Article Global Warming Can Lead to Depletion of Oxygen by Disrupting Phytoplankton Photosynthesis: A Mathematical Modelling Approach YadigarSekerci1andSergeiPetrovskii2,* 1 DepartmentofMathematics,ArtsandScienceFaculty,AmasyaUniversity,05189Amasya,Turkey; yadigar.fi[email protected] 2 DepartmentofMathematics,UniversityofLeicester,UniversityRoad,LeicesterLE17RH,UK * Correspondence:[email protected] (cid:1)(cid:2)(cid:3)(cid:1)(cid:4)(cid:5)(cid:6)(cid:7)(cid:8)(cid:1) (cid:1)(cid:2)(cid:3)(cid:4)(cid:5)(cid:6)(cid:7) Received:12May2018;Accepted:25May2018;Published:3June2018 Abstract: Weconsidertheeffectofglobalwarmingonthecoupledplankton-oxygendynamicsinthe ocean. Thenetoxygenproductionbyphytoplanktonisknowntodependonthewatertemperature and hence can be disrupted by warming. We address this issue theoretically by considering a mathematicalmodeloftheplankton-oxygensystem. Themodelisgenericandcanaccountfora varietyofbiologicalfactors. Wefirstshowthatsustainableoxygenproductionbyphytoplankton isonlypossibleifthenetproductionrateisaboveacertaincriticalvalue. Thisresultappearstobe robusttothedetailsofmodelparametrization. Wethenshowthat,oncetheeffectofzooplanktonis takenintoaccount(whichconsumeoxygenandfeedonphytoplankton),theplankton-oxygensystem canonlybestableifthenetoxygenproductionrateiswithinacertainintermediaterange(i.e.,nottoo lowandnottoohigh). Correspondingly,weconcludethatasufficientlylargeincreaseinthewater temperatureislikelytopushthesystemoutofthesaferange,whichmayresultinoceananoxiaand evenaglobaloxygendepletion. Wethengeneralizethemodelbytakingintoaccounttheeffectof environmentalstochasticityandshowthat,paradoxically,theprobabilityofoxygendepletionmay decreasewithanincreaseintherateofglobalwarming. Keywords: phytoplankton;oxygendepletion;environmentstochasticity;extinctionprobability 1. Introduction Global warming, i.e. the tendency of the average Earth surface temperature to increase with time[1,2], is a major threat to the environment worldwide, which can lead to a number of adverseconsequencestoecology, agriculture, healthandsociety[3]. Perhapsthebestknownand widely-discussedresultofclimatechangeistheexpectedincreaseintheoceanlevelbecauseofmelting ofpolarice,whichwouldleadtofloodingofmanycoastalareas[4,5],henceresultinginhugeeconomic losses,devastatingeffectsonecologyand,possibly,thelossofhumanlives. Somewhatlesspublicized in the media, but perhaps even more dangerous is the observed decrease in the concentration of dissolved oxygen in the ocean [6]. It is predicted that in the worst case scenario, the amount of oceanoxygencouldfallalmosttwice[7],whichwouldleadtodisastrousconsequencesfortheocean ecosystemsbysuffocatingmostofmarinelife[8]. Thecurrently-observedoxygendecreaseisattributedtoavarietyofhydrologicalandgeophysical factors such as lower oxygen solvability in warmer water and slower ocean overturning and mixing[6,7]. However,adecreaseintheoxygenconcentrationcanalsooccurforadifferentreason, i.e.,notbecauseofchangesinoxygentransportand/orconsumptionrate,butasaresultofdisruptionin oxygenproduction. Indeed,oxygenisconsumedthroughseveraldifferentprocesses,e.g.,bybreathing Geosciences2018,8,201;doi:10.3390/geosciences8060201 www.mdpi.com/journal/geosciences Geosciences2018,8,201 2of21 ofmarinefaunaandinbiochemicalreactions(e.g.,remineralization),butismostlyproducedinone process, i.e., by phytoplankton photosynthesis. (The second largest flux of O emerges from the 2 pyriteregenerationbybacteriaintheocean[9],whichwedonotconsiderhere.) Meanwhile,itisa well-establishedfactthatthenetproductionofoxygenbymarinephytoplankton(i.e.,thedifference betweentheamountofoxygenproducedinphotosynthesisduringdaytimeandtheamountconsumed through breathing during the night-time) depends on the water temperature [10–12]. It has been observedthattherateofoxygenproductionbysomeplanktonspeciesdecreasemonotonouslyalong with an increase in the water temperature and even can become negative when the temperature increasesbyabout5–6◦C:phytoplanktonthenstartconsumingoxygeninsteadofproducingit[13]. Arguably,thismayleadtoawidespreadmarineanoxia. Wementionherethatthepotentialdisruptionoftheoxygenproductionbyphytoplanktoncan have negative consequences on a global scale. The oxygen produced inside phytoplankton cells diffusesintotheoceanwater. Apartofthedissolvedoxygenenterstheatmospherethroughtheocean surface,thuscontributingtotheglobaloxygenbudget. Itisestimatedthatmorethanonehalfofthe atmosphericstockofoxygenisproducedintheoceanthroughphytoplanktonphotosynthesis[14]. Correspondingly,shouldtheproductionstop(e.g.,becauseofthenegativeeffectofglobalwarming), theamountofatmosphericoxygenwouldeventuallyfallmorethantwice,withapparentlydevastating effectonanimalsandhumans. Whilstempiricalresearchintothisissueremainsmeagre,ithasrecentlybeenstudiedtheoretically byconsideringanovelmodelofcoupledplankton-oxygendynamics[15–17]. Themodelissimple (‘conceptual’), but it has been shown to provide an upper bound for more realistic models [15] so that,wheneveroxygendepletionandplanktonextinctionhappenintheconceptualmodel,thesewill necessarilyhappeninamorerealisticmodel. Interestingly,themodelpredictstwodifferenttypes of oxygen catastrophe as a result of global warming. One of them would be preceded by a slow, gradualdecreaseintheO concentrationtoverysmallvaluesandisreversibleifglobalwarmingstops 2 andthetemperaturereturnstoitspre-changevalues. Theotherhappenssuddenly,almostwithout warning;oncetheparameters(e.g.,theO netproductionrateand/orthephytoplanktongrowthrate) 2 surpass certain critical values, the system starts a free fall to a zero-oxygen state. This type of the catastropheisirreversibleandhencemuchmoredangerous[15]. The above studies left several open questions. Firstly, it remained unclear how robust the prediction of oxygen depletion in response to a sufficiently large increase in water temperature is to the details of parametrization of the coupling between phytoplankton and oxygen. Indeed, model prediction can only be regarded as meaningful if it does not depend strongly on thespecificchoiceoffunctionalfeedbacks[18–20]. However,thedetailsofthecouplinginareal-world plankton-oxygensystemarelargelyunknown. Inthispaper,weconsiderseveraldifferentmodelsof thephytoplankton-oxygensystemandshowthatthepredictionofoxygendepletiondoesnotdepend onthedetailsofparameterizations. Sincedifferentparameterizationsaccountforsomewhatdifferent ecologicalsituations,thisbroadensthegeneralityofourresults. Secondly,previoustheoreticalstudiesontheplankton-oxygendynamicshavemostlybeendone usingdeterministicmodels[15–17,21–23]. Meanwhile,thehighvariabilityoftheoceanenvironment, inparticularduetotheinherentlystochasticmarineturbulentflows[24]andweatherconditions[25], can make such an approach somewhat questionable. Moreover, the process of global warming itselfexhibitsclearirregularfluctuationsaroundthegeneraltrend[1]. Amorerealisticmodelling approach should therefore include some form of the environmental stochasticity or noise [26,27]. Remarkably,thesystems’dynamicalpropertiescandiffersignificantlyundertheeffectofnoise[27–29]. Therefore,oursecondgoalinthispaperistoconsiderhowtheearliermodellingpredictionsofoxygen depletionmaychangeifthemodelincludesenvironmentalnoise. Geosciences2018,8,201 3of21 2. ParametrizationoftheOxygen-PhytoplanktonSystem Our conceptual model of coupled phytoplankton-oxygen dynamics is shown in Figure 1. Phytoplankton (u) produce oxygen (c) with the per capita rate Af(c) during the daytime photosynthesis. Function M(c,u)describestherateofoxygendecreaseduetodifferentprocessessuch asitsconsumptionbyphytoplanktonduringthenight-time,breathingofmarinefauna,decayinthe oxygenconcentrationdueto(bio)chemicalreactionsinthewater(e.g.,decayandremineralizationof detritus)[22,30–34],etc. Thephytoplanktongrowthrateg(c,u)isknowntobecorrelatedwiththerate ofphotosynthesis[35]. Themechanismsresultinginthiscorrelationarepoorlyunderstood;here,we assumethatthegrowthratedependsontheamountofavailableoxygen. Thisisinagreementwiththe generalbiologicalobservationthatalllivingbeings(exceptforthoserelativelyrarespecies,e.g.some bacteria,themetabolismofwhichisnotbasedonoxygen),animalsandplantsalike,needoxygenfor theirnormalfunctioning. ThetermQ(c,u)isthephytoplanktonmortalityratethatincludesitsnatural mortalityanditsconsumptionbyzooplanktonandplanktivorousfish. Notethat,inthegeneralcase, itmaydependontheoxygenconcentration,e.g.,becausetheefficiencyofzooplanktonfeedingmay dependontheoxygen(seeSection3). phytoplankton Q(c,u) Af(c)u g(c, u)u oxygen M(c,u) Figure1.Flowchartdiagramofmassflowsbetweenthecomponentsofthesystem(quantifiedbythe growthratesAf(c)uandg(c,u))andlossesofoxygenandphytoplanktonduetotheirflowsoutofthe system(quantifiedbyM(c,u)andQ(c,u),accordingly);seethedetailsinthetext. Thecorrespondingmathematicalmodelthatdescribestheprocessesandmassflowsshownin Figure1isgivenbythefollowingequations: dc(t) = Af(c)u−M(c,u), (1) dt du(t) = g(c,u)−Q(c,u), (2) dt wherecistheconcentrationofthedissolvedoxygen,uisthedensityofphytoplanktonandtistime. Function f(c)describesthecombinedeffectoftheoxygenproductioninsidethephytoplanktoncells and its transport from the cells to the surrounding water. Note that, since the transport through the cell membrane depends on the O concentration in the vicinity of the cell, f appears to be a 2 monotonously-decreasingfunctionofc;see[17]fordetails. Parameter Atakesintoaccounttheeffect oftheenvironmentalfactors(suchasthewatertemperature)ontherateofoxygenproductioninside thephytoplanktoncells. Weassumethatbothplanktonandoxygenaredistributedapproximately uniformlyintheupperlayeroftheocean(theso-calledapproximationofawell-mixedlayer,cf.[36,37]); hence,Equations(1)and(2)donotincludespace. NotethatEquations(1)and(2)areextremelysimple, muchsimplerthan‘realistic’ecological models[38]orclimatemodels(e.g.,[39]). However,wewanttoemphasizeherethatthemodelgiven Geosciences2018,8,201 4of21 byEquations(1)and(2)isnotjustamathematicaltoyasitprovidesanupperboundforafamilyof realisticmarineecosystemmodels;seeSection5fordetails. Inordertofurtherspecifythemodel,weusethestandardassumptionthatphytoplanktonexhibit logisticgrowthsothat: Bcu g(c,u) = −γu2, (3) c+c 1 where B is the maximum phytoplankton per capita growth rate in the large oxygen limit, c is a 1 half-saturation constant and γ is the intensity of the intraspecific competition. For function f(c), assuming that the transport through the cell membrane is described by the Fick law, it can be parameterizedasfollows[17]: c f(c) = 0 , (4) c+c 0 wherec isaparameter. 0 Specific parametrization of functions M and Q can be different depending on the biological processestakenintoaccount. Correspondingly,thesystem(1)and(2)canattainsomewhatdifferent properties,inparticularintermsoftheexistenceandstabilityofitssteadystates. Below,weconsider severaldifferentparameterizationsof M and Q torevealthat, infact, thequalitativepropertiesof modelEquations(1)and(2)arerobusttothechoiceof MandQ. 2.1. Model1 We begin with the baseline case where functions M and Q are linear with respect to their arguments. Although this assumption of linearity is not entirely realistic in the general case, in particular because it apparently assumes that the per capita amount of oxygen consumed by phytoplanktonandthepercapitaamountofphytoplanktonconsumedbyitspredatorsareunbounded, thelinearapproximationofnonlinearpopulationdynamicsmodelsisknowntoworkwellinacertain parameterrange;see[40],alsoSection2in[41]. Correspondingly,Equation(1)takesthefollowingform(inappropriatelychosendimensionless variables,cf.[17]): dc(t) Au = −mc−uc, (5) dt c+1 wheretheterm(−mc)accountsforoxygenlossesforreasonsotherthanplanktonbreathing. Forphytoplankton,thedensity-independentmortalityrate(sothatQislinearwithrespecttou) notonlytakesintoaccountthenatural,age-relatedmortality,butcanalsoaccountforotherprocesses resultinginphytoplanktonlosses,inparticulartheeffectofaterminal(lytic)viralinfection[42,43], whichisknowntobeanimportantfactorcontrollingphytoplanktonabundance[44]. Equation(2) turnsintothefollowing: du(t) (cid:18) Bcu (cid:19) = −γu2 −σu, (6) dt c+c 1 whereparameterσisthe(constant)mortalityrateofthephytoplankton. Equations(5)and(6)containseveralparameters. Sinceourmaingoalistorevealhowthesystem propertiescanchangedependingontherateofoxygenproduction A(whichisknowntodependon watertemperatureandhenceisaffectedbyglobalwarming),inthispaper,weonlyconsiderexplicitly theeffectof Aandfixallotherparametersatsomehypotheticalvalues. For any parameter values, the extinction state (0,0) is a steady state of the system. Having analysed the direction of the phase flow, it can be shown that it is always stable [17]. In order to Geosciences2018,8,201 5of21 understandhowtheexistenceofpositive(coexistence)steadystatesdependson A,itisconvenientto considertheisoclinesofthesystem,whicharegivenbythefollowingequations: mc(c+1) Bc−σ(c+c ) u = , u = 1 . (7) I A−c(c+1) II (c+c )γ 1 Figure 2a shows the relative position of the isoclines in the phase plane of the system. Anyintersectionbetweenthetwoisoclines(i.e.,betweentheredandblackcurves)isasteadystate. Itisreadilyseenthatthepositivesteadystatesonlyexistif Aisnottoosmall. Incase Aissmaller thanacertaincriticalvalue,say A ,therearenopositivesteadystates. Thiscanbesummarizedasa cr bifurcationcurveshowingthesteadystatevaluesofoxygenvs. A;seeFigure2b. Forany A > A , cr therearetwosteadystates,asshownbythetwobranchesofthecurve(where A correspondstothe cr right-mostpointinthedottedredcurve). Itcanbeshown[17]thattheuppersteadystateisstableand thelowersteadystateisunstable. At A = A ,thetwobranchesmerge. cr isoclines 2 2 1.8 first isocline second isocline 1.8 1.6 1.6 1.4 1.4 1.2 1.2 u 1 c 1 0.8 0.8 0.6 0.6 0.4 0.4 0.2 0.2 0 0 0 0.5 1 1.5 2 10 8 6 4 2 0 c A (a) (b) Figure2.(a)The(null)-isoclinesoftheoxygen-phytoplanktonsystemforModel1.Blackcurvesshow theoxygenisocline(u )forA=3.5,8,9,10and11(fromlefttoright,respectively),andtheredcurve I showsthephytoplanktonisocline(u ). (b)PositivesteadystatesofEquations(5)and(6)shownas II functionsofA.Otherparametersarec =1,B=12.5,γ=2.5,m=1andσ=0.1. 1 These properties of Equations (5) and (6) mean that, for A > A , the system is likely to be cr foundinthevicinityoftheupper(stable)steadystate(unlesstheinitialstateisclosetoextinction). ForA < A ,regardlessoftheinitialstateofthesystem,inthelong-termrun,thesystemwillconverge cr totheextinctionstate(0,0). Inthiscase,theextinctionofplanktonandthedepletionofoxygenarethe onlypossibleresults. Having considered the properties of the curve in Figure 2b, one readily reveals the generic responseofthesystemtoadecreaseinA(duetothetemperatureincrease,e.g.,duetoglobalwarming). Presumably,beforethechange,thesystemisina‘safe’parameterrange,i.e., A > A . Thesystemis cr theninitsuppersteadystate,i.e.,atapointontheupperbranchofthebifurcationcurveinFigure2b. Withadecreasein A, thepointispushedtotheright. Forany A > A , thesystemisinastateof cr sustainableoxygenproduction. However,oncethesystemispushedbeyondthebifurcationpoint A = A ,sustainablefunctioningofthesystemisnotpossibleanymore,andtheextinction/depletion cr istheonlypossibleoutcome. Now, we are going to check whether the properties of the system and its bifurcation curve (inparticular,theexistenceofthecriticalvalue A andthedepletioncatastrophefor A < A )remain cr cr similarfordifferentassumptionsleadingtodifferent MandQ. Geosciences2018,8,201 6of21 2.2. Model2 Now,wetakeintoaccountthat,inthecasewherethephytoplanktonmortalitytermQislinked to itsconsumption by aspecies from a highertrophiclevel, e.g.,zooplankton, the Holling TypeII density-dependentpredatorresponseismorerealisticthanalinearresponse. Consideringasabove M tobealinearfunctionwithrespecttoitsarguments,Equations(1)and(2)takethefollowingform: dc(t) Au = −mc−uc, (8) dt c+1 du(t) (cid:18) Bcu (cid:19) uv = −γu2 − , (9) dt c+c u+h 1 where v is the zooplankton density (regarded as a parameter; a more general model where v is a dynamicalvariablewillbeconsideredinSection3). TheisoclinesofEquations(8)and(9)are,respectively,asfollows: (cid:16) (cid:17) c(c+1) c1 u+vh +γu uI = A−c(c+1), cII = B−(cid:16) v +γu(cid:17). (10) u+h Figure3ashowstherelativepositionoftheisoclinesgivenbyEquations(10)inthephaseplaneof Equations(8)and(9),andFigure3bshowsthecorrespondingbifurcationcurve. Itisreadilyseenthat thepropertiesofthesystemareessentiallythesameasforModel1,andhence,allconclusionsabout thesystempropertiesareexactlythesameasforModel1. isoclines 4 2.5 3.5 2 3 2.5 1.5 u 2 c 1.5 1 1 0.5 0.5 first isocline second isocline 0 0 0 0.5 1 1.5 2 2.5 3 3.5 10 8 6 4 2 0 c A (a) (b) Figure3.(a)The(null-)isoclinesoftheoxygen-phytoplanktonsystemforModel2.Blackcurvesshow theoxygenisocline(u )forA=3.5,8,9,10and11(fromlefttoright,respectively),andtheredcurve I showsthephytoplanktonisocline(c ). (b)PositivesteadystatesofEquations(8)and(9)shownas II functionsofA.Here,v=0.3,andotherparametersarethesameasinFigure2. 2.3. Model3 We keep M(c,u) as a bilinear function. For function Q, we combine the density-dependent HollingTypeIIresponsetoaccountfortheeffectofpredationwiththedensity-independentlinear responsetoaccountforthenaturalmortalityandtheeffectofviruses. Equations(1)and(2)takethe followingform: dc(t) Au = −mc−uc, (11) dt c+1 du(t) (cid:18) Bcu (cid:19) uv = −γu2 − −σu. (12) dt c+c u+h 1 Geosciences2018,8,201 7of21 Notethatinthespecialcasev =0,Equations(11)and(12)coincidewithModel1. TheisoclinesofEquations(11)and(12)areasfollows: (cid:16) (cid:17) c(c+1) c1 u+vh +σ+uγ uI = A−c(c+1), cII = B−(cid:16) v +σ+uγ(cid:17). (13) u+h Figure4showstherelativepositionoftheisoclinesandthecorrespondingbifurcationdiagram (the steady state values of oxygen as a function of parameter A). Thus, the system properties are qualitativelythesameasinModels1and2. isoclines 4 2.5 3.5 2 3 2.5 1.5 u 2 c 1.5 1 1 0.5 0.5 first isocline second isocline 0 0 0 0.5 1 1.5 2 2.5 3 10 8 6 4 2 0 c A (a) (b) Figure4.(a)The(null-)isoclinesoftheoxygen-phytoplanktonsystemforModel3.Blackcurvesshow theoxygenisocline(u )forA=3.5,8,9,10and11(fromlefttoright,respectively),andtheredcurve I showsthephytoplanktonisocline(c ).(b)PositivesteadystatesofEquations(11)and(12)shownas II functionsofA.Here,v=0.3andh=0.5,andotherparametersarethesameasinFigure2. 2.4. Model4 Now, we consider Holling Type II predation for the consumption of phytoplankton (e.g.,byzooplankton)andneglectthelinearterminQ,thusassumingthatthephytoplanktonlosses duetotheirpredationaremoreimportantthanlossesduetotheirnaturalmortalityorviralinfection. Fortherateofoxygenconsumptionbymarinefloraandfauna,wechangethebilineartermucinMto amorerealisticMonod-typeresponse,whichaccountsforthegeneralobservationthatthepercapita rateofconsumptionofoxygenisbounded. Equations(1)and(2)takethefollowingform: dc(t) Au uc = − −mc, (14) dt c+1 c+c 2 du(t) (cid:18) Bcu (cid:19) uv = −γu2 − . (15) dt c+c u+h 1 TheisoclinesofEquations(14)and(15)are,respectively,asfollows: (cid:16) (cid:17) uI = A(cc(+c+c21))−(cc+(cc+2)1), cII = Bc1−(cid:16)u+vvh ++γγuu(cid:17). (16) u+h Figure5showstherelativepositionoftheisoclinesandthecorrespondingbifurcationdiagramof Equations(14)and(15). Thesystempropertiesthereforeremainthesameasabove. Geosciences2018,8,201 8of21 isoclines 5 4 4.5 3.5 4 3 3.5 2.5 3 u 2 c 2.5 2 1.5 1.5 1 1 0.5 fsierscto insdo cislionceline 0.5 0 0 0 1 2 3 4 5 10 8 6 4 2 0 c A (a) (b) Figure5.(a)The(null-)isoclinesoftheoxygen-phytoplanktonsystemforModel4.Blackcurvesshow theoxygenisocline(u )forA=3.5,8,9,10and11(fromlefttoright,respectively),andtheredcurve I showsthephytoplanktonisocline(c ).(b)PositivesteadystatesofEquations(14)and(15)shownas II functionsofA.Herec =0.5,otherparametersarethesameasinFigure4. 2 2.5. Model5 Forthismodel,weusethesamefunctionMasinModel4. ForfunctionQ,wekeeptheHolling TypeIIpredationtermandaddthelinearterm,henceassumingthatphytoplanktonlossesoccurduetoa combinedactionofthedensity-dependentpredation,virusesandnaturalmortality.Equations(1)and(2) nowtakethefollowingform: dc(t) Au uc = − −mc, (17) dt c+1 c+c 2 du(t) (cid:18) Bcu (cid:19) uv = −γu2 − −σu. (18) dt c+c u+h 1 Theisoclinesofthesystemareasfollows: (cid:16) (cid:17) uI = A(cc(+c+c21))−(cc+(cc+2)1) (I), cII = Bc1−(cid:16)u+vvh ++σσ++uuγγ(cid:17). (19) u+h Figure6showstherelativepositionoftheisoclinesandthecorrespondingbifurcationdiagram. It isreadilyseenthatthesystempropertiesarethesameasabove. 2.6. Model6 Weconsiderthesamefunction MasinModels4and5(i.e.,acombinationofthelineartermand Monodkinetics). Forthelossesofphytoplankton,weneglectthedensity-dependentpredationand onlyconsiderthelinearterm. Thiscorrespondtoasituationwherethephytoplanktonabundanceis mostlycontrolledbyitsnaturalmortalityandpossiblyviruses,butnotbypredation. Equations(1) and(2)thentakethefollowingform: dc(t) Au uc = − −mc, (20) dt c+1 c+c 2 du(t) (cid:18) Bcu (cid:19) = −γu2 −σu. (21) dt c+c 1 Geosciences2018,8,201 9of21 Theisoclinesofthesystemareasfollows: c(c+1)(c+c ) Bc−σ(c+c ) u = 2 , u = 1 . (22) I A(c+c )−c(c+1) II γ(c+c ) 2 1 Figure7showstherelativepositionoftheisoclinesandthesteadystatevaluesofoxygenasa functionofparameter A(bifurcationdiagram). Thepropertiesarethesameasinthepreviousmodels. isoclines 5 4 4.5 3.5 4 3 3.5 2.5 3 u 2 c 2.5 2 1.5 1.5 1 1 0.5 fsierscto insdo cislionceline 0.5 0 0 0 1 2 3 4 5 10 8 6 4 2 0 c A (a) (b) Figure6.(a)The(null-)isoclinesoftheoxygen-phytoplanktonsystemforModel5.Blackcurvesshow theoxygenisocline(u )forA=3.5,8,9,10and11(fromlefttoright,respectively),andtheredcurve I showsthephytoplanktonisocline(c ).(b)PositivesteadystatesofEquations(17)and(18)shownas II functionsofA.Here,c =0.5,otherparametersarethesameasinFigure4. 2 isoclines 5 5 4.5 4.5 4 4 3.5 3.5 3 3 u 2.5 c 2.5 2 2 1.5 1.5 1 1 first isocline 0.5 second isocline 0.5 0 0 0 1 2 3 4 5 10 8 6 4 2 0 c A (a) (b) Figure7.(a)The(null-)isoclinesoftheoxygen-phytoplanktonsystemforModel6.Blackcurvesshow theoxygenisocline(u )forA=3.5,8,9,10and11(fromlefttoright,respectively),andtheredcurve I showsthephytoplanktonisocline(u ).(b)PositivesteadystatesofEquations(20)and(21)shownas II functionsofA.ParametersarethesameasinFigure6. 2.7. Model7 Thismodelconsidersthemostgeneralcase(withinthegivenframework),whichcombinesallthe specificcasesabove. Function Mnowtakesintoaccounttheoxygenlossesduetoitsconsumption byphytoplankton(duringthenight-time)andduetobreathingbymarinefauna(e.g.,zooplankton), bothtermsdescribedbyMonodkinetics. Italsoincludesthelineartermtoaccountforoxygenlosses duetootherreasons,whichincludelossesduetooxygendiffusionthroughtheoceansurface. Function Q includesboththelinearterm(thattakesintoaccountthenaturalmortalityandthevirulencein Geosciences2018,8,201 10of21 the case of a viral infection) and Holling Type II predation. Equations (1) and (2) then take the followingform: dc(t) Au uc νcv = − − −mc, (23) dt c+1 c+c c+c 2 3 du(t) (cid:18) Bcu (cid:19) uv = −γu2 − −σu. (24) dt c+c u+h 1 Inthespecialcasev =0,Equations(23)and(24)coincidewithModel6. TheisoclinesofEquations(23)and(24)are,respectively,asfollows: (cid:16) (cid:17) uI = c+Ac1+−cν+cc+cvc3c2, cII = Bc1−(cid:16)uu+v+vhh++σσ++uuγγ(cid:17). (25) Figure 8 shows the relative position of the isoclines in the phase plane of the system and the correspondingbifurcationdiagram,whichareapparentlysimilartothoseinthepreviousmodels. isoclines 5 5 4.5 4.5 4 4 3.5 3.5 3 3 u 2.5 c 2.5 2 2 1.5 1.5 1 1 first isocline 0.5 second isocline 0.5 0 0 0 1 2 3 4 5 10 8 6 4 2 0 c A (a) (b) Figure8.(a)The(null-)isoclinesoftheoxygen-phytoplanktonsystemforModel7.Blackcurvesshow theoxygenisocline(u )forA=3.5,8,9,10and11(fromlefttoright,respectively),andtheredcurve I showsthephytoplanktonisocline(c ).(b)PositivesteadystatesofEquation(23)and(24)shownas II functionsofA.Here,ν=0.01andc =1,andotherparametersarethesameasinFigure6. 3 A brief inspection of the bifurcation diagrams obtained for Models 1–7 immediately reveals thattheyarequalitativelythesame;inparticular,theyallpredictthatsustainablefunctioningofthe plankton-oxygensystemcanonlyoccuriftherateofoxygenproductionisnottoolow. Asummary oftheprocessestakenintoaccountbydifferentmodelsisgiveninTable1. Itisreadilyseenthatthe criticalbehaviour(disappearanceofthepositivesteadystates)inresponsetoadecreasein Aisshown byallmodels,althoughtheparametrizationoffunctions MandQvariessignificantly. Wetherefore concludethatthisisarelativelygeneralpropertyofthephytoplankton-oxygendynamicsandnotan artefactofaspecificparametrization. Inthecasethattherateofoxygenproductiondecreaseswith anincreaseinthewatertemperature(aswasobservedforsomephytoplanktonspecies[10,11,13]), thegenericEquations(1)and(2)predictanecologicalcatastropheresultinginoxygendepletionand planktonextinctionwhenthetemperatureexceedsacertaincriticalvalue. Arguably,fromtherangeofmodelsconsideredabove,themostrealisticisModel7,asitaccounts forthelargestnumberofrelevantfactors. Thus,wewilluseitintherestofthepaper.
Description: