ebook img

Global Existence for the Minimal Surface Equation on $\mathbb{R}^{1,1}$ PDF

0.1 MB·
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Global Existence for the Minimal Surface Equation on $\mathbb{R}^{1,1}$

GLOBAL EXISTENCE FOR THE MINIMALSURFACE EQUATIONON R1,1 WILLIEWAIYEUNGWONG 6 1 0 Abstract. Ina2004paper,Lindbladdemonstratedthattheminimalsurfaceequa- 2 tiononR1,1describinggraphicaltime-likeminimalsurfacesembeddedinR1,2en- joysmalldataglobalexistenceforcompactlysupportedinitialdata,usingChristodoulou’s n conformal method. Here we give a different, geometric proof of the same fact, a J whichexposesmoreclearlytheinherentnullstructureoftheequations,andwhich allowsustoalsoclosetheargumentusingrelativelyfewderivativesandmildde- 6 cayassumptionsatinfinity. ] P A 1. Introduction . h t The equation describing graphical timelike minimal surfaces in R1,d+1 can be a m writtenasthequasilinearwaveequation [  mµνφ,ν  1 (1) p1+mστφ,σφ,τ,µ=0. v In dimensions d ≥4 the small data global existence follows largely from the lin- 6 9 ear decay of solutions to the wave equation which has the rate ≈t−3/2, and is by 0 nowstandard[Sog08]. Indimensions d =2,3, thelinear decay ofthe waveequa- 1 tionhasgenericrates≈t−1/2,t−1 respectively,which,notbeingintegrableintime, 0 canleadtofinite-timesingularityformationforevensmalldataforgenericquasi- . 1 linear wave equations; see the survey article [HKSW14]. Equation (1) however 0 exhibits the null condition, which is a structural condition on the nonlinearities 6 identified first by Klainerman [Kla86] and Christodoulou [Chr86] in d = 3 and 1 : later generalized by Alinhac in d = 2 [Ali01a, Ali01b]. Using this fact Brendle v [Bre02]andLindblad[Lin04]establishedthesmalldataglobalexistencefor(1)in i X dimensionsd =3andd=2respectively. Brendle’sprooffollowedthecommuting r vectorfieldmethodofKlainerman[Kla86]. Lindblad,however,gavetwodifferent a proofsinhispaperusingrespectivelythecommutingvectorfieldmethodaswell asChristodoulou’scompactificationmethod. Inthispaperwefocusonthecased =1. Thelinearwaveequationexhibits no decayind=1,andhencetheclassicalnullconditioncannotbeusedtoassertthat theperturbationiseffectivelyshortrange,asinthecaseford≥2. Asasideeffect thismeansthatadirectproofofglobalexistencefor(1)ind=1modeledafterthe commutingvectorfieldmethodisnotpossible. Astrikingaspectof[Lin04]isthat via the conformal compactification method, Lindblad was also able to prove the 2000MathematicsSubjectClassification. MSC,lookuponAMS. TheauthorthankstheTsinghuaSanyaInternationalMathematicsForum,Sanya,Hainan,People’s RepublicofChina;aswellastheNationalCenterforTheoreticalSciences,MathematicsDivision,Na- tionalTaiwaneseUniversity, Taipei,Taiwan,fortheirhospitalityduringtheperiodinwhichthisre- searchwasperformed. $Format:v:%h %d;lastedit:%aNon%ai.$. 1 2 WWYWONG globalexistenceofsolutionsto(1)forsmallinitialdata. AsLindbladobserved,the maintrade-offisthatfortheconformalcompactificationmethod,thedatamustbe ofcompactsupport, whileinthe vectorfieldmethodthedata ismerely required tohave“sufficientlyfast”decayatinfinity.Thepurposeofthispaperistoproduce an alternative proofof the d =1 case allowing initial data that is notnecessarily compactly supported. In the course of the discussion we will also extract some moredetailedgeometricinformationconcerningthesolutionwhenthedata isof compactsupport. 2. GeneralGeometricformulation TheresultofBrendleandLindbladarebasedoncomparingthetime-likemin- imalsurfacetoaflathyperplanebynormalprojection,andthescalarfunctionφ in (1) describes the deviation, or height, of the minimal surface as a graph over the hyperplane. The minimal surface equation can however by written intrinsi- callybywayoftheGaussandCodazziequations. Toquicklyrecall: letM ⊆R1,d+1 be a time-like hypersurface, then the Gauss equation requires that the Riemann curvaturetensor1fortheinducedLorentzianmetricg obey2 (Gauss) Riem =k k −k k abcd ac bd ad bc where k is the second fundamental form of the embedding of M. The Codazzi equationontheotherhandrequires (Codazzi) ∇ k −∇ k =0 a bc b ac where∇istheLevi-Civita connectionassociatedtog. Itiswellknownthatequa- tions(Gauss)and(Codazzi)aretheonlyobstructionstotheexistenceofanisomet- ricembedding. Moreprecisely,wehavethefollowingtheorem. Theorem1(Fundamentaltheoremofsubmanifolds). LetM beasimply-connected manifold,withprescribedaLorentzianmetricg andasymmetricbilinearformk. Sup- pose that connection and curvature of g satisfy (Gauss) and (Codazzi). Then there exists an isometric immersion of M intoMinkowski space with one higher dimension, suchthatk isthecorrespondingsecondfundamentalform. Remark2. TheRiemannianversionofamoregeneraltheoremiswell-known. See forexampleTheorem19inChapter7of[Spi79]. TheLorentzianversionfollows mutatismutandisfromthe sameproof. Ontheother hand, sinceweareconsider- ingtheCauchyproblem,onecanalsosimply“integrate”thesecondfundamental form in time once to obtain the normal vector field to M, and integrate it once moretogetaparametrizationofthehypersurface. Theupshotofthisisthat,theinitialvalueproblemfor(1)canbereformulated asfindingthe metric g andthe secondfundamental formk fromthe initial data, requiringthattheyobey(Gauss)and(Codazzi), Equations(Gauss)and(Codazzi)donotyetdescribeanevolution: theyareun- derdetermined. Wegetawell-posedinitialvalueproblemifwecombine(Codazzi) withtheminimalsurfaceequationtr k=0,whichgives g (Minimality) ∇ak =0. ab 1WeusetheconventionRiemabcdXaYbZc=∇[X,Y]Zd−[∇X,∇Y]ZdwhichimpliesRicac=Riemabcb. 2Wewill,throughoutthispaper,freelyraiseandlowerindicesusingtheinducedmetric. 1+1GLOBALEXISTENCEOFTIMELIKEMINIMALSURFACE 3 Using that the Riemann curvature tensor is at the level of two derivatives of the metric,theinitialdataforthesystem(Gauss),(Codazzi),and(Minimality)consists ofthemetricg,theconnectioncoefficientsΓ,andthesecondfundamentalformk restrictedtoaninitialslice. Theinitialvalueproblemfor(1)requiresthedatafor φ and ∂ φ at time t =0; these determine fully the first jet of φ restricted to the t initialslice. Asthe(1)issecondorderhyperbolic,theformallyprovidesusthek- jetofφforanyk∈Nrestrictedtotheinitialslice,andasimplecomputationshows that the 2-jet of φ fully determines g, Γ, and k on the initial slice. And thus we canindeedapproachthevanishing-mean-curvature evolution throughtheinitial valueproblemwrittenintermsoftheGauss-Codazziequations. 3. Doublenullformulationwhend=1 For geometric partial differential equations, it is necessary to fix a gauge (i.e make a coordinate choice). For hyperbolic equations it is convenient to use a double-null formulation. Since M is a two-dimensional Lorentzian manifold, it isfoliatedbytwotransversefamiliesofnullcurves. Equivalently,thereexiststwo independentfunctionsu,v satisfying (2) g(∇u,∇u)=g(∇v,∇v)=0 andg(∇u,∇v)>0. Notethatreplacingubyf(u)foranyf :R→Rwithf′,0gives anequivalent reparametrization; wefixu,v byprescribingtheir initialvalues on theinitialslice,satisfyinginparticularthat (3) Initialslice={u−v=0}. Sinceu and v aresolutions to the eikonal equation (2), as is well known Ld=ef∇u andN d=ef∇v aregeodesicnullvectorfields,atatanypoint{L,N}formanullframe ofthetangentspaceT M. p Themetrictakestheform (4) g =(expψ)(du⊗dv+dv⊗du) whereψ issomerealvaluedfunction. Thisimpliesthat L(v)=g(∇u,∇v)=g(L,N)=N(u)=exp(−ψ) sothatthecoordinatederivativesare (5) ∂ =(expψ)L ∂ =(expψ)N v u andthattheinversemetricis (6) g−1=exp(−ψ)(∂ ⊗∂ +∂ ⊗∂ )=(expψ)(L⊗N+N⊗L). u v v u Wecanalsocompute ∇ N =(expψ)g(L,∇ N)N =−L(ψ)N, L L (7) ∇ L=(expψ)g(N,∇ L)L=−N(ψ)L. N N The assumption that k is trace-free and symmetric requires that there exist scalarfunctionsλ,ν suchthat (8) k=λL⊗L+νN⊗N. Then(Codazzi)implies (LaNb−NaLb)∇ k =0 a bc 4 WWYWONG and(Minimality)becomes (LaNb+NaLb)∇ k =0. a bc Taking linear combinations we get finally the null propagation equations for the secondfundamentalform L(λ)=0, (k-NP) N(ν)=0. Animmediateconsequenceof(k-NP)isthefollowingproposition. Proposition3. Thescalarλisindependentofv;thescalarν isindependentofu. Theevolutionofthemetricisnowascalarequationfortheconformalfactorψ. Theequation(Gauss)implies (9) Riem LaNbLcNd =exp(−4ψ)λν. abcd Combinedwiththedefinitionthat Riem LaNbLcNd =g(∇ L−[∇ ,∇ ]L,N) abcd [L,N] L N wearriveat L(N(ψ))+L(ψ)N(ψ)=exp(−3ψ)λν, whichwecanrewriteas (ψ-wave) ∂2 ψ=exp(−ψ)λν. uv Theequations(k-NP)and(ψ-wave)areevolution equationsontheMinkowski spaceR1,1withu,vthecanonicalnullcoordinatesr±t,withinitialdataprescribed att=0. Intheremainderofthispaperwediscusstheeasyconsequencesfromthe formulationabove. 4. Spatiallycompactinitialdata Suppose that the initial data for λ,ν is compactly supported, then for suffi- ciently large u,v the functions λ,ν vanish respectively. In view of Proposition 3and(9),weimmediatelyseethat Theorem 4. For compact initial data, the manifold M is intrinsically flat outside a compactdomain. Since (ψ-wave) is now a semilinear wave equation, with the nonlinearity only supportedinafixedspace-timecompactregion,immediately byCauchystabilitywe have Theorem5. Forallsufficientlysmallcompactlysupportedinitialdata,wehaveglobal existencefortheinitialvalueproblem. Remark6. Thecompactsupportassumptionisonlynecessaryforλ,ν,andnotfor ψ! Remark7. Onecaneasilycheckthattheargumentclosesbystandardenergyargu- mentsforinitialdatasatisfying • λ,ν∈L∞({t=0})withcompactsupportandsufficientlysmallnorm; • ψ∈H1/2+ǫ({t=0})and∂ ψ∈L2({t=0})withsufficientlysmallnorm. t 1+1GLOBALEXISTENCEOFTIMELIKEMINIMALSURFACE 5 TheH1/2+ǫ isforSobolevembeddingintoL∞. Theregularityoutlinedaboveisfa- vorablecomparedtotheclassicallocalwellposednesslevelatH5/2+ǫ forthequasi- linearwaveequation (1). Recallingthatthesecondfundamentalformisroughly twoderivatives ofthegraphicalfunctionφ andthemetricisatthelevelof|∂φ|2, weseethatthecorrespondingregularityforλ,ν∈H1/2+ǫ andψ∈H3/2+ǫ ishigher comparedtotheresultabove. 5. Non-compactinitialdata We can also handle the case where λ,ν are not compactly supported initially, butwithsufficiently strongdecay. Thisisthemaintheorem ofthis paper. Below weletr=u+vbethecoordinatefunctionontheinitialslice,andt=u−vthetime- functiononM;∂ and∂ refertothecoordinatederivativesinthe(r,t)coordinate r t system. Theorem 8. Consider the initial value problem for the system (k-NP) and (ψ-wave), with smooth initial data λ ,ν ,ψ =ψ| and ψ =∂ ψ| . Suppose there exists 0 0 0 {t=0} 1 t {t=0} ǫ>0suchthatwhenevertheinitialdatasatisfies kλ k +kν k ≤ǫ, 0 1 0 1 (cid:13)ψ (cid:13) +(cid:13)∂ ψ (cid:13) +(cid:13)ψ (cid:13) <ǫ, (cid:13)(cid:13) 0(cid:13)(cid:13)∞ (cid:13)(cid:13) r 0(cid:13)(cid:13)1 (cid:13)(cid:13) 1(cid:13)(cid:13)1 wehaveauniqueglobalsolution. Remark9. Asiswellknown,theregularitylevelW1,1 iscriticalforwaveequation inonespatialdimension. Proof. Using(k-NP) andthat λ andν propagatein differentdirections weimme- diatelyobtainthatkλνk ≈kλνk .ǫ2. Usingthefundamentalsolutionforthe L1t,r L1u,v waveequationinonedimensionweget (cid:13)ψ(t,·)(cid:13) .ǫ+(cid:13)λνexp(−ψ)(cid:13) . (cid:13)(cid:13) (cid:13)(cid:13)∞ (cid:13)(cid:13) (cid:13)(cid:13)L1([0,t]:L1) Thisweboundby ǫ+exp((cid:13)(cid:13)(cid:13)ψ(cid:13)(cid:13)(cid:13)L∞([0,t]:L∞))·kλνkL1([0,t]:L1).ǫ+ǫ2exp((cid:13)(cid:13)(cid:13)ψ(cid:13)(cid:13)(cid:13)L∞([0,t]:L∞)). Then aslongasǫ issufficiently smallwehaveby bootstrappingthat(cid:13)ψ(cid:13) <3ǫ. (cid:13)(cid:13) (cid:13)(cid:13)L∞t,r Thetheoremthenfollowsfromthisaprioriestimateandstandardarguments. (cid:3) References [Ali01a] S.Alinhac,Thenullconditionforquasilinearwaveequationsintwospacedimensions.I,Invent. Math.145(2001),no.3,597–618.MR1856402(2002i:35127) [Ali01b] ,Thenullconditionforquasilinearwaveequationsintwospacedimensions.II,Amer.J. Math.123(2001),no.6,1071–1101.MR1867312(2003e:35193) [Bre02] Simon Brendle, Hypersurfaces in Minkowski space withvanishing mean curvature, Comm. PureAppl.Math.55(2002),no.10,1249–1279.MR1912097(2003j:58043) [Chr86] DemetriosChristodoulou,Globalsolutionsofnonlinearhyperbolicequationsforsmallinitial data,Comm.PureAppl.Math.39(1986),no.2,267–282.MR820070(87c:35111) [HKSW14] GustavHolzegel,SergiuKlainerman,JaredR.Speck,andWillieWai-YeungWong,Shock formationinsmall-datasolutionsto3Dquasilinearwaveequations:Anoverview,Preprint-to appearinJHDE(2014),availableonarXiv:1407.6276. 6 WWYWONG [Kla86] S.Klainerman,Thenullconditionandglobalexistencetononlinearwaveequations,Nonlinear systemsofpartialdifferentialequationsinappliedmathematics,Part1(SantaFe,N.M., 1984),LecturesinAppl.Math.,vol.23,Amer.Math.Soc.,Providence,RI,1986,pp.293– 326.MR837683(87h:35217) [Lin04] HansLindblad,Aremarkonglobalexistenceforsmallinitialdataoftheminimalsurfaceequa- tioninMinkowskianspacetime,Proc.Amer.Math.Soc.132(2004),no.4,1095–1102(elec- tronic).MR2045426(2005a:35203) [Sog08] ChristopherD.Sogge,Lecturesonnon-linearwaveequations,seconded.,InternationalPress, Boston,MA,2008.MR2455195(2009i:35213) [Spi79] MichaelSpivak,Acomprehensive introductiontodifferentialgeometry.Vol.IV,second ed., PublishorPerish,Inc.,Wilmington,Del.,1979.MR532833(82g:53003d) MichiganStateUniversity,EastLansing,MI,48824 E-mailaddress:[email protected]

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.