ebook img

Global regulatory mutations contribute to antibiotic resistance in Salmonella Typhimurium A Thesis PDF

108 Pages·2015·7.12 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Global regulatory mutations contribute to antibiotic resistance in Salmonella Typhimurium A Thesis

Global regulatory mutations contribute to antibiotic resistance in Salmonella Typhimurium A Thesis Submitted to the Faculty of Graduate Studies and Research In Partial Fulfillment of the Requirements For the Degree of Master of Science in Biology University of Regina By Stefani Christine Kary Regina, Saskatchewan December, 2015 © 2015: S.C. Kary UNIVERSITY OF REGINA FACULTY OF GRADUATE STUDIES AND RESEARCH SUPERVISORY AND EXAMINING COMMITTEE Stefani Christine Kary, candidate for the degree of Master of Science in Biology, has presented a thesis titled, Global regulatory mutations contribute to antibiotic resistence in Salmonella Typhimurium, in an oral examination held on December 1, 2015. The following committee members have found the thesis acceptable in form and content, and that the candidate demonstrated satisfactory knowledge of the subject material. External Examiner: Dr. Dae-Yeon Suh, Department of Chemistry and Biochemistry Supervisor: Dr. Andrew Cameron, Department of Biology Committee Member: Dr. John Stavrinides, Department of Biology Chair of Defense: Dr. Aram Teymurazyan, Department of Physics Abstract Ciprofloxacin is one of the few drugs still effective against Salmonella infections. Ciprofloxacin binds the A subunit of type II topoisomerase enzymes, primarily GyrA (DNA gyrase) in Gram-negative bacteria and ParC (topoisomerase IV) in Gram-positive bacteria. Interaction of ciprofloxacin with topoisomerases disrupts enzyme function resulting in double stranded breaks in the chromosome, relaxation of DNA supercoiling, and the cessation of DNA replication. We tested the growth of Salmonella enterica SL1344 and mutants, fis, crp and rpoS, in LB containing 0%, 0.5% and 1% NaCl and sublethal concentrations of the antibiotics novobiocin, nalidixic acid, and ciprofloxacin. We observed that a Salmonella enterica mutant lacking the cyclic AMP receptor protein (crp) gene was less susceptible to ciprofloxacin than wild type. We tested two hypotheses to explain this antibiotic resistance phenotype: I) a ∆crp mutant has reduced permeability to small molecule antibiotics, or II) a ∆crp mutant is pre-adapted to the ciprofloxacin challenge by virtue of having a decreased level of drug target. The first hypothesis was addressed by testing if the ∆crp mutant was also resistant to the ribosome-targeting antibiotics tetracycline and kanamycin. There was no difference in susceptibility between ∆crp and wild type to either drug. Quantitative PCR revealed that expression of the major porin, ompC, was unchanged in the ∆crp mutant, but ompA and ompF decreased. Expression of the drug efflux pump acrB was also found to increase in the mutant. Using two- dimensional chloroquine gel analysis, we determined that DNA supercoiling was more relaxed in the ∆crp mutant than in wild type, supporting the second i hypothesis. Although DNA gyrase (gyrA and gyrB) and topoisomerase I (topA) expression was similar in both the ∆crp mutant and wild type, the secondary topoisomerase genes, parC and parE, were more highly expressed in the ∆crp mutant. We also observed that wild-type cells treated with ciprofloxacin had a filamentous phenotype after 12 h, while cell division in ∆crp cells was unaffected. Filamentous growth is suggestive of the SOS response and has been observed in cells treated with ciprofloxacin. Therefore, we verified expression levels of two SOS response proteins, sulA and ftsA. Although we observed the filamentous phenotype in wild-type cells, sulA and ftsA expression did not conclusively indicate that the SOS response had been initiated in wild type. Together, these data support a model in which ∆crp mutants are resistant to the effects of ciprofloxacin due to DNA relaxation arising from increased expression of topoisomerase IV (parCE), reduced permeability (ompA and ompF) and increased efflux of ciprofloxacin (acrB). ii Acknowledgements Firstly, I would like to express my sincere gratitude to my advisor, Dr. Andrew Cameron for his continuous support of my Master’s project and related research, for his patience, motivation, and immense knowledge. His guidance helped me in all the time of research and writing of this thesis. I could not have imagined having a better advisor and mentor for my graduate degree. In addition to my advisor I would like to thank Dr. John Stavrinides, for his insightful comments and encouragement throughout my degree. I am so grateful for the opportunity he provided to pursue research and also for initially encouraging me to pursue graduate studies. I would also like to thank Dr. Stephen Fitzgerald who was an incredible mentor and teacher in the lab, and who provided so much support and encouragement during the whole of my Master’s degree. Furthermore, I would like to thank Professor Charles Dorman for the ideas and insight that made this project possible. Finally, I would like to thank Steven West and Laura Stewart for allowing me to be their mentor, and for all their hard work and data collection, as well as Ebtihal Al Shabib for her continued support and helpful insights. iii Table of Contents Abstract………………………………………………………………….….…..……….i Acknowledgements…………………………………………………………………..iii Table of Contents……………………………………………………………………..iv List of Tables…………….………….….…………………………………………....viii List of Figures…………………………………………………………………………ix List of Abbreviations…………………………………………………………………xi Chapter 1 Introduction ..................................................................................... 1 1.1 Introduction ................................................................................................... 2 1.2 Antibiotic Resistance ................................................................................... 2 1.3 Salmonella ..................................................................................................... 3 1.4 Antibiotics ..................................................................................................... 4 1.4.1 Mechanisms of resistance ............................................................................. 5 1.4.2 Gyrase-targeting antibiotics .......................................................................... 8 1.5 Environmental response and regulation .................................................. 10 1.5.1 SOS response ............................................................................................. 10 1.5.2 DNA supercoiling ........................................................................................ 11 1.5.3 Global regulatory proteins ........................................................................... 13 1.6 Thesis Objectives ....................................................................................... 16 Chapter 2 Materials and Methods ................................................................. 18 2.1 Chemicals and growth media .................................................................... 19 2.1.1 Chemicals, reagents and supplies .............................................................. 19 2.1.2 Growth media .............................................................................................. 19 iv 2.1.2.1 Lysogeny broth and agar .................................................................................. 19 2.1.2.2 Green agar ........................................................................................................ 19 2.1.3 Antibiotics .................................................................................................... 20 2.2 Bacterial strains and culture conditions .................................................. 20 2.2.1 Bacterial strains ........................................................................................... 20 2.2.2 Bacterial culture conditions ......................................................................... 21 2.3 Plasmids, bacteriophage, and oligonucleotides ..................................... 21 2.3.1 Plasmids ...................................................................................................... 21 2.3.2 Bacteriophage ............................................................................................. 21 2.3.3 Oligonucleotides .......................................................................................... 21 2.4 Genetic techniques .................................................................................... 21 2.4.1 Transduction with bacteriophage p22 HT 105 ............................................ 21 2.4.2 Transformation of Salmonella with plasmid DNA ........................................ 22 2.5 Spectrophotometric Assays ...................................................................... 24 2.5.1 Bacterial growth curves ............................................................................... 24 2.5.2 Minimum inhibitory concentration assay ..................................................... 24 2.5.3 ATP/ADP assay .......................................................................................... 24 2.5.4 Nucleic acid concentration measurements ................................................. 25 2.6 Isolation of chromosomal DNA, plasmid DNA and RNA ........................ 25 2.6.1 Isolation of chromosomal DNA .................................................................... 25 2.6.2 Isolation of plasmid DNA ............................................................................. 25 2.6.3 Isolation of total RNA .................................................................................. 25 2.7 Manipulation of RNA in vitro ..................................................................... 26 2.7.1 Reverse transcription (RT) of RNA ............................................................. 26 2.8 Manipulation of DNA in vitro ..................................................................... 26 2.8.1 Determination of DNA quantity by quantitative PCR (qPCR) ...................... 26 v 2.9 Gel electrophoresis .................................................................................... 26 2.9.1 Agarose gel electrophoresis ........................................................................ 26 2.9.2 Chloroquine gel electrophoresis .................................................................. 27 2.9.2.1 Quantification of topoisomers ........................................................................... 27 2.10 Microscopy .................................................................................................. 27 2.10.1 Image capture ........................................................................................... 27 2.10.2 Quantification of filamentous phenotype ................................................... 28 2.11 Data manipulation ...................................................................................... 28 2.11.1 Statistical analysis and figure building ...................................................... 28 Chapter 3 Results ........................................................................................... 29 3.1 Growth of Salmonella with antibiotics ..................................................... 30 3.1.1 Minimum inhibitory concentrations .............................................................. 30 3.1.2 Increased resistance of mutants to at sublethal antibiotic concentrations .. 32 3.1.2.1 Growth in novobiocin ........................................................................................ 32 3.1.2.2 Growth in nalidixic acid ..................................................................................... 33 3.1.2.3 Growth in ciprofloxacin ...................................................................................... 34 3.2 DNA Supercoiling ....................................................................................... 38 3.3 [ATP]/[ADP] ratio ........................................................................................ 40 3.4 Permeability to small molecule antibiotics .............................................. 44 3.4.1 Growth in kanamycin and tetracycline ........................................................ 44 3.4.2 Decreased expression of outer membrane porins ...................................... 45 3.4.3 Increased expression of the AcrB efflux pump ............................................ 46 3.5 Filamentation and the SOS response ....................................................... 52 3.5.1 Filamentation in ciprofloxacin-treated cells ................................................. 52 3.5.2 Expression of SOS response genes ........................................................... 52 3.6 Expression of topoisomerases ................................................................. 56 vi 3.6.1 DNA gyrase expression .............................................................................. 56 3.6.2 Expression of DNA relaxing topoisomerases .............................................. 56 Chapter 4 Discussion ..................................................................................... 61 4.1 Discussion .................................................................................................. 62 4.2 Global regulatory mutations contribute to antibiotic resistance ........... 62 4.3 Growth in antibiotics .................................................................................. 64 4.3.1 Minimum inhibitory concentrations .............................................................. 64 4.3.2 Resistance to novobiocin ............................................................................ 66 4.3.3 Susceptibility to nalidixic acid ...................................................................... 67 4.3.4 Resistance to ciprofloxacin ......................................................................... 68 4.4 DNA supercoiling ....................................................................................... 69 4.4.1 DNA supercoiling in wild-type and mutant cells .......................................... 69 4.4.2 The [ATP]/[ADP] ratio does not explain relaxed DNA ................................. 70 4.5 Permeability of small molecule antibiotics .............................................. 71 4.5.1 Mutants and wild type had equal susceptibility to kanamycin and tetracycline ............................................................................................................. 71 4.5.2 Altered expression of porins and efflux pump ............................................. 72 4.6 Expression of topoisomerases ................................................................. 73 4.6.1 No change in gyrase or topoisomerase I gene expression ......................... 73 4.6.2 Topoisomerase IV may be responsible for relaxed DNA ............................ 74 4.7 Filamentation and the SOS response ....................................................... 75 4.8 Implications ................................................................................................. 76 List of References……………………………………………………………………78(cid:1) Appendix A…………………….….….……………………………………………….87 vii List of Tables Table 1. Table of oligonucleotide sequences………………….….…....….…..… 23 viii

Description:
of cases recover without antibiotic treatment, small children, the elderly, and persons pumps are involved in general stress responses, virulence and cell . The topology, or 3D shape, of a segment of DNA can also affect . cell to survive changing environmental conditions and prepares it for future
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.