ × ξ1 fa/N1(x1/ξ1) ξ2 fb/N2(x2/ξ2) physics. This is particular useful for us, because we would (cid:9) x1 1 x2 2 liketoperformabeamtaggingstudyinawaythatdoesnot relytoomuchontheunderlyingBSMmodels,e.g.,tree-level · δ δ δ(1−ξ )δ(1−ξ ) ag bg 1 2 inducedorloop-inducedSproduction.FromEq.(4),onecan 123 348 Page 4 of 11 Eur.Phys.J.C (2016) 76:348 alsoseethattheleadinglogarithmictermdiffersbetweengg- A(i) =4C(i), ifsusmioaninclryosdsuseectotiothneanddifqfeq¯reanncneihinilatthioenacssrooscsiasteecdticoonl,owrhfiacch- A(12i) =4C(i)(cid:3)(cid:3)697 − π32(cid:4)CA− 109Nf (cid:4), tor, C = 3 versus C = 4/3. It is then expected that the differeAnce can lead toFdifferent shape in the QT spectrum. B1(g) =−232CA+ 43Nf, Since the perturbative expansion of the Q spectrum does notconvergeatlow QT,resummationofthTelarge QT loga- B1(q) =−6CF, (9) rithmsisrequiredbeforeonecanassessthesignificanceofthe changeinshapeforthe QT spectrumwhenswitchbetween whereC(g) =CA,C(q) =CF.ThefunctionCi(ji)(x;μ)isthe gg fusion and qq¯ annihilation. Fortunately, resumming the hard collinear factor. For NLL resummation, we only need largelogarithmsduetosmalltransversemomentumhasbeen theirLOexpression: studiedsincetheearlydaysofQCD[47,60–62,81,129].The formalism developed in this pioneer work can be used in Ci(ji)(x;μ)=δijδ(1−x). (10) our 750 GeV diphoton study with little change, thanks to the universality of QCD at long distance. According to the Y(Q2,τ) denotes those terms which are not enhanced by T celebrated Collins–Soper–Sterman (CSS) formula [62],the ln(M2/Q2).Theycanbecomputedusinganaiveexpansion S T Q distributionofthediphotonsystemcanbewrittenasan inα .Sometimestheycouldhavelargeimpactatlarge Q . T s T inverseFouriertransformation: But in the region we are interested in, they can be safely neglected.NotethatinEq.(7),whenbisverylarge,theinte- (cid:5) (cid:5) (cid:5) ddσQ(i2) = τσˆ0(i) ∞ d2b bJ0(bQT)(cid:2) 1dx1 1dx2 gαrsa(lμ¯f)odriμv¯erignetsh.eTehxepeoxniestnetnwceouolfdthheitLaanLdaanudpauolpeoaltes,mwahlelrμ¯e T 0 (cid:5) a,b(cid:3) 0 0 (cid:4) indicatestheonsetofnon-perturbativephysicsinthatregion, ×δ(x x −τ) 1 dξ1C(i) ξ ;μ= b0 andanappropriateprescriptiontodealwiththeLandaupole 1 2 ξ ia 1 b is needed; see, e.g., Refs. [36,62,113,134]. We emphasize (cid:3) x1 1(cid:4)(cid:5) (cid:3) (cid:4) ×fa/N1 xξ1;μ= bb0 1 dξξ2 Ci¯(bi¯) ξ2;μ=bb0 tthoaotmthuecChSoSnftohremUuVla idsyqnuaimteicgseonfertahleanudnddeorleysinngotpdroepceesnsd. (cid:3) 1 (cid:4) x2 (cid:9)2 (cid:5) Remarkably, at NLL level, all the process dependent infor- ×f(cid:10)b/N2 xξ22;μ= bb0 exp − b02M/bS22(cid:11)(cid:12)dμ¯μ¯22 mσˆ0(ait)i,oanndhaivnethbeeelanbeenlc(oi)defodrivnatrhioeutsredeimpaerntosinoincacnrodscsoslelicntieoanr factor.Thus,weexpectthatthestatementwemakefromthe M2 × ln μ¯2S A(i)[αs(μ¯)]+B(i)[αs(μ¯)] QT spectrumisrathermodelindependent. To quantify the discussion above, we calculate the Q (cid:17) (cid:18) T + i ↔i¯ +Y(Q2,M2,E2 ), (7) spectrum of the 750 GeV diphoton system numerically for T S CM 13TeVLHC.ThankstothepreviousQCDstudies,several public computer codes are available which implement the where J (x) is the zeroth order Bessel function of the first 0 kind, b0 = 2e−γE, γE = 0.577216... is Euler’s constant. rYeasnumanmdaHtioigngosfptrroadnusvcetirosne-,mbootmheinnttuhmeQloCgaDrifthrammsefworoDrkrealnld– Thesummationofaandbareoverdifferentpartonspecies, in the Soft-Collinear Effective theory framework [20–23]. u,u¯,d,...,g.A[α (μ¯)]andB[α (μ¯)]areuniversalanoma- s s Resummation of Q for 750 GeV diphoton resonance can lousdimensionswhoseperturbativeexpansionscanbewrit- T be easily accomplished by modifying those existing codes. tenas Specifically,wemodifyHqT,whichisbasedontheworkof Refs.[35–37,74],andCuTe,whichisbasedontheworkof (cid:3) (cid:4) (cid:2)∞ α (μ) n Refs. [24,25], to calculate the transverse-momentum spec- A(i)[α (μ)]= s A(i), s 4π n trumofthehypothetical750GeVresonance.InHqT,aLan- n=1(cid:3) (cid:4) daupoleisavoidedbydeformingtheb-spaceintegraloffthe B(i)[α (μ)]=(cid:2)∞ αs(μ) n B(i). (8) realaxisslightly,whileinCuTe,theLandaupoleisavoided s 4π n byimposingacutofffortheμ¯ integralatverysmallvalue. n=1 Inbothcalculations,weusethefive-flavorscheme,namely thebottomquarkistreatedasamasslesspartoninthePDFs. In this work, we restrict ourselves to resummation of Q WecalculatetheQ spectrumbyturningonthecoupling T T logarithmsatNext-to-LeadingLogarithmic(NLL)accuracy of the diphoton resonance with each individual parton fla- (i) (i) (i) only,forwhichonlyA ,A ,andB areneeded.Theyare vor at one time. The differential distribution is plotted in 1 2 1 givenby[70,110,111] Fig. 2 for results from the two codes mentioned above at 123 Eur.Phys.J.C (2016) 76:348 Page 5 of 11 348 0.05 Table1 Ratio Rfora750GeVresonanceproducedat13TeVLHC, _ _ uu bb initiatedbydifferentpartonflavorsaspredictedbytworesummation 0.04 dd_ cc_ codes,HqTandCuTe unit gg ss_ R,NLL bb¯ cc¯ ss¯ uu¯ dd¯ gg y arbitrar 0.03 HCquTTe 01..9352 00..6882 00..5780 00..5656 00..5635 11..3522 0.02 T Q d σ d 0.01 LHC13TeV,M 750GeV PDFsliesaroundmuchlowervaluesthanthebottom-quark HqT2.0,NLLresummed one.ItthusindicatesthattheSudakovpeakforbottom-quark 0.00 0 10 20 30 40 50 60 contribution has to show up at larger value of QT in order Q GeV toaccommodatethefactthatitsthresholdishigher.Forthe T gluoncontribution,theshapeofthe Q spectrumisfurther T 0.05 broadened, and has the largest value for the peak position. _ _ uu bb This is mainly due to the difference in color factor. In the _ _ 0.04 dd cc gluoncase,theSudakovexponenthasastrongersuppression unit gg ss_ effectsbecauseCA ∼ 2.25CF.Wehavecheckedthatifwe ary 0.03 naivelychangethecolorfactorfromCA toCF forthegluon bitr contribution,itspeakpositionmovetoamuchlowervalue. ar FromFig.2,wecanseethattheresultsfromthetwocodes 0.02 T Q usedforthecalculationaresimilar,althoughtheyhaveadif- d σ ferentframeworkforresummationandadifferenttreatment d 0.01 LHC13TeV,M 750GeV of the Landau pole. The major difference comes from the CuTe,NLLresummed bottom-quarkcontribution,wherethepeakpositiondifferby 0.00 0 10 20 30 40 50 60 about5GeV.Thisismainlyduetodifferentwaysinthetwo QT GeV codestoavoidLandaupole.Becauseofthelargemassofthe resonance, non-perturbative effects are less pronounced as Fig. 2 QTdistributionatsmalltransversemomentumatNLLaccuracy comparingwiththeW,Z bosonproductionintheSM,aswe fortheresonanceproductioninitiatedbydifferentpartonflavors.The twoplotsshowresultsobtainedfromtwopubliccodes,HqTandCuTe checkedbyvaryingthenon-perturbativeparameteravailable inHqTandCuTe.Also,forthesamereason,thesubleading termsin Q aresmallintheregionweplot. T Ideally,adetailedcomparisonofthenormalized Q dis- T NLL resummed accuracy. Comparing the distributions for tributionpredictedbyQCDfactorizationandtheLHCdata production initiated by different parton combinations, the forthehypotheticalresonancewouldprovidemostinforma- shapesaremostlydrivenbytwofactors:(a)thecolorfactor tionasregardsthebeamtaggingproblemfromQ spectrum. T inSudakovexponent,C forgluonversusC forquarks;(b) Inreality,thisisverydifficultduetothelimitedstatisticsand A F theevolutionofPDFs.Forlight-quarkcontributions,which experimental uncertainties in measuring the photon trans- includesup,down,strange,andcharmquark,thepeakposi- verse momentum. To simplify the analysis, we introduce a tion stay at low values, less than 10 GeV in general. For ratio R, which is defined as the cross section in Q bin of T bottom-quarkcase,thedistributionsarebroaderandshiftto [(cid:11) ,2(cid:11) ] to the one in Q bin of [0,(cid:11) ]. The optimal T T T T higher Q . The reason for the rightward shift of the bot- choice for (cid:11) differs for different center of mass energy T T tom contribution comparing to the light-quark contribution anddifferentresonancemass.Inourcurrentcase,wechoose is as follows. For the formal treatment of the quark contri- (cid:11) = 20GeV.TheresultsfortheratioarelistedinTable1 T bution in the CSS formula, Eq. (7), there are no essential basedoncurvesshowninFig.2forthetwocodesandvar- differencebetweenlightquarkandbottomquark.Theonly ious parton flavors. We can see a clear distinction for pro- differencecomesfromtheirPDFs,whichareevaluatedatthe duction initiated by light quarks, which favor a value of R scaleb /b,theFourierconjugateof Q .WhiletheDGLAP lowerthan1,andproductioninitiatedbygluon,whichfavors 0 T evolutionforlightquarkandbottomquarkarethesameinthe a value of R larger than 1. As noted above, prediction for five-flavorscheme,theboundaryconditionsforthesePDFs bottom-quark initiated production are quite different, indi- differ. For bottom quark, the threshold of the correspond- cating a larger theoretical uncertainty in the resummation ingPDFliesaroundm ∼ 4.2 GeV,belowwhichthePDF treatmentofheavy-quarkinduceddiphotonproduction.This b vanishes.Ontheotherhand,thethresholdofthelight-quark uncertainty prevents us from distinguishing it from gluon 123 348 Page 6 of 11 Eur.Phys.J.C (2016) 76:348 ¯ ¯ ¯ b S b b b b b S b S b S b g ¯ ¯ ¯b g g S g S b g b S g b g ¯b Fig. 4 TheFeynmandiagramsoftheresonancewithonejetproduction q S q q q¯ q¯ process.Inthisscenario,thenewresonanceisproducedviathebb¯initial stateattheLHC q¯ g g S g S inducesalotofb-jetsfromthegb(b¯)initial-stateprocesses. g g g g g g Theb-jetfractionintheISRjetsthenshouldbesignificant andcanbetaggedattheLHCRun2. For a simple estimation, we generate parton level signal g S g S g S eventswithMadGraph5[10]andCT14lloPDF(five-flavor Fig. 3 TheFeynmandiagramsoftheresonancewithonejetproduction scheme)[82].ThesignaleventsareshoweredusingPythia6.4 processinggscenario [137] with Tune Z2 parameter [88]. The detector effect is simulated using DELPHES 3 [40,73]. The b-tagging effi- ciencyistunedtobeconsistentwiththedistributionshown initiatedcase.Theuncertaintymightbereducedifthecalcu- in Ref. [1]. For the signal strength, we scale the inclusive lationisextendedtoNNLLlevelconsistently,orusingfour- signalevents(withMLMmatchingscheme)tofitthecurrent flavorschemeforthePDFs,whicharebeyondthescopeof data[2,3](inthiswork,weonlyfitthedatafromtheATLAS thiswork.Wehavealsocheckedthetheoreticaluncertainties collaboration).Werequirethephotontosatisfy fromothersources,e.g.,PDFsandpowercorrectionswhich areatafewpercentlevelandcanbeneglectedsafely. |η|<1.37, or 1.52<|η|<2.37. (11) The transverse energy of the leading (subleading) photon 2.3 Diphotonwithadditionalb-jet should be larger than 40 (30) GeV. The leading and sub- leading photon candidates are then required to satisfy the In the previous two sections, we have shown that by mea- conditions suringtherapidityandtransverse-momentumdistributionof thediphotonsystem,itispossibletodistinguishthevalence- Eγ1 Eγ2 quark induced diphoton production from sea-quark/gluon T >0.4, T >0.3. (12) mγγ mγγ induceddiphotonproduction,andlight-quarkinduceddipho- tonproductionfromgluoninduceddiphotonproduction.In Theinclusivediphotonspectrumisestimatedwith thissection,wefocusontheremainingtwoproductionsce- narios.Inthefirstscenario(gg),thenewscalarresonanceis (cid:13) (cid:6) mγγ (cid:7)1/45(cid:14)3.38(cid:6) mγγ (cid:7)−3.49 producedviathegluonfusionprocess.Inthesecondscenario 0.026 1− fb/GeV. ¯ 13TeV 13TeV (bb),thescalarresonanceisproducedviabbinitialstate.We (13) willshowthata99.7%C.L.distinguishcanbereachedwith lessthan10fb−1integratedluminosityat13TeVLHC.This We solve the best-fit signal strength μ by maximizing [64, meansifthe750GeVexcessisindeedanewresonance,we 135] donotneedtowaitforlongtoknowitsproductionmecha- (cid:19) nism. (cid:13) (cid:14) Inthegg scenario,thedominantproductionmodeofthe −2ln L({b}|{n}) , (14) newresonanceisgluonfusionprocess.Withtheinitial-state L(μ{s}+{b}|{n}) radiation (ISR) effect, there are additional jets in the final state. The Feynman diagrams for jet production at LO in wherethelikelihoodfunctionisdefinedby QCD are shown in Fig. 3. Since in the small-x region the (cid:20) xni exp(−x ) gluon PDF is much larger than other partons, it is easy to L({x}|{n})≡ i i . (15) seethatmostoftheISRjetsaregluonandlight(especially (cid:13)(ni +1) i u andd)quarks.Theb-jetfractionintheISRjetsishighly suppressedbythesmallnessofbottom-quarkPDF.Thuswe Both the gg and the bb scenario give 3σ discovery signifi- expectthatthenumberofhardb-jetintheISRjetsissmall. cance. In the bb scenario, we show the Feynman diagrams for Afternormalizingtheinclusivecrosssectiontothebest-fit jetproductionatLOinQCDinFig.4.ThelargegluonPDF value,weselecteventswithatleastonehardjetinthefinal 123 Eur.Phys.J.C (2016) 76:348 Page 7 of 11 348 10 Table2 Thefractionofthebackgroundeventswithatleastoneaddi- V] 13 TeV LHC tionalhardjet.Thefractionoftheeventswiththeleadingjetistagged Ge asab-jetintheseevents.Inthelastline,weshowtheN+beventnumber 0 withtheassumptionthatallbackgroundeventsarefromthecorrespond- 2 gg scenario, inclusive b/ 1 ingprocess [fpT gg scenario, b-tag Background γγ γj jj d bb scenario, inclusive σ/ d bb scenario, b-tag N+j/Nincl 47.1% 66.3% 64.5% 10−1 N+b/N+j 1.85% 2.63% 5.03% N+b/Nincl 0.871% 1.74% 3.24% N+b(fb) 0.133 0.267 0.497 10−2 (cid:21) 100 200 300 400 500 (cid:22) (cid:10) (cid:17) (cid:18)(cid:11) Leading-jet pT [GeV] CLg ≡(cid:22)(cid:23)−2log LL(cid:17)ssb++nnb||ssg++nnb(cid:18) , (17) g b g b Fig. 5 Transverse-momentumdistributionoftheleading-(b-)jet andthebbscenariofromtheggscenariowith (cid:21) (cid:22) (cid:10) (cid:17) (cid:18)(cid:11) satlagtoer.iJthemtsiwnitthheRfin=al0s.t4a.teWaeredreemcoannsdtrtuhceteledaudsininggjeatnttoi-khTavjeet CL ≡(cid:22)(cid:23)−2log L sg+nb|sb+nb , (18) b L(s +n |s +n ) b b b b |η|<2.5, and p >40GeV. (16) T respectively,wheres ,s ,andn aretheeventnumberswith b g b To suppress the SM background, we further require the theleadingadditionaljettaggedasab-jetinthescenariobb, diphoton invariant mass to satisfy |mγγ − 750GeV| < scenarioggandtheSMbackground.InFig.6,weshowthe 150GeV.Transversemomentumdistributionsoftheleading discriminating abilities versus the integrated luminosity of jetareshowninFig.5fordifferentproductionmechanisms theLHCinthe13TeVrun.Itisshownclearlyinthisfigure withandwithoutrequiringtheleadingjetisb-tagged. that,evenwiththemostconservativeassumption(allback- At13TeVLHC,inggscenariotheinclusiveone-jetevents groundeventsarefromthe jj process),onecandistinguish containafractionof0.08fbb-jeteventsoutofatotalcross theggscenariofromthebbscenariowith8.8fb−1integrated sectionof3.12fb.Alternatively,thefractionis1.21fboutof luminosity,anddistinguishthebbscenariofromtheggsce- 2.72fbinbbscenario. nariowith6.2fb−1integratedluminosityat13TeVLHC.If Togiveanestimationofthepossibilityofdistinguishing the SM background are (a MC simulation will support this the two production scenarios, we also need to simulate the assumption) γγ process dominant, one can distinguish the SMbackgrounds.Therearelotsoftheoreticaluncertainties. gg scenario from the bb scenario with 6.0 fb−1 integrated Onlyadatadrivenestimationofthebackgroundsisreliable luminosity,anddistinguishthebbscenariofromtheggsce- at present. In this work, we make a simple estimation by nariowith3.3fb−1integratedluminosityat13TeVLHC. rescaling the current background withluminosity. Thus we onlyneedtocalculatethefractionofthebackgroundevents with additional hard b-jet. The most important SM back- 3 Summaryandconclusion groundsaretheirreducibleγγ processandthereducibleγj and jj processeswithoneormorejetsfakedtobephotonin Recently,anintriguingexcessinthediphotoneventshasbeen thedetector.Withthemasswindowcut,wecountthefraction reported both by the ATLAS and CMS collaboration. The of events with at least one additional hard jet (N+j/Nincl), localsignificanceis3.9σ fromATLASand2.6σ fromCMS. andthefractionoftheseeventswhoseleadingjetistaggedas Aftertakingintoaccountthelook-elsewhereeffect,thesig- ab-jet(N+b/N+j).Sincethecutonthefirstandthesecond nificancereducesto2.3σ fromATLASand1.2σ fromCMS. photontransverseenergyareasymmetric,therearealotof Althoughthecurrentexperimentalstatusisfarfromconclu- eventswhichpassthecutswithadditionaljetsfromtheISR. sive, alarge number of BSM scenarios have been explored TheresultsareshowninTable2.Withthedatadrivenback- to explain the diphoton excess. A significant number of groundformulaEq.(13),thetotalbackgroundcrosssection theseBSMmodelscontainascalarresonanceproducedfrom in600GeV<mγγ <900GeVis15.32fb. hadron-hadron collision and subsequently decay to dipho- Sincethebackgroundcrosssectionissmall,weestimate ton system, whose mass is around 750 GeV. In this work, theabilityofdistinguishingtheggscenariofromthebbsce- weinvestigatedwhetherthehadronicproductionmechanism nariowith[64,135] forthehypotheticalnewscalarresonancecanbeidentified. 123 348 Page 8 of 11 Eur.Phys.J.C (2016) 76:348 5 tioninfive-flavorschemeversusfour-flavorscheme.Third, L C inordertodistinguishthegluoninducedproductionfromb quark induced production, we calculated the diphoton plus 4 jetproductionwithabtaggingontheleadingjetinfive-flavor scheme.Wefindthatanadditionalbjetismorefavoredinb 3 13 TeV LHC quarkinducedproductionthaningluoninducedproduction. Combiningtheknowledgegainedfromallthereobservables, 2 CL (γγ) wefindthattheperspectiveforidentifyingtheexactproduc- b CL (jj) tion mechanism for the hypothetical diphoton resonance is b CL (γγ) promising,thoughdetailedworkisneededinordertofurther g 1 CL (jj) g understandthetheoryandexperimentaluncertaintiesofour current luminosity methods,whichweleaveforfuturework.Lastly,weempha- 0 sizethatalthoughthecurrentworkismainlymotivatedbythe 0 5 10 15 20 diphotonexcessrecentlyreportedbytheATLASandCMS Integrated Luminosity[fb-1] collaboration,theproblemweproposedandthemethodswe suggestedareusefulandinterestinginitselfeventheexcess Fig. 6 Theabilityofdistinguishingthegg(bb)scenariofromthebb (gg)scenario.Thesolidlinesarewiththeassumptionthatallofthe disappearsaftermoredataiscollected. backgroundeventsarefromtheirreducibleγγbackground.Thedashed linesarewiththeassumptionthatallofthebackgroundeventsarefrom Acknowledgments We thank Yotam Soreq and Wei Xue for help- thereducible jjbackgroundwithtwojetsarefakedasphoton ful conversations. The work of H.Z. is supported by the U.S. DOE underContractNo.DE-SC0011702.TheworkofH.X.Z.issupported bytheU.S.DepartmentofEnergyundergrantContractNumberDE- Thatis,isitmainlyproducedfrom gg fusionorqq¯ annihi- SC0011090.WorkatANLissupportedinpartbytheU.S.Department lation. We dubbed this question the quark and gluon beam ofEnergyunderContractNo.DE-AC02-06CH11357.H.Z.ispleasedto recognizethehospitalityoftheserviceofferedbytheAmtrakCalifornia taggingproblem.Weexpectthatasuccessfulsolutiontothis Zephyrtrain. problem will play a key role in unraveling the mystery of the750GeVdiphotonexcess.Wehaveperformedamodel OpenAccess ThisarticleisdistributedunderthetermsoftheCreative independentstudiedofthisproblembyconsideringasetof CommonsAttribution4.0InternationalLicense(http://creativecomm ons.org/licenses/by/4.0/),whichpermitsunrestricteduse,distribution, effective operators between the hypothetical resonance and andreproductioninanymedium,providedyougiveappropriatecredit gluonorquark.Wediscussseveraldifferentialdistributions totheoriginalauthor(s)andthesource,providealinktotheCreative relevant for the determination of initial constituent for the Commonslicense,andindicateifchangesweremade. 750GeVexcess.Weconcentrateonthosedistributionswhich FundedbySCOAP3. are more sensitive to QCD dynamics at long distance, and thus less model dependent. To that end, we explored three differentbutcomplementaryobservablesforbeamtagging. References First, we calculated the rapidity distribution of the dipho- tonsystem,andwefoundthatitishelpfulfordistinguishing 1. ATLASCollaboration,ExpectedperformanceoftheATLASb- valence quark induced production from gluon or sea-quark taggingalgorithmsinRun-2.TechnicalReportATL-PHYS-PUB- inducedproduction.ThemainreasonisthatthePDFsforu 2015-022,CERN,Geneva,Jul2015 andd quarksaremuchlargeratlargex,comparingtou¯ and 2. CMSCollaboration,Searchfornewphy√sicsinhighmassdiphoton ¯ events in proton-proton collisions at s = 13 TeV. Technical d quarks. Second, we calculated the transverse-momentum ReportCMS-PAS-EXO-15-004,CERN,Geneva(2015) spectrumofthediphotonsystemandfocusonthesmall QT 3. ATLASCollaboration,Searchforresonancesdecayingtophoton region, where a Sudakov peak is formed due to multiple pairsin3.2fb−1 =13TeVwiththeATLASdetector.Technical ReportATLAS-CONF-2015-081,CERN,Geneva(2015) soft and/or collinear radiation from initial state. We found 4. P.Agrawal,J.Fan,B.Heidenreich,M.Reece,M.Strassler,Exper- that a clear distinction for the light-quark induced produc- imentalconsiderationsmotivatedbythediphotonexcessatthe tion from the gluon or b-quark induced production can be LHC(2015) achieved. This is mainly due to the difference in the effec- 5. A.Ahmed,B.M.Dillon,B.Grzadkowski,J.F.Gunion,Y.Jiang, Higgs-radioninterpretationof750GeVdi-photonexcessatthe tive strength of initial-state bremsstrahlung: for light quark LHC(2015) it is C α = 4α , while for gluon it is C α = 3α . Such F s 3 s A s s 6. B.C. Allanach, P.S. Bhupal Dev, S.A. Renner, K. Sakurai, Di- differenceleadstoanotableshiftofthepeaktowardlarger photonexcessexplainedbyaresonantsneutrinoinR-parityvio- Q , as well as a much broader peak. For b quark induced latingsupersymmetry(2015) T 7. D.Aloni,K.Blum,A.Dery,A.Efrati,Y.Nir,Onapossiblelarge production, the difference in the peak structure from gluon width750GeVdiphotonresonanceatATLASandCMS(2015) induced production is less pronounced, due to the large b 8. W.Altmannshofer,J.Galloway,S.Gori,A.L.Kagan,A.Martin, quark mass and uncertainty associated with QT resumma- J.Zupan,Onthe750GeVdi-photonexcess(2015) 123 Eur.Phys.J.C (2016) 76:348 Page 9 of 11 348 9. A.Alves,A.G.Dias,K.Sinha,The750GeVS-cion:whereelse 35. G.Bozzi,S.Catani,D.deFlorian,M.Grazzini,Theq(T)spectrum shouldwelookforit?(2015) oftheHiggsbosonattheLHCinQCDperturbationtheory.Phys. 10. J.Alwall,R.Frederix,S.Frixione,V.Hirschi,F.Maltonietal.,The Lett.B564,65–72(2003) automated computation of tree-level and next-to-leading order 36. G. Bozzi, S. Catani, D. de Florian, M. Grazzini, Transverse- differentialcrosssections,andtheirmatchingtopartonshower momentum resummation and the spectrum of the Higgs boson simulations.JHEP1407,079(2014) attheLHC.Nucl.Phys.B737,73–120(2006) 11. A.Angelescu,A.Djouadi,G.Moreau,Scenariiforinterpretations 37. G.Bozzi,S.Catani,G.Ferrera,D.deFlorian,M.Grazzini,Pro- oftheLHCdiphotonexcess:twoHiggsdoubletsandvector-like ductionofDrell–Yanleptonpairsinhadroncollisions:transverse- quarksandleptons(2015) momentum resummation at next-to-next-to-leading logarithmic 12. O.Antipin,M.Mojaza,F.Sannino,AnaturalColeman-Weinberg accuracy.Phys.Lett.B696,207–213(2011) theoryexplainsthediphotonexcess(2015) 38. D.Buttazzo,A.Greljo,D.Marzocca,Knockingonnewphysics’ 13. M. Thomas Arun, P. Saha, Gravitons in multiply warped doorwithascalarresonance(2015) scenarios—at750GeVandbeyond(2015) 39. J.Butterworthetal.,PDF4LHCrecommendationsforLHCRun 14. S. Ask, J.H. Collins, J.R. Forshaw, K. Joshi, A.D. Pilkington, II(2015) Identifying the colour of TeV-scale resonances. JHEP 01, 018 40. M. Cacciari, G.P. Salam, G. Soyez, FastJet User Manual. Eur. (2012) Phys.J.C72,1896(2012) 15. M.Backovic,A.Mariotti,D.Redigolo,Di-photonexcessillumi- 41. J.Cao,C.Han,L.Shang,W.Su,J.M.Yang,Y.Zhang,Interpret- natesdarkmatter(2015) ingthe750GeVdiphotonexcessbythesingletextensionofthe 16. M.Badziak,Interpretingthe750GeVdiphotonexcessinminimal Manohar-WiseModel(2015) extensionsofTwo-Higgs-Doubletmodels(2015) 42. Q.-H.Cao,S.-L.Chen,P.-H.Gu,StrongCPproblem,neutrino 17. Y.Bai,J.Berger,R.Lu,A750GeVdarkpion:cousinofadark massesandthe750GeVdiphotonresonance(2015) G-parity-oddWIMP(2015) 43. Q.-H.Cao,Y.Liu,K.-P.Xie,B.Yan,D.-M.Zhang,Aboosttest 18. D.Bardhan,D.Bhatia,A.Chakraborty,U.Maitra,S.Raychaud- ofanomalousdiphotonresonanceattheLHC(2015) huri,T.Samui,RadioncandidatefortheLHCdiphotonresonance 44. L.M.Carpenter,R.Colburn,J.Goodman,SupersoftSUSYmod- (2015) elsandthe750GeVdiphotonexcess,beyondeffectiveoperators 19. D.Barducci,A.Goudelis,S.Kulkarni,D.Sengupta,Onejetto (2015) rulethemall:monojetconstraintsandinvisibledecaysofa750 45. J.A.Casas,J.R.Espinosa,J.M.Moreno,The750GeVdiphoton GeVdiphotonresonance(2015) excessasafirstlightonsupersymmetrybreaking(2015) 20. C.W. Bauer, S. Fleming, M.E. Luke, Summing Sudakov loga- 46. S.Catani,L.Cieri,D.deFlorian,G.Ferrera,M.Grazzini,Dipho- rithmsinB→X(sgamma)ineffectivefieldtheory.Phys.Rev.D tonproductionathadroncolliders:afully-differentialQCDcal- 63,014006(2000) culationatNNLO.Phys.Rev.Lett.108,072001(2012) 21. C.W.Bauer,S.Fleming,D.Pirjol,I.Z.Rothstein,I.W.Stewart, 47. S.Catani,D.deFlorian,M.Grazzini,Universalityofnonleading Hard scattering factorization from effective field theory. Phys. logarithmiccontributionsintransversemomentumdistributions. Rev.D66,014017(2002) Nucl.Phys.B596,299–312(2001) 22. C.W.Bauer,S.Fleming,D.Pirjol,I.W.Stewart,Aneffectivefield 48. J.Chakrabortty,A.Choudhury,P.Ghosh,S.Mondal,T.Srivas- theoryforcollinearandsoftgluons:heavytolightdecays.Phys. tava,Di-photonresonancearound750GeV:sheddinglightonthe Rev.D63,114020(2001) theoryunderneath(2015) 23. C.W.Bauer,D.Pirjol,I.W.Stewart,Softcollinearfactorizationin 49. I.Chakraborty,A.Kundu,Diphotonexcessat750GeV:singlet effectivefieldtheory.Phys.Rev.D65,054022(2002) scalarsconfrontnaturalness(2015) 24. T.Becher,M.Neubert,Drell–YanproductionatsmallqT,trans- 50. S.Chakraborty,A.Chakraborty,S.Raychaudhuri,Diphotonres- versepartondistributionsandthecollinearanomaly.Eur.Phys.J. onanceat750GeVinthebrokenMRSSM(2015) C71,1665(2011) 51. M. Chala, M. Duerr, F. Kahlhoefer, K. Schmidt-Hoberg, How 25. T.Becher,M.Neubert,D.Wilhelm,Higgs-bosonproductionat toobtainthediphotonexcessfromavectorresonance,Tricking smalltransversemomentum.JHEP05,110(2013) Landau-Yang(2015) 26. D.Becirevic,E.Bertuzzo,O.Sumensari,R.Z.Funchal,Canthe 52. J. Chang, K. Cheung, C.-T. Lu, Interpreting the 750 GeV di- newresonanceatLHCbeaCP-OddHiggsboson?(2015) photonresonanceusingphoton-jetsinHidden-Valley-likemodels 27. B. Bellazzini, R. Franceschini, F. Sala, J. Serra, Goldstones in (2015) diphotons(2015) 53. S.Chang,AsimpleU(1)gaugetheoryexplanationofthediphoton 28. A.Belyaev,G.Cacciapaglia,H.Cai,T.Flacke,A.Parolini,H. excess(2015) Sergio,SingletsincompositehiggsmodelsinlightoftheLHC 54. W.Chao,Symmetriesbehindthe750GeVdiphotonexcess(2015) di-photonsearches(2015) 55. W.Chao,R.Huo,J.-H.Yu,Theminimalscalar-stealthtopinter- 29. R.Benbrik,C.-H.Chen,T.Nomura,Higgssingletasadiphoton pretationofthediphotonexcess(2015) resonanceinavector-likequarkmodel(2015) 56. K.Cheung,P.Ko,J.S.Lee,J.Park,P.-Y.Tseng,AHiggcision 30. L.Berthier,J.M.Cline,W.Shepherd,M.Trott,Effectiveinterpre- study on the 750 GeV di-photon resonance and 125 GeV SM tationsofadiphotonexcess(2015) HiggsbosonwiththeHiggs-singletmixing(2015) 31. B.Bhattacherjee,S.Mukhopadhyay,M.M.Nojiri,Y.Sakaki,B.R. 57. W.S.Cho,D.Kim,K.Kong,S.H.Lim,K.T.Matchev,J.-C.Park, Webber,Associatedjetandsubjetratesinlight-quarkandgluon M.Park,The750GeVdiphotonexcessmaynotimplya750GeV jetdiscrimination.JHEP04,131(2015) resonance(2015) 32. X.-J.Bi,Q.-F.Xiang,P.-F.Yin,Z.-H.Yu,The750GeVdiphoton 58. L. Cieri, F. Coradeschi, D. de Florian, Diphoton production at excessattheLHCanddarkmatterconstraints(2015) hadroncolliders:transverse-momentumresummationatnext-to- 33. L.Bian,N.Chen,D.Liu,J.Shu,Ahiddenconfiningworldonthe next-to-leadinglogarithmicaccuracy.JHEP06,185(2015) 750GeVdiphotonexcess(2015) 59. J.M. Cline, Z. Liu, LHC diphotons from electroweakly pair- 34. S.M.Boucenna,S.Morisi,A.Vicente,TheLHCdiphotonreso- producedcompositepseudoscalars(2015) nancefromgaugesymmetry(2015) 60. J.C.Collins,D.E.Soper,Back-to-backjetsinQCD.Nucl.Phys. B193,381(1981)[Erratum:Nucl.Phys.B213,545(1983)] 123

Description:
reported an excess above the standard model (SM) dipho- ton background with tence of a new resonance or other beyond the SM (BSM) For this reason we will call it the quark and 2 Three methods for the beam tagging problem L.M. Carpenter, R. Colburn, J. Goodman, Supersoft SUSY mod-.
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.