GLOBAL EXISTENCE AND CONVERGENCE OF Q-CURVATURE FLOW ON MANIFOLDS OF EVEN DIMENSION QUO´ˆCANHNGOˆ ANDHONGZHANG Abstract. Usinganegativegradientflowapproach,wegeneralizeandunifysomeexis- 7 tencetheorems fortheproblem ofprescribing Q-curvature firstbyBaird, Fardoun, and 1 Regbaoui(Calc. Var.2775-104)for4-manifoldswithapossiblesign-changingcurvature 0 candidatethenbyBrendle(Ann. Math. 158323-343)forn-manifoldswithevennwith 2 positivecurvaturecandidate tothecaseofn-manifoldsofallevendimensionwithsign- changingcurvaturecandidates. MakinguseoftheŁojasiewicz–Simoninequality,wealso n addresstherateoftheconvergence. a J 9 ] P 1. Introduction A On a closed manifold (Mn,g) of dimension n > 3, a formally self-adjoint geometric . h differentialoperatorA beingcalculatedwiththemetricgiscalledconformallycovariant g t a ofbidegree(a,b)if m A (ϕ)=e bwA (eawϕ) (1.1) gw − g [ for all ϕ C∞(Mn) where gw := e2wg is a conformal metric conformally to g, usually ∈ 1 denotedbyg [g]. w ∈ v Ofimportanceinconformalgeometryisthesecond-orderconformalLaplaciandefined 7 4 onclosedmanifoldsofdimensionn>3. Tobeprecise,ifwedenote 2 n 2 2 L := ∆ + − R g g g − 4(n 1) 0 − . where R is the scalar curvatureof g, then L is conformallycovariantof bidegree((n 1 g g 0 2)/2,(n+2)/2)because − 7 L (ϕ)=e (n+2)w/2L (e(n 2)w/2ϕ) (1.2) 1 gw − g − v: forallϕ C (Mn). Uponusingthechangeofvariableu4/(n 2) =e2w,Eq. (1.2)leadsusto ∞ − ∈ i X L (ϕ)=u (n+2)/(n 2)L (uϕ) gw − − g r a forallϕ C∞(Mn).Bysettingϕ 1,thescalarcurvatureRgobeystheso-calledconformal ∈ ≡ change 4(n 1) − n −2 ∆gu+Rgu=Rguu(n+2)/(n−2) (1.3) − whereg =u4/(n 2)g. Intheliterature,Eq. (1.3)forunknownuisknownastheprescribed u − scalarcurvatureproblemwiththeprescribedfunctionR . Thischallengingproblemhas gu already been captured much attention by many mathematicians in the last few decades. NoticethataspecialcaseofEq.(1.3)whenR isconstantisthefamousYamabeproblem. gu Sincethesetwoproblemswereinthecoreofconformalgeometry,wedonotmentionany particularreferencesinceitcanbeeasilyfoundintheliterature. Date:10thJanuary,2017at01:24. Keywordsandphrases. Łojasiewicz–Simon inequality, Q-curvature, negative gradient flow, closed mani- folds,evendimension. 1 2 Q.A.NGOˆ ANDH.ZHANG Thefirsthigh-orderexampleofconformaloperatorsisthefourth-orderPaneitzoperator P4for(M4,g),discoveredby[Pan83]. Thisoperatorisgivenasfollows 2 P4 =( ∆ )2 div R g 2Ric d , (1.4) g − g ·− g 3 g − · (cid:16)(cid:0) (cid:1) (cid:17) where d is the differential and Ric denotes the Ricci tensor. (Note that the subscript 4 denotestheorderofthePaneitzoperatorbeingused,notthedimensionoftheunderlying manifold.)Clearly,thePaneitzoperatorP4isconformallycovariantofbidegree(0,4)since P4 (ϕ)=e 4wP4(ϕ) (1.5) gw − g forallϕ C (M4)whereg =e2wg. Uponlettingϕ 1,wededucethat ∞ w ∈ ≡ Q =e 4u(P4u+Q ), gw − g g wherethequantityQisgivenby 1 Q = (∆R R2+3 Ric 2). g −6 g− g | g| The quantity Q is called the Q-curvature associated with the Paneitz operator P4 on g (M4,g), which was discovered by Branson [Bra85]. One of interesting features of the Q-curvature,bytheGauss–Bonnet–Cherntheorem,isthatitobeysthefollowingidentity 1 Q dµ + W 2dµ =8π2χ(M), Z g g 4Z | g|g g M M whereχ(M) isthe Euler-characteristicof M4 andW is the Weyltensor. Since the Weyl g tensor W is conformally invariant, the total Q-curvature Q dµ is also conformally g M g g invariant;thatisthevalue R k := Q dµ 4 g g Z M is independent of the metric g but the conformal class [g] represented by g. (Note that the subscript 4 in k indicates the order of the Paneitz operator which then defines Q .) 4 g SimilartoAubin’sthresholdintheYamabeproblem,thereisathreshold16π2fork when 4 workingwithQ-curvaturesonM4. (Thenumber16π2,whichis3!vol(S4),isexactlyequal to S4QgS4dµgS4 beingcalculatedwithrespecttothestandardmetricgS4 onS4.) RFor general even dimension n > 4, Graham, Jenne, Mason and Sparling [GJMS92] discovered a similar operator Pn which is a conformally invariant self-adjoint operator g of order n with leading term ( ∆)n/2. This operator is commonly known as the GJMS operator. The work [GJMS92]−was based on an earlier work by Fefferman and Graham [FG85]. Moreprecisely,theGJMSoperatorisconformallycovariantofbidegree(0,n)in thesensethat Pn (ϕ)=e nwPn(ϕ) (1.6) gw − g forallϕ C (Mn)whereg =e2wg.Inaddition,thereiscurvaturequantityQnassociated ∈ ∞ w g with the operator Pn, analogue with the Q-curvature Q4, which also satisfies a similar g g conformalchange Q =e nu(Pnu+Q ). (1.7) gu − g g Inthispaper,weconsidertheproblemofprescribingQ-curvatureonaclosedmanifold of even dimension. Let us first describe the problem in details. Let (Mn,g ) be closed 0 manifoldsofevendimensionnwithbackgroundmetricg .Thisproblemcanbeformulated 0 as follows: Let f be a smooth function on M. The problem is to ask if there exists a pointwise conformal metric g [g ], that is g = e2ug for some u, such that f can be 0 0 ∈ realizedastheQ-curvatureofg.Thankstotheruleofconformalchange(1.7),thisproblem isequivalenttosolvingthehighordernonlinearequation P u+Q = fenu, (1.8) 0 0 Q-CURVATUREFLOWONMANIFOLDSOFEVENDIMENSION 3 where,forsimplicity,wesetP :=Pn andQ = Qn . 0 g0 0 g0 For f > 0 keeping sign, Brendle [Bre03] used a flow method to show that Eq.(1.8) hasasolutionprovidedthatP is(weakly)positivewithkernelconsistingoftheconstant 0 functionsand Q dµ =:k <(n 1)!ω , Z 0 g0 n − n M whereω isthevolumeofunitsphereinRn+1. HerebypositivityofP wemean n 0 u P u dµ >λ (P ) (u u)2dµ >0 (1.9) Z · 0 g0 1 0 Z − g0 M M forallsmoothfunctionuwhereλ (P )isthefirstnontrivialeigenvalueoftheoperatorP 1 0 0 andu = (vol(M,g )) 1 udµ . (Whenn = 4,thethreshold(n 1)!ω fork coincides 0 − M g0 − n n with 16π2, the thresholRdfork .) More precisely,givenanyinitialdata u , he considered 4 0 theevolutionofmetricsasfollow ∂g(t) = Q MQ0 dµg0 f g(t) fort>0, Then,Brendleshowedg∂th(t0a)tg=iev−2eun(cid:18)0ga0gn.(yt)−u0RtRhMeflfodwµg(01.1(cid:19)0)hasasolutionwhichexistsf(o1r.1a0l)l timeandconvergesatinfinitytoametricg with ∞ Q dµ Q = M 0 g0 f. g R ∞ M f dµg0 R Later on, Baird et al. [BFR06] consideredthe problemof prescribing Q-curvatureon 4- manifolds, where they allow f to change sign. They adoptan abstract negativegradient flowwhichisdifferentfromBrendle’storealizeit. Preciselyspeaking,theyconsideredthe functional J[u]= u P u dµ +2 Q u dµ , Z · 0 g0 Z o g0 M M ontheSobolevspaceH = H2(M,g )undertheconstraint 0 u X := u H : e4uf dµ = Q dµ . ∈ (cid:26) ∈ ZM g0 ZM 0 g0(cid:27) Then,theythoughtofXasahypersurfaceoftheSobolevspaceHandstudiedthenegative gradientflowforconformalfactorswithrespectivetothishypersurfacebelow ∂u= XJ(u) t −∇ (1.11) u(0)=u X. 0 ∈ Clearly,iftheflow(1.11)existsforalltimeandconvergesatinfinity,thenthelimitfunction u yieldsasolutionof(1.8)withn=4. ∞ Forgeneralmanifoldsof even dimension,there were two waysto improveBrendle’s. First,byusingavariationalapproach,Bairdetal.[BFR09]improvedBrendle’sbyrelaxing thepositivitypropertyofP andallowing f >0.However,theykeptusingtheassumption 0 that P has kernel consisting of constant functions. Note that positivity property of the 0 operator P0 on (Sn,gSn) is no longer needed as it automatically holds; see Appendix C. In another work of the same research group, Fardoun et al. [FR12] improvedBrendle’s byassumingthepositiveoperatorP hasnon-trivialkernelinthesensethatitskernelhas 0 dimensionatleast2. Inspiredby the work [BFR06] for sign-changingcandidatesin low dimensionand by [Bre03] for positive candidatesin high dimensions, the aim of this paper is to study the prescribing Q-curvatureproblemonall evendimensionalmanifoldswherethe candidate curvature f is allowed to change sign. The method here we used is again the negative 4 Q.A.NGOˆ ANDH.ZHANG gradient flow; see also [NX15]. However, instead of the abstract negativegradient flow method(1.11),weusingaflowwhichisananalogueof (1.10). Inthefollowing,wewill describeourflowmethodandstatethemainresultofthepaper. Asin[BFR06],weconsiderthefollowingenergyfunctionalforconformalfactors n E[u]= u P u dµ +n Q u dµ (1.12) 2Z · 0 g0 Z 0 g0 M M onasubsetoftheSobolevspaceHn/2(M,g )givenbythefollowingconstraint 0 u u Hn/2(M,g ): fenu dµ = Q dµ =:Y. (1.13) ∈ ∈ 0 Z g0 Z 0 g0 n M M o Because P has the leading term ( ∆)n/2, it is not hardto see thatthere exists a positive 0 − constantCdependingonlyonM,suchthatforanyu Hn/2(M,g )wehave 0 ∈ C 1 u ( ∆ )n/2udµ 6 u P u dµ 6C u ( ∆ )n/2udµ . (1.14) − Z · − 0 g0 Z · 0 g0 Z · − 0 g0 M M M NoticethatanusualnormforHp(M,g )isgivenasfollows 0 u 2 = ( ∆ )p/2u2dµ + u2dµ . (1.15) k kHp(M,g0) Z | − 0 | g0 Z g0 M M However,inviewof(1.14)andsincetheGJMSoperatorP ispositivewithkernelconsist- 0 ingofconstantfunctionswecandefineanequivalentnormonHn/2(M,g )asthefollowing 0 u 2 = u P u dµ + u2 dµ . (1.16) k kHn/2(M,g0) ZM · 0 g0 ZM g0 Now, we define our negativegradient flow for the functional(1.12) under the constraint (1.13)asfollows ∂ g(t)= 2(Q λ(t)f)g(t), (1.17) ∂t − g(t)− wheretheparameterλischosen,insteadofpreservingthevolumeofmetricg(t)in(1.10), tofixthequantity f dµ foralltime. Adirectcalculationfor d f dµ =0shows M g(t) dt M g(t) R R f(λ(t)f Q )dµ =0. (1.18) g(t) g(t) Z − M Hence,thenaturalchoiceofλis fQ dµ λ(t)= M g(t) g(t). (1.19) R f2 dµ M g(t) R Consequently,the constraint(1.13) is preservedalongthe flow. Up to thispoint, we can stateourmainresultasfollows. Theorem 1.1. Let (M,g ) be a compact, oriented n-dimensional Riemannian manifold 0 withneven. AssumethattheGJMSoperatorP ispositivewithkernelconsistingofcon- 0 stantfunctions.Moreover,assumethatthemetricg satisfies 0 Q dµ <(n 1)!ω . Z 0 g0 − n M Also,wechoosetheinitialmetricg(0)=e2u0g0withu0 Y andlet f beasmoothfunction ∈ onMsuchthat (i) sup f(x)>0 if Q dµ >0, x∈M ZM 0 g0 (ii) supx∈M f(x)>0andinfx∈M f(x)<0 ifZMQ0dµg0 =0, (1.20) (iii) supx∈M f(x)6C0and infx∈M f(x)<0 ifZMQ0dµg0 <0, Q-CURVATUREFLOWONMANIFOLDSOFEVENDIMENSION 5 where C is a positive constant depending only on f = max( f(x),0),u ,g and M. 0 − 0 0 − Then, the flow (1.17) has a solution which is defined for all time and converges in C - ∞ topologytoametricg with Q = λ f astimetendstoinfinity,whereλ isaconstant and, in addition, equa∞lto 1 if ∞ Q d∞µ , 0. Moreover, if we write g(t)∞= e2u(t)g and M 0 g0 0 g = e2u g , thentheconvergeRnceg(t) g isnotworsethanapolynomialrateinthe se∞nsetha∞tth0ereexisttwopositiveconsta→ntsB∞andβsuchthat u(t) u 6 B(1+t) β C (M) − k − ∞k ∞ for allt > 0. Finally, if Q dµ < 0 and f 6 0, then the convergenceg(t) g is M 0 g0 → ∞ exponentiallyfast. R WenowconsiderthecaseM =Sn,thestandardn-sphere.LetGbeagroupofisometries ofSn. Recallthatafunction f issaidtobeG-invriantifitsatisfies f(σx)= f(x) for all σ G and x Sn. Furthermore, we say that a conformal metric g to gSn is G- invarianti∈fuisaG-in∈variantfunctionwhengiswrittenasg = e2ugSn. LetΣbethesetof fixedpointsofG,thatis, Σ= x Sn :σx= xforallσ G . { ∈ ∈ } Ournextresultisasfollows. Theorem 1.2. Let f be a smooth and G-invariant function on Sn with sup f > 0. x Sn Choosetheinitialmetricg(0)=e2u0gSn withu0 Y beingG-invariant.Ifeither∈ ∈ (a) Σ= or ∅ (b) E[u ] sup f(x)6(n 1)!exp 0 , x∈Σ − n− (n−1)!ωno then the flow (1.17) has a solution which is defined for all time and converges in C - ∞ topology to a G-invariant conformal metric g with Q = f as time tends to infinity. Moreover,ifwewriteg(t)=e2u(t)gSn andg∞ =e∞2u∞gSn,th∞entheconvergenceg(t)→g∞is notworsethanapolynomialrateinthesensethatthereexisttwopositiveconstantsBand βsuchthat u(t) u 6 B(1+t) β C (M) − k − ∞k ∞ forallt>0. RecallthatonSn, theGJMSoperatorP ispositivewithkernelconsistingofconstant 0 functions.AsadirectconsequenceofTheorems1.1and1.2,wehave Corollary 1.3. Let (M,g ) be a compact, oriented n-dimensional Riemannian manifold 0 withneven. AssumethattheGJMSoperatorP ispositivewithkernelconsistingofcon- 0 stantfunctions. Let f beanon-constant,smoothfunctionon M. Then,thefollowinghold true. (i) If Q dµ < 0, then there exists a conformal metric to g with associated M 0 g0 0 Q-Rcurvature f given that f satisfies inf f(x) < 0 and there exists a positive x M constantCdependingonlyon f ,g and∈Msuchthatsup f(x)6C. Inpartic- − 0 x M ular,if f 60,thereexistsaconformalmetrictog suchth∈at f canberealizedits 0 Q-curvature. (ii) If Q dµ = 0, then there exists a conformal metric to g with associated M 0 g0 0 Q-Rcurvature αf for α 1,1 providedsup f(x) > 0, inf f(x) < 0, and f dµ ,0. ∈ {− } x∈M x∈M M g0 (iii) IRf 0 < Q dµ < (n 1)!ω , thenthere exists a conformalmetric to g with M 0 g0 − n 0 associaRtedQ-curvature f ifandonlyifsup f(x)>0. x M ∈ 6 Q.A.NGOˆ ANDH.ZHANG (iv) LetM =Snand f beaG-invariantfunctiononSnwithsup f >0. Ifeither x Sn (a) Σ= or ∈ (b) there∅existy Σandr >0suchthat 0 0 ∈ sxuΣp f(x)6max(cid:18)Z−Sn f ◦φy0,r0 dµSn,0(cid:19), (1.21) ∈ thenthereexistsaG-invariantconformalmetrictog withassociatedQ-curvature 0 f. Inparticular,if sup f(x)6max f dµSn,0 , x Σ Z−Sn ∈ (cid:0) (cid:1) thenthereexistsaG-invariantconformalmetrictog withassociatedQ-curvature 0 f. InviewofCorollary1.3(ii)above,weareunabletogetridofthemultipleαin(ii),due tothe factthatwe cannotconfirmthe signofλ . However,notethatifsup f(x) > 0 x M and f dµ <0,thenGeandXu[GX08]succ∞essfullyremovedthemultiple∈αbyusing M g0 avarRiationalapproach.Note,however,thattheauthorsin[BFR06,Corollary2.4]wasable toconfirmthesignofλ insomecases. Theresultin[BFR06]roughlysaysthatifthere exists some u C2(M)∞with small ∆u2dµ , then there exists a conformal metric g ∈ M| | g0 withitsQ-curvatureequalto sgn( R f dµ )f. Theproofmakesuseof(n/2)2=n;hence e − M eg0 it is not easy to generalize such aRresult for the general operator P because the precise 0 formulaforP isnotclear. 0 Beforeclosingthissection, we notethat, asin [BFR06] and[Bre03], the metricg in 0 Theorem1.1islimitedtotheso-called“subcritical”inthesense k < (n 1)!ω . When n n − k >(n 1)!ω ,theanalysisisdelicatesinceblow-upphenomenamayoccurs.Thiscanbe n n easilyse−enbyconsideringthefamilyofconformaldiffeomorphismofSn. Onthestandard model Sn, hence k = (n 1)!ω , a lot of attempts by different methods have already n n − beenperformed,forinterested readers, we referto [WX98, Bre03, Bre06, MS06, CX11, Ho12]andthereferencestherein.Anothersourceofusefulinformationfortheproblemof prescribingQ-curvaturecanalsobefound,forexample,in[DM08,LLL12,GM15]. 2. Theflowequationanditsenergyfunctional In this section, we first derive the flow equations for the conformal factor u and the curvatureQandthenshowthattheenergyfunctionalE isnon-increasing. Since the evolution equation (1.17) preserves the conformal structure, we may write g(t) = e2u(t)g forsomereal-valuedfunctionu. Then,weclearlyhavethefollowingequa- 0 tionfortheconformalfactoru ∂ u(t)=λ(t)f Q (F) ∂t − g(t) forallt>0. Thanksto(1.7),wealsodeducethat ∂ u= P u e nuQ +λ(t)f ∂t − g(t) − − 0 forallt>0. Byeasycalculations,wecanobtainevolutionequationsfor∂Q and∂λ(t) t g(t) t alongtheflow. Thisisthecontentofthefollowinglemma. Lemma2.1. Supposethatu(x,t)isasolutionoftheflow(F). Then,wehavethefollowing claims: ∂ Q = P (Q λ(t)f)+nQ (Q λ(t)f) ∂t g(t) − g(t) g(t)− g(t) g(t)− and λ(t)= f2 dµ −1 P f nλ(t)f2 λ(t)f Q dµ ′ g(t) g(t) g(t) g(t) Z Z − − (cid:16) M (cid:17) M(cid:0) (cid:1)(cid:0) (cid:1) Q-CURVATUREFLOWONMANIFOLDSOFEVENDIMENSION 7 where, as always, P = e nuP is the GJMS operatorwith respective to the conformal g(t) − 0 metricg(t). Proof. Sincethisisjustaroutinecalculation,weleavetheprooftothereader. (cid:3) Lemma2.2. Supposethatu(x,t)isasolutionoftheflow(F). Then,onehas dE[u] = n (Q λ(t)f)2dµ . g(t) g(t) dt − Z − M Inparticular,theenergyfunctionalE[u]isnon-increasingalongtheflow. Proof. Itfollowsfromtheflowequationforu,(1.7),and(1.18)that dE[u] n = u P u+u P u dµ +n Q u dµ dt 2Z t· 0 · 0 t g0 Z 0 t g0 M M = n (Q λ(t)f)Q dµ g(t) g(t) g(t) − Z − M = n (Q λ(t)f)2dµ +nλ(t) f(λ(t)f Q )dµ g(t) g(t) g(t) g(t) − Z − Z − M M = n (Q λ(t)f)2dµ . g(t) g(t) − Z − M Theproofiscomplete. (cid:3) Before going further, let us recall some important inequalities that will also be used in the present paper. First, we recall the Gagliardo–Nirenberg interpolation inequality, appliedtoanyLs-integrablefunctionϕ, p(1 α)/r pα/q jϕpdµ 6Cp mϕrdµ − ϕqdµ (2.1) ZM|∇ | g0 (cid:18)ZM|∇ | g0(cid:19) (cid:18)ZM| | g0(cid:19) forsomeC >0with0<α<16q,r6+ satisfying1/p= j/n+(1/r m/n)α+(1 α)/q. ∞ − − SincethehighorderGJMSoperatorP isself-adjointandpositivewithkernelconsist- 0 ingofconstantfunctions,wecanapplyAdam’sinequality[Ada88,Theorem2]toget n!ω (u u)2 exp n − dµ 6C (2.2) ZM (cid:16) 2 Mu·P0u dµg0(cid:17) g0 A R forsomeconstantC >0. Hereandthroughoutthepaper,bywwemeantheaverageofw A calculatedwithrespecttog ,thatisw=(vol(M,g )) 1 wdµ . (Intherestofourpaper, 0 0 − M g0 byvol(K)wemeanthevolumeofK MbeingcalculaRtedwithrespecttothebackground ⊂ metricg . IfwewanttoemphasizethemetricgbeingusedtocalculatethevolumeofK, 0 we shall write vol(K,g).) A detailed explanation for the validity of (2.2) can be found, for example, in [Bre03, page 330]. As a consequence of (2.2), we obtain the following Trudinger-typeinequality α2 exp α(u u) dµ 6C exp u P u dµ (2.3) ZM (cid:0) − (cid:1) g0 A (cid:16)2n!ωn ZM · 0 g0(cid:17) forallrealnumberα. 3. BoundednessofuinHn/2for06t6T Inthissection,wetrytoshowthatuisuniformlyboundedinHn/2(M,g ). Toseethis, 0 wewillsplitourargumentintofourcasesdependingonthesignandvalueofQ . 0 8 Q.A.NGOˆ ANDH.ZHANG 3.1. Thecase Q dµ = 0. Itfollowsfromourchoiceoftheinitialdatau in(1.13) M 0 g0 0 and(1.18)thatR f dµ =0forallt>0,whichimpliesthefollowinglemma. M g(t) R Lemma3.1. Alongtheflow(F),thevolumeofthemetricgispreserved. Hence,ifweset V0 = Menu0 dµg0 then Menu dµg0 =V0forallt. R R Proof. Clearly,wehave d enu dµ =n u dµ =n λ(t)f Q dµ dtZ g0 Z t g(t) Z − g(t) g(t) M M M (cid:0) (cid:1) =n λ(t) f dµ Q dµ =0. Z g(t)−Z 0 g0 (cid:16) M M (cid:17) Hence enu dµ isconstantalongtheflow;thisprovestheassertion. (cid:3) M g0 R Lemma3.2. ThereexistsauniformconstantC >0suchthat u 6C k kHn/2(M,g0) foralltimetinthemaximalintervalofexistence. Proof. FromLemma2.2,itfollowsthat n u P u dµ +n Q (u u) dµ 6E[u ]. (3.1) 2Z · 0 g0 Z 0 − g0 0 M M UsingthePoincare´-typeinequality(1.9),weget 1 (u u)2 dµ 6 u P u dµ , ZM − g0 λ1(P0)ZM · 0 g0 whichtogetherwithYoung’sinequalityimplythat n n n Q (u u) dµ 6 u P u dµ + Q2 dµ . (3.2) (cid:12)(cid:12) ZM 0 − g0(cid:12)(cid:12) 4ZM · 0 g0 λ1(P0)ZM 0 g0 (cid:12) (cid:12) Bysubstituti(cid:12)ng(3.2)into(3.1),w(cid:12)ehave (cid:12) (cid:12) 4 4 u P u dµ 6 E[u ]+ Q2 dµ , (3.3) ZM · 0 g0 n 0 λ1(P0)ZM 0 g0 Hence,inviewof (1.16),tobound u ,itsufficestobound udµ . ByJensen’s k kHn/2(M,g0) M g0 inequalityandLemma3.1,wehavethat R enu 6 enu dµ =V0/vol(M). Z− g0 M Therefore, 1 u6 log(V0/vol(M)). n Toboundufrombelow,weapplytheTrudinger-typeinequality(2.3)and(3.3)toget 2E[u ] 2n exp n(u u) dµ 6C exp 0 + Q2 dµ . ZM (cid:0) − (cid:1) g0 A (cid:16)(n−1)!ωn λ1(n−1)!ωn ZM 0 g0(cid:17) Since enu dµ =V0,weconcludethat M g0 R C 2E[u ] 2n exp nu 6 A exp 0 + Q2 dµ . (cid:0)− (cid:1) V0 (cid:16)(n−1)!ωn λ1(n−1)!ωn ZM 0 g0(cid:17) Hence,weget 1 C 2 2E[u ] u> log A + Q2 dµ + 0 . −(cid:16)n (cid:16)V0(cid:17) λ1(n−1)!ωn ZM 0 g0 n!ωn (cid:17) Bycombiningalltheestimatesabove,wethuscompletetheproof. (cid:3) Q-CURVATUREFLOWONMANIFOLDSOFEVENDIMENSION 9 3.2. Thecase Q dµ > 0. Inthiscase,itfirstfollowsfromourchoiceofinitialdata M 0 g0 u and(1.18)thRat fenu dµ = Q dµ forallt>0,whichimpliesthat 0 M g0 M 0 g0 R R Q dµ = fenu dµ 6(sup f) enu dµ . ZM 0 g0 ZM g0 M ZM g0 Hence, 1 enu dµ > Q dµ . (3.4) Z g0 sup f Z 0 g0 M M M Itfollowsfrom(2.3)and(3.4)that n/2 u P u dµ >log exp n(u u) dµ logC (n−1)!ωn ZM · 0 g0 ZM (cid:0) − (cid:1) g0 − A 1 >log Q dµ nu. (cid:18)CAsupM f ZM 0 g0(cid:19)− Thus,wehave n/2 1 1 u> u P u dµ + log Q dµ . (3.5) −n!ωn ZM · 0 g0 n (cid:18)CAsupM f ZM 0 g0(cid:19) Using(3.5)andLemma2.2,weget E[u ]>E[u] 0 n = u P u dµ +n Q (u u) dµ +nu Q dµ 2Z · 0 g0 Z 0 − g0 Z 0 g0 M M M >n 1 MQ0 dµg0 u P u dµ +n Q (u u) dµ (3.6) 2(cid:18) − R(n−1)!ωn (cid:19)ZM · 0 g0 ZM 0 − g0 1 + Q dµ log Q dµ . ZM 0 g0 (cid:18)CAsupM f ZM 0 g0(cid:19) ByYoung’sinequalityand(1.9),wehave n Q (u u) dµ 6 n 1 MQ0 dµg0 u P u dµ (cid:12)(cid:12)(cid:12) ZM 0 − g0(cid:12)(cid:12)(cid:12) 4(cid:18) − R(n−1)!ωn (cid:19)ZM · 0 g0 (3.7) (cid:12) (cid:12) n Q2 dµ (cid:12) (cid:12) + M 0 g0 R λ (P ) 1 ( Q dµ /(n 1)!ω 1 0 − M 0 g0 − n (cid:0) R (cid:1) (cid:1) Since Q dµ < (n 1)!ω , by substituting (3.7) into (3.6), we conclude that there M 0 g0 − n existsaRnuniformconstantC >0suchthat 2 u P u dµ 6C . (3.8) Z · 0 g0 2 M Substituting(3.8)into(3.5)givesthatthereexistsanuniformconstantC suchthat 3 u>C . (3.9) 3 To get an upper bound for u, we notice that (3.2) still holds in this case. Hence by substituting (3.2) into the first inequality in (3.6), the positivity of P and the inequality 0 Q dµ >0,weget M 0 g0 R (n/λ (P )) Q2 dµ +E[u ] u6 1 0 M 0 g0 0 . (3.10) R n Q dµ M 0 g0 R By plugging (3.8), (3.9) and (3.10) into (1.9), we conclude that there exists a uniform constantC >0suchthat 4 u2 dµ 6C . (3.11) Z g0 4 M Theassertionisthenprovedbycombining(3.8)and(3.11). 10 Q.A.NGOˆ ANDH.ZHANG 3.3. Thecase Q dµ <0. Toachieveourgoal,wefirstneedananalogueof[BFR06, M 0 g0 Lemma4.1]whRoseproofisprovidedinAppendixBforcompleteness. Lemma 3.3. Let K be a measurablesubsetof M with vol(K) > 0. Then there exist two constantsα>1dependingonMandg andC >1dependingonM,g ,andvol(K)such 0 K 0 that α enu dµ 6C exp α u 2 max enu dµ ,1 . ZM g0 K (cid:0) k 0kHn/2(M,g0)(cid:1) (cid:26)(cid:16)ZK g0(cid:17) (cid:27) NotethatLemma3.3holdsregardlessofthesignof Q dµ < 0. Withthehelpof M 0 g0 thislemma,weareabletoshowtheuniformboundofthRevolumeofthetimemetricg(t). Lemma3.4. Supposetheflow(F)existson[0,T)forsomeT >0. Also,assumethatthere existsaconstantC dependingon f ,u , g , and M suchthatsup f 6 C . Then,there 0 − 0 0 M 0 existsauniformconstantγ>0suchthat enu dµ 6γ Z g0 M forallt [0,T). ∈ Proof. Let f+ =max(f,0)anddefine 1 K = x M : f(x)6 inf f . ∈ 2 M n o Notice that K , due to the fact that inf f < 0. Hence, by the continuity of f, we M ∅ concludevol(K)>0. Sinceu Y,wehave 0 ∈ Z Q0 dµg0 =−Z fenu0 dµg0 =Z f−enu0 dµg0 −Z f+enu0 dµg0, M M M M whichimpliesthat 1 (−infM f)ZMQ0 dµg0 6ZMenu0 dµg0. From(2.3)andYoung’sinequality,itfollowsthat n n ZMenu0 dµg0 6CAexp(cid:18)2(n−1)!ωn ZMu0·P0u0 dµg0 + vol(M)ZMu0 dµg0(cid:19) n!ω n 6C exp n exp u P u +u2 dµ (3.12) A (cid:16)2vol(M)(cid:17) (cid:16)2(n−1)!ωn ZM(cid:2) 0· 0 0 0(cid:3) g0(cid:17) 6C exp C u 2 , 2 2k 0kHn/2(M,g0) (cid:16) (cid:17) whereC isaconstantdependingon M andg ,whichwemayassumetobegreaterthan 2 0 1. Therefore,wecanget 1 Q dµ 6C exp C u 2 . (3.13) −infM f ZM 0 g0 2 (cid:0) 2k 0kHn/2(M,g0)(cid:1) NowchoosetheconstantC inthelemmasuchthat 0 inf f C = − M exp (α(C +1) C ) u 2 , 0 8αCKC2α−1 · (cid:0)− 2 − 2 k 0kHn/2(M,g0)(cid:1) whereC >1andα>1areconstantsofLemma3.3. Moreover,set K γ=2C (8C )αexp (C +1)α u 2 . k 2 2 k 0kHn/2(M,g0) Then,weclaimthat (cid:0) (cid:1) enu dµ 6γ, (3.14) Z g0 M forallt [0,T).Toseethis,welet ∈ I = t [0,T): enu(s) dµ 6γforalls [0,t] . ∈ Z g0 ∈ n M o