ebook img

Global solutions of shock reflection by large-angle wedges for potential flow PDF

118 Pages·2010·1.28 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Global solutions of shock reflection by large-angle wedges for potential flow

ANNALS OF M ATHEMATICS Global solutions of shock reflection by large-angle wedges for potential flow By Gui-Qiang Chen and Mikhail Feldman SECOND SERIES, VOL. 171, NO. 2 March, 2010 anmaah AnnalsofMathematics,171(2010),1067–1182 Global solutions of shock reflection by large-angle wedges for potential flow By GUI-QIANG CHEN and MIKHAIL FELDMAN Abstract Whenaplaneshockhitsawedgeheadon,itexperiencesareflection-diffraction processandthenaself-similarreflectedshockmovesoutwardastheoriginalshock movesforwardintime. Experimental,computational,andasymptoticanalysishas shownthatvariouspatternsofshockreflectionmayoccur, includingregularand Mach reflection. However, most of the fundamental issues for shock reflection havenotbeenunderstood,includingtheglobalstructure,stability,andtransition ofthedifferentpatternsofshockreflection. Therefore,itisessentialtoestablish theglobalexistenceandstructuralstabilityofsolutionsofshockreflectioninorder to understand fully the phenomena of shock reflection. On the other hand, there has been no rigorous mathematical result on the global existence and structural stabilityofshockreflection, includingthecaseofpotentialflowwhichiswidely used in aerodynamics. Such problems involve several challenging difficulties in theanalysisofnonlinearpartialdifferentialequationssuchasmixedequationsof elliptic-hyperbolictype,freeboundaryproblems,andcornersingularitywherean ellipticdegeneratecurvemeetsafreeboundary. Inthispaperwedeveloparigor- ousmathematicalapproachtoovercomethesedifficultiesinvolvedandestablisha globaltheoryofexistenceandstabilityforshockreflectionbylarge-anglewedges forpotentialflow. Thetechniquesandideasdevelopedherewillbeusefulforother nonlinearproblemsinvolvingsimilardifficulties. 1. Introduction We are concerned with the problems of shock reflection by wedges. These problemsarisenotonlyinmanyimportantphysicalsituationsbutalsoarefunda- mental in the mathematical theory of multidimensional conservation laws since their solutions are building blocks and asymptotic attractors of general solutions to themultidimensional Eulerequations forcompressible fluids (forexample, see 1067 1068 GUI-QIANGCHENandMIKHAILFELDMAN Courant-Friedrichs[16], vonNeumann [49],and Glimm-Majda[22]; alsosee [4], [9], [21], [30], [44], [45], [48]). When a plane shock hits a wedge head on, it experiences a reflection-diffraction processand then a self-similar reflected shock moves outward as the original shock moves forward in time. The complexity of the reflection configurations was first reported by Ernst Mach [41] in 1878, and experimental,computational,andasymptoticanalysishasshownthatvariouspat- terns of shock reflection may occur, including regular and Mach reflection (cf. [4], [19], [22], [25], [26], [27], [44], [48], [49]). However, most of the fundamental issuesforshockreflectionhavenotbeenunderstood,includingtheglobalstructure, stability, andtransitionofthedifferentpatternsof shockreflection. Therefore,it isessentialtoestablishtheglobalexistenceandstructuralstabilityofsolutionsof shock reflection in order to understand fully the phenomena of shock reflection. On the other hand, there has been no rigorous mathematical result on the global existenceandstructuralstability ofshockreflection,including thecaseofpotential flow which is widely used in aerodynamics (cf. [5], [15], [22], [42], [44]). One of the mainreasons is that the problems involveseveral challenging difficulties in theanalysisofnonlinearpartialdifferentialequationssuchasmixed equationsof elliptic-hyperbolictype,freeboundaryproblems,andcornersingularitywherean ellipticdegeneratecurvemeetsafreeboundary. Inthispaperwedeveloparigorous mathematicalapproach toovercomethesedifficultiesand establishaglobal theory ofexistenceandstabilityforshockreflectionbylarge-anglewedgesforpotential flow. Thetechniquesandideasdevelopedherewillbeusefulforothernonlinear problemsinvolvingsimilardifficulties. TheEulerequationsforpotentialflowconsistoftheconservationlawofmass andtheBernoullilawforthedensity(cid:26) andvelocitypotentialˆ: (1.1) @ (cid:26)Cdiv .(cid:26)r ˆ/D0; t x x 1 (1.2) @ ˆC jr ˆj2Ci.(cid:26)/DK; t x 2 where K is theBernoulli constant determinedby the incomingflow and/or bound- aryconditions,and i0.(cid:26)/Dp0.(cid:26)/=(cid:26)Dc2.(cid:26)/=(cid:26) withc.(cid:26)/beingthesoundspeed. Forpolytropicgas, p.(cid:26)/D(cid:20)(cid:26)(cid:13); c2.(cid:26)/D(cid:20)(cid:13)(cid:26)(cid:13)(cid:0)1; (cid:13) >1; (cid:20) >0: Withoutlossofgenerality,wechoose(cid:20) D.(cid:13)(cid:0)1/=(cid:13) sothat i.(cid:26)/D(cid:26)(cid:13)(cid:0)1; c.(cid:26)/2D.(cid:13)(cid:0)1/(cid:26)(cid:13)(cid:0)1; whichcanbeachievedbythefollowingscaling: .x;t;K/!.˛x;˛2t;˛(cid:0)2K/; ˛2D(cid:20)(cid:13)=.(cid:13)(cid:0)1/: GLOBALSOLUTIONSOFSHOCKREFLECTIONBYLARGE-ANGLEWEDGES 1069 Equations (1.1) and (1.2) can be written as the following nonlinear equation of secondorder: (cid:18) (cid:19) 1 1 (1.3) @ (cid:26)O(cid:0)K(cid:0)@ ˆ(cid:0) jr ˆj2(cid:1)Cdiv (cid:26)O(cid:0)K(cid:0)@ ˆ(cid:0) jr ˆj2(cid:1)r ˆ D0; t t x x t x x 2 2 where(cid:26)O.s/Ds1=.(cid:13)(cid:0)1/Di(cid:0)1.s/fors(cid:21)0. Whenaplaneshockinthe.x;t/-coordinates,xD.x ;x /2R2,withleftstate 1 2 .(cid:26);r ‰/D.(cid:26) ;u ;0/andrightstate.(cid:26) ;0;0/;u >0;(cid:26) <(cid:26) ,hitsasymmetric x 1 1 0 1 0 1 wedge W WDfjx j<x tan(cid:18) ;x >0g 2 1 w 1 headon,itexperiencesareflection-diffractionprocess,andthereflectionproblem canbeformulatedasthefollowingmathematicalproblem. Problem1(Initial-boundaryvalueproblem). Seek a solution of system (1.1) and(1.2)withK D(cid:26)(cid:13)(cid:0)1,theinitialconditionatt D0: 0 ( .(cid:26) ;0/ for jx j>x tan(cid:18) ;x >0; (1.4) .(cid:26);ˆ/jtD0D 0 2 1 w 1 .(cid:26) ;u x / for x <0; 1 1 1 1 andtheslipboundaryconditionalongthewedgeboundary@W: (1.5) rˆ(cid:1)(cid:23)j D0; @W where(cid:23) istheexteriorunitnormalto@W (seeFig.1.1). x 2 (1) (0) ν Φ ν =0 ∇ · θ w x 1 Figure1.1. Initial-boundaryvalueproblem 1070 GUI-QIANGCHENandMIKHAILFELDMAN Noticethattheinitial-boundaryvalueproblem(1.1)–(1.5)isinvariantunder theself-similarscaling: .x;t/!.˛x;˛t/; .(cid:26);ˆ/!.(cid:26);ˆ=˛/ for ˛¤0: Thus,weseekself-similarsolutionswiththeform (cid:26).x;t/D(cid:26).(cid:24);(cid:17)/; ˆ.x;t/Dt .(cid:24);(cid:17)/ for .(cid:24);(cid:17)/Dx=t: Then the pseudo-potential function ' D (cid:0) 1.(cid:24)2C(cid:17)2/ satisfies the following 2 Eulerequationsforself-similarsolutions: (1.6) div.(cid:26)D'/C2(cid:26)D0; (1.7) 1jD'j2C'C(cid:26)(cid:13)(cid:0)1D(cid:26)(cid:13)(cid:0)1; 2 0 wherethedivergencedivandgradientD arewithrespecttotheself-similarvari- ables.(cid:24);(cid:17)/. Thisimplies thatthepseudo-potentialfunction'.(cid:24);(cid:17)/isgovernedby thefollowingpotentialflowequationofsecondorder: (1.8) div(cid:0)(cid:26).jD'j2;'/D'(cid:1)C2(cid:26).jD'j2;'/D0 with (1.9) (cid:26).jD'j2;'/D(cid:26)O(cid:0)(cid:26)(cid:13)(cid:0)1(cid:0)'(cid:0) 1jD'j2(cid:1): 0 2 Thenwehave (1.10) c2Dc2.jD'j2;';(cid:26)(cid:13)(cid:0)1/D.(cid:13)(cid:0)1/(cid:16)(cid:26)(cid:13)(cid:0)1(cid:0) 1jD'j2(cid:0)'(cid:17): 0 0 2 (1.8)isamixedequationofelliptic-hyperbolictype. Itisellipticifandonly if (1.11) jD'j<c.jD'j2;';(cid:26)(cid:13)(cid:0)1/; 0 whichisequivalentto s (1.12) jD'j<c(cid:3).';(cid:26)0;(cid:13)/WD 2.(cid:13)(cid:13)C(cid:0)11/.(cid:26)0(cid:13)(cid:0)1(cid:0)'/: Shocksarediscontinuitiesinthepseudo-velocityD'. Thatis,if(cid:127)C and(cid:127)(cid:0)WD (cid:127)n(cid:127)C are two nonempty open subsets of (cid:127)(cid:26)R2 and S WD@(cid:127)C\(cid:127) is a C1 curve where D' has a jump, then ' 2W1;1.(cid:127)/\C1.(cid:127)˙[S/\C2.(cid:127)˙/ is a loc 1;1 global weak solution of (1.8) in (cid:127) if and only if ' is in W .(cid:127)/ and satisfies loc ˙ (1.8)in(cid:127) andtheRankine-HugoniotconditiononS: (1.13) (cid:2)(cid:26).jD'j2;'/D'(cid:1)(cid:23)(cid:3) D0: S GLOBALSOLUTIONSOFSHOCKREFLECTIONBYLARGE-ANGLEWEDGES 1071 Thecontinuityof' isfollowedbythecontinuityofthetangentialderivativeof' acrossS,whichisadirectcorollaryofirrotationalityofthepseudo-velocity. The discontinuityS ofD' iscalledashockif' furthersatisfiesthephysicalentropy conditionthatthecorrespondingdensityfunction(cid:26).jD'j2;'/increasesacrossS inthepseudo-flowdirection. WenotethattheRankine-Hugoniotcondition(1.13) withthecontinuityof' acrossashockfor(1.8)isalsoafairlygoodapproximation tothecorrespondingRankine-HugoniotconditionsforthefullEulerequationsfor shocksofsmallstrength,sincetheerrorsarethird-orderinstrengthoftheshock. Theplaneincidentshocksolutioninthe.x;t/-coordinateswithstates.(cid:26);r ‰/ x D.(cid:26) ;0;0/ and .(cid:26) ;u ;0/ corresponds to a continuous weak solution ' of (1.8) 0 1 1 intheself-similarcoordinates.(cid:24);(cid:17)/withthefollowingform: 1 (1.14) ' .(cid:24);(cid:17)/D(cid:0) .(cid:24)2C(cid:17)2/ for (cid:24) >(cid:24) ; 0 0 2 1 (1.15) ' .(cid:24);(cid:17)/D(cid:0) .(cid:24)2C(cid:17)2/Cu .(cid:24)(cid:0)(cid:24) / for (cid:24) <(cid:24) ; 1 1 0 0 2 respectively,where v uu2.(cid:26)(cid:13)(cid:0)1(cid:0)(cid:26)(cid:13)(cid:0)1/ (cid:26) u (1.16) (cid:24) D(cid:26) t 1 0 D 1 1 >0 0 1 (cid:26)2(cid:0)(cid:26)2 (cid:26) (cid:0)(cid:26) 1 0 1 0 is the location of the incident shock, uniquely determined by .(cid:26) ;(cid:26) ;(cid:13)/ through 0 1 (1.13). Since the problem is symmetric with respect to the axis (cid:17)D0, it suffices toconsidertheprobleminthehalf-plane(cid:17)>0outsidethehalf-wedge ƒWDf(cid:24) (cid:20)0;(cid:17)>0g[f(cid:17)>(cid:24)tan(cid:18) ; (cid:24) >0g: w Thentheinitial-boundaryvalueproblem(1.1)–(1.5)inthe.x;t/-coordinatescanbe formulatedasthefollowingboundaryvalueproblemintheself-similarcoordinates .(cid:24);(cid:17)/. Problem2(Boundaryvalueproblem)(seeFig.1.2). Seekasolution' of(1.8) intheself-similardomainƒwiththeslipboundaryconditionon@ƒ: (1.17) D'(cid:1)(cid:23)j D0 @ƒ andtheasymptoticboundaryconditionatinfinity: ( ' for (cid:24) >(cid:24) ;(cid:17)>(cid:24)tan(cid:18) ; (1.18) ' !'N D 0 0 w when(cid:24)2C(cid:17)2!1; ' for (cid:24) <(cid:24) ;(cid:17)>0; 1 0 where(1.18)holdsinthesensethatRl!im1k'(cid:0)'kC.ƒnBR.0//D0: Since' doesnotsatisfytheslipboundarycondition(1.17),thesolutionmust 1 differfrom' inf(cid:24)<(cid:24) g\ƒ;thusashockdiffractionbythewedgeoccurs. Inthis 1 0 1072 GUI-QIANGCHENandMIKHAILFELDMAN η ϕ 0 ϕ ϕ 1 ϕ ν ϕ ν =0 ∇ · θ ϕ =0 ω ξ η ξ 0 Figure1.2. Boundaryvalueproblemintheunboundeddomain paper,wefirstfollowthevonNeumanncriteriontoestablishalocalexistencethe- oryofregularshockreflectionnearthereflectionpointandshowthatthestructure ofthesolutionisasinFigure1.3,whenthewedgeangleislargeandcloseto(cid:25)=2, inwhichtheverticallineistheincidentshockS Df(cid:24) D(cid:24) gthathitsthewedgeat 0 thepointP D.(cid:24) ;(cid:24) tan(cid:18) /,andstate(0)andstate(1)aheadofandbehindS are 0 0 0 w givenby ' and' defined in(1.14)and(1.15), respectively. Thesolutions' and 0 1 ' differonlyinthedomainP P P P becauseofshockdiffractionbythewedge 1 0 1 2 3 vertex, where the curve P P P is the reflected shock with the straight segment 0 1 2 P P . State(2)behindP P canbecomputedexplicitlywiththeform: 0 1 0 1 1 (1.19) ' .(cid:24);(cid:17)/D(cid:0) .(cid:24)2C(cid:17)2/Cu .(cid:24)(cid:0)(cid:24) /C.(cid:17)(cid:0)(cid:24) tan(cid:18) /u tan(cid:18) ; 2 2 0 0 w 2 w 2 whichsatisfies D'(cid:1)(cid:23) D0 on @ƒ\f(cid:24) >0gI theconstantvelocityu andtheangle(cid:18) betweenP P andthe(cid:24)-axisaredeter- 2 s 0 1 mined by .(cid:18) ;(cid:26) ;(cid:26) ;(cid:13)/ from the two algebraic equations expressing (1.13) and w 0 1 continuous matching of state (1) and state (2) across P P , whose existence is 0 1 exactlyguaranteedbytheconditionon.(cid:18) ;(cid:26) ;(cid:26) ;(cid:13)/underwhichregularshock w 0 1 reflectionisexpectedtooccur. Wedevelopa rigorousmathematicalapproachtoextend thelocaltheoryto a globaltheoryforsolutionsofregularshockreflection,whichconvergetotheunique solution of the normal shock reflection when (cid:18) tends to (cid:25)=2. The solution ' is w pseudo-subsonic within the sonic circle for state (2) with center .u ;u tan(cid:18) / 2 2 w and radius c >0 (the sonic speed) and is pseudo-supersonic outside this circle 2 GLOBALSOLUTIONSOFSHOCKREFLECTIONBYLARGE-ANGLEWEDGES 1073 Incident Shock (0) (1) Sonic Circle P 0 (2) P 1 P 4 Reflected Shock Ω θ ω ξ P P 2 3 Figure1.3. Regularreflection containing the arc P P in Figure 1.3, so that ' is the unique solution in the 1 4 2 domain P P P , as argued in [9] and [45]. In the domain (cid:127), the solution is 0 1 4 expected to be pseudo-subsonic, smooth, and C1-smoothly matching with state (2)acrossP P andtosatisfy' D0onP P ;thetransonicshockcurveP P 1 4 (cid:17) 2 3 1 2 matchesuptosecond-orderwithP P andisorthogonaltothe(cid:24)-axisatthepoint 0 1 P so that the standard reflection about the (cid:24)-axis yields a global solution in the 2 whole plane. Then the solution of Problem 2 can be shown to be the solution of Problem1. MainTheorem(see§9fortheproof). Thereexist(cid:18) D(cid:18) .(cid:26) ;(cid:26) ;(cid:13)/2.0;(cid:25)=2/ c c 0 1 and˛D˛.(cid:26) ;(cid:26) ;(cid:13)/2.0;1=2/suchthat,when(cid:18) 2Œ(cid:18) ;(cid:25)=2/,thereexistsaglobal 0 1 w c self-similarsolution (cid:16)x(cid:17) jxj2 x ˆ.x;t/Dt' C for 2ƒ; t >0 t 2t t with (cid:26).x;t/D(cid:16)(cid:26)(cid:13)(cid:0)1(cid:0)ˆ (cid:0) 1jr ˆj2(cid:17)(cid:13)(cid:0)11 0 t 2 x ofProblem1(equivalently,Problem2)forshockreflectionbythewedge,which satisfiesthat,for.(cid:24);(cid:17)/Dx=t, ' 2C1.(cid:127)/\C1;˛.(cid:127)N/; 8 ' for (cid:24) >(cid:24) and(cid:17)>(cid:24)tan(cid:18) ; < 0 0 w (1.20) ' D ' for (cid:24) <(cid:24) andabovethereflectionshock P P P ; 1 0 0 1 2 :' in P P P ; 2 0 1 4 1074 GUI-QIANGCHENandMIKHAILFELDMAN ' isC1;1 acrossthepartP P ofthesoniccircleincludingtheendpointsP and 1 4 1 P , and the reflected shock P P P is C2 at P and C1 except P . Moreover, 4 0 1 2 1 1 1;1 thesolution' isstablewithrespecttothewedgeangleinW andconvergesin loc W1;1 tothesolutionofthenormalreflectiondescribedinSection3.1as(cid:18) !(cid:25)=2. loc w Oneofthemaindifficultiesfortheglobalexistenceisthattheellipticitycon- dition (1.12) for (1.8) is hard to control, in comparison to our earlier work on steadyflow[10]and[12]. Theseconddifficultyisthattheellipticitydegenerates at the sonic circle P P (the boundary of the pseudo-subsonic flow). The third 1 4 difficulty is that, on P P , we need to match the solution in (cid:127) with ' at least 1 4 2 in C1, that is, the two conditions on the fixed boundary P P : the Dirichlet and 1 4 conormalconditions,whicharegenericallyoverdeterminedforanellipticequation sincetheconditionsontheotherpartsoftheboundaryhavebeenprescribed. Thus wehavetoprovethat,if' satisfies(1.8)in(cid:127),theDirichletcontinuitycondition onthesoniccircle,andtheappropriateconditionsontheotherpartsof@(cid:127)derived from Problem 2, then the normal derivative D' (cid:1)(cid:23) automatically matches with D' (cid:1)(cid:23) along P P . We show that, in fact, this follows from the structure of 2 1 4 elliptic degeneracy of (1.8) on P P for the solution '. Indeed, (1.8), written in 1 4 termsofthefunctionuD'(cid:0)' inthe.x;y/-coordinatesdefinednearP P such 2 1 4 thatP P becomesasegmentonfxD0g,hastheform: 1 4 1 (1.21) (cid:0)2x(cid:0).(cid:13)C1/u (cid:1)u C u (cid:0)u D0 inx>0andnearxD0; x xx c2 yy x 2 plusthe“small”termsthatarecontrolledby(cid:25)=2(cid:0)(cid:18) inappropriatenorms. (1.21) w is elliptic if u <2x=.(cid:13) C1/. Thus, we need to obtain the C1;1 estimates near x P P toensureju j<2x=.(cid:13)C1/whichinturn impliesboththeellipticityof the 1 4 x equationin(cid:127)andthematchofnormalderivativesD'(cid:1)(cid:23) DD' (cid:1)(cid:23) alongP P . 2 1 4 Takingintoaccountthe“small”termstobeaddedto(1.21),weneedtomakethe stronger estimate ju j (cid:20) 4x=(cid:0)3.(cid:13) C1/(cid:1) and assume that (cid:25)=2(cid:0)(cid:18) is appropri- x w atelysmalltocontroltheseadditionalterms. Anotherissueisthenon-variational structure and nonlinearity of this problem which makes it hard to apply directly the approaches of Caffarelli [6] and Alt-Caffarelli-Friedman [1], [2]. Moreover, the elliptic degeneracy and geometry of the problem makes it difficult to apply the hodographtransformapproachinKinderlehrer-Nirenberg[28]andChen-Feldman [11]tofixthefreeboundary. For these reasons, one of the new ingredients in our approach is to further developtheiterationschemein[10]and[12]toapartiallymodifiedequation. We modify (1.8) in (cid:127) by a proper cutoff that depends on the distance to the sonic circle,sothattheoriginalandmodifiedequationscoincidefor' satisfyingju j(cid:20) x 4x=(cid:0)3.(cid:13) C1/(cid:1), and the modified equation N' D 0 is elliptic in (cid:127) with elliptic degeneracy on P P . Then we solve a free boundary problem for this modified 1 4

Description:
Courant-Friedrichs [16], von Neumann [49], and Glimm-Majda [22]; also see [4], stability, and transition of the different patterns of shock reflection continuous matching of state (1) and state (2) across P0P1, whose existence is.
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.