ebook img

Global exact controllability in infinite time of Schrödinger equation: multidimensional case PDF

0.21 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Global exact controllability in infinite time of Schrödinger equation: multidimensional case

Global exact controllability in infinite time of Schr¨odinger equation: multidimensional case 2 1 0 2 Vahagn Nersesyan, Hayk Nersisyan n a J Abstract. We prove that the multidimensional Schr¨odinger equation is exactly 7 controllable in infinite time near any point which is a finite linear combination of 1 eigenfunctions of the Schr¨odinger operator. We prove that, generically with respect ] to the potential, the linearized system is controllable in infinite time. Applying the P inversemapping theorem, we provethe controllability of thenonlinear system. A . h t a Contents m [ 1 Introduction 1 1 2 Main results 4 v 2.1 Well-posedness of Schr¨odinger equation . . . . . . . . . . . . . . 4 5 4 2.2 Exact controllability in infinite time . . . . . . . . . . . . . . . . 8 4 3 3 Proof of Theorem 2.8 9 1. 3.1 Controllability of linearized system . . . . . . . . . . . . . . . . . 9 0 3.2 Proof of Proposition 3.4 . . . . . . . . . . . . . . . . . . . . . . . 12 2 3.3 Application of the inverse mapping theorem . . . . . . . . . . . . 13 1 v: References 15 i X 1 Introduction r a This paper is concerned with the problem of controllability for the following Schr¨odinger equation iz˙ = ∆z+V(x)z+u(t)Q(x)z, x D, (1.1) − ∈ z =0, (1.2) ∂D | z(0,x)=z (x), (1.3) 0 where D Rd,d 1 is a rectangle, V,Q C∞(D,R) are given functions, u is ⊂ ≥ ∈ thecontrol,andzisthestate. Weprovethat(1.1)-(1.3)isexactlycontrollablein infinitetimenearanypointwhichisafinitelinearcombinationofeigenfunctions 1 oftheSchr¨odingeroperator,extendingtheresultsof[24]tothemultidimensional case. Recallthatinthepapers[6,8,10]itisprovedthatthe1DSchr¨odingerequa- tion is exactly controllable in finite time in a neighborhood of any finite linear combinationofeigenfunctionsofLaplacian. In[13,26,19],approximatecontrol- lability in L2 is proved for multidimensional Schr¨odinger equation, generically with respect to functions V,Q and domain D. In [20, 11, 23, 22, 21], stabiliza- tionresultsandapproximatecontrollabilitypropertiesareproved. Inparticular, combinationof the results of[23]with the abovementionedlocalexactcontrol- lability properties gives globalexact controllability in finite time for 1D case in the spaces H3+ε,ε >0. See also papers [28, 29, 3, 2, 1, 9] for controllability of finite-dimensional systems and papers [16, 17, 5, 31, 14, 15] for controllability properties of various Schr¨odinger systems. Thelinearizationof(1.1)-(1.3)aroundthetrajectorye−iλk,Vtek,V withu=0 and z = e (e is an eigenfunction of the Schr¨odinger operator ∆+V 0 k,V k,V − corresponding to some eigenvalue λ ) is of the form k,V iz˙ = ∆z+V(x)z+u(t)Q(x)e−iλk,Vtek,V, x D, (1.4) − ∈ z =0, (1.5) ∂D | z(0,x)=0. (1.6) Writing this in the Duhamel form T z(T)=−iZ S(T −s)[u(s)Qe−iλk,Vsek,V]ds, (1.7) 0 where S(t)=eit(∆−V) is the free evolution, we see that (1.4)-(1.6) is equivalent to the following moment problem for d := ieiλm,VT z(T),e mk hQem,V,ek,Vih m,Vi T dmk =Z eiωmksu(s)ds, m≥1, ωmk =λm,V −λk,V. (1.8) 0 It is well known that a gap condition for the frequencies ω is necessary for mk the solvability of this moment problem when T < + (e.g., see [30]). The ∞ asymptotic formula for the eigenvalues λm,V Cdmd2 implies that there is no ∼ gap in the case d 3 (when d = 2, existence of a domain for which there is a ≥ gap between the eigenvalues is an open problem). Moreover,it follows from [4] that there is a linear dependence between the exponentials: there is a non-zero {cm}∈ℓ2 suchthat +m∞=1cmeiωmks =0fort∈[0,T]. Hence(1.4)-(1.6)isnon- controllable in finitePtime T < + . The situation is different when T = + . ∞ ∞ Indeed, by Lemma 3.10 in [22], the exponentials are independent on [0,+ ), ∞ andmoreover,(1.4)-(1.6)iscontrollable,byTheorem2.6in[24]. In[24],weused the controllabilityoflinearizedsystem(1.4)-(1.6) to provethe controllabilityof nonlinear system only in the case d=1. In the multidimensional case, we were able to prove the controllability of (1.4)-(1.6) in a more regular Sobolev space than the one where nonlinear system (1.1)-(1.3) is well posed. We do not know 2 ifthisdifficultyoflossofregularitycanbetreatedusingtheNash–Moserinverse function theorem in the spirit of [6]. More precisely, in the multidimensional case, it is very difficult to prove that the inverse of the linearization satisfies the estimates in the Nash–Moser theorem. In this paper, we find a space H (see (1.11) for the definition), where the nonlinear problem is well posed and the linearized problem is controllable. Applying the inverse inverse function theoreminthe space ,wegetcontrollabilityfor(1.1)-(1.3). Letusnoticethat H is a sufficiently large space of functions, it contains the Sobolev space H3d. H Thus, in particular, we prove controllability in H3d. The result of this paper is optimal in the sense that it seems that the multidimensional Schr¨odinger equation (1.1)-(1.3) is not exactly controllable in finite time. Acknowledgments. TheauthorswouldliketothankJ.-PPuelforprovid- ing them in privat communication [27] some results about regularity questions for the Schr¨odinger equation. Notation In this paper, we use the following notation. Let us define the Banach spaces +∞ ℓ2 := a C∞ : a 2 = a 2 <+ , {{ j}∈ k{ j}kℓ2 | j| ∞} X j=1 ℓ2 := a ℓ2 :a R , 0 {{ j}∈ 1 ∈ } ℓ∞ := aj C∞ : aj ℓ∞ =sup aj <+ , {{ }∈ k{ }k | | ∞} j≥1 ℓ∞ := a ℓ∞ : lim a =0 , 0 {{ j}∈ j→+∞ j } ℓ∞ := a ℓ∞ :a R . 01 {{ j}∈ 0 1 ∈ } We denote by Hs := Hs(D) the Sobolev space of order s 0. Consider the Schr¨odinger operator ∆+V, V C∞(D,R) with ( ∆≥+V) := H1 H2. − ∈ D − 0 ∩ Let λ and e be the sets of eigenvalues and normalized eigenfunctions j,V j,V { } { } of this operator. Let , and be the scalar product and the norm in the space L2. Define ht·he·ispacekH·(skV) := D((−∆ + V)s2) endowed with the norm s,V = (λj,V)2s ,ej,V ℓ2. When D is the rectangle (0,1)d and V(x ,..k.,·xk) = V (kx )+..h.·+V (ixk ), V C∞([0,1],R), the eigenvalues and 1 d 1 1 d d k ∈ eigenfunctions of ∆+V on D are of the form − λ =λ +...+λ , (1.9) j1,...,jd,V j1,V1 jd,Vd e (x ,...,x )=e (x ) ... e (x ), (x ,...,x ) D, (1.10) j1,...,jd,V 1 d j1,V1 1 · · jd,Vd d 1 d ∈ where λ and e are the eigenvalues and eigenfunctions of operator { j,Vk} { j,Vk} 3 d2 +V on (0,1). Define the spaces −dx2 k = z L2 :(j3 ... j3) z,e ℓ∞, H { ∈ 1 · · d h j1,...,jd,Vi∈ 0 kzkH :=k(j13·...·jd3)hz,ej1,...,jd,Vikℓ∞ <+∞}, (1.11) +∞ = z L2 : z := (j3 ... j3) z,e <+ . (1.12) V { ∈ k kV 1 · · d |h j1,...,jd,Vi| ∞} X j1,...,jd=1 The eigenvalues and eigenfunctions of Dirichlet Laplacian on the interval (0,1) are λ =k2π2 and e (x)=√2sin(kπx), x (0,1). It is well known that for k,0 k,0 any V L2([0,1],R) ∈ ∈ 1 λ =k2π2+ V(x)dx+r , (1.13) k,V Z k 0 C ek,V ek,0 L∞ , (1.14) k − k ≤ k de de k,V k,0 C, (1.15) (cid:13) dx − dx (cid:13)L∞ ≤ (cid:13) (cid:13) (cid:13) (cid:13) where +∞r2 < + (e.g., see [25]). For a Banach space X, we shall denote k=1 k ∞ by B P(a,r) the open ball of radius r > 0 centered at a X. The integer part X ofx R is denotedby [x]. We denote byC a constantw∈hosevaluemaychange ∈ from line to line. 2 Main results 2.1 Well-posedness of Schr¨odinger equation We assume that V(x ,...,x ) = V (x )+...+V (x ),x [0,1] and V 1 d 1 1 d d k k C∞([0,1],R),k =1,...,d. Let us consider the following Schr¨o∈dinger equation∈ iz˙ = ∆z+V(x)z+u(t)Q(x)z+v(t)Q(x)y, (2.1) − z =0, (2.2) ∂D | z(0,x)=z (x). (2.3) 0 The following lemma shows the well-posedness of this system in H2 . (V) Lemma2.1. Foranyz H2 ,u,v L1 ([0, ),R)andy L1([0, ),H2 ) 0 ∈ (V) ∈ loc ∞ ∈ ∞ (V) problem (2.1)-(2.3) has a unique solution z C([0, ),H2 ). Furthermore, if ∈ ∞ (V) v =0, then for all t 0 we have ≥ z(t) = z . (2.4) 0 k k k k See [12] for the proof. In [10] it is proved that this problem is well posed in H3 for d=1, and in [27] the well-posedness in H3 is proved for d 1. (V) (V) ≥ 4 For any integer l 3, let m=m(l):=[l−1] and define the space ≥ 2 dku Cm := u Cm([0, ),R): (0)=0,k [0,m] 0 { ∈ ∞ dtk ∈ } endowed with the norm of Cm([0, ),R). The following lemma shows that ∞ problem (2.1)-(2.3) is well posed in higher Sobolev spaces when u,v and y are more regular. Lemma2.2. Foranyintegerl 3,anyz Hl ,anyy Wm,1([0, ),H2 ) ≥ 0 ∈ (V) ∈ loc ∞ (V) andanyu,v Cm thesolutionzinLemma2.1belongstothespaceC([0, ),Hl) ∈ 0 ∞ ∩ C1([0, ),Hl−2). Moreover, there is a constant C >0 such that ∞ kz(t)kHl +kzkWm,1([0,t],H(2V)) ≤C(kz0kl,V +kvkC0mkykWm,1([0,t],H(2V))) eC(kukC0m+1)t. (2.5) × See Appendix of [6] for the proof. Lemma 2.3. Denote by (, ):H2 L1 (R ,R) H2 the resolving oper- Ut · · (V)× loc + → (V) ator of (1.1), (1.2). Then (, ) is locally Lipschitz continuous: there is C >0 t U · · such that kUt(z0,u)−Ut(z0′,u′)kHl ≤C(kz0−z0′kl,V +ku−u′kC0mkz0′kl,V)eC(kukC0m+1)t. (2.6) Proof. Notice that z(t):= (z ,u) (z′,u′) is a solution of problem Ut 0 −Ut 0 iz˙ = ∆z+V(x)z+u(t)Q(x)z+(u(t) u′(t))Q(x) (z′,u′), − − Ut 0 z =0, ∂D | z(0,x)=z (x) z′(x). 0 − 0 Applying Lemma 2.2, we get kz(t)kHl ≤C(kz0−z0′kl,V +ku−u′kC0mkU·(z0′,u′)kWm,1([0,t],H(2V)))eC(kukC0m+1)t, (2.7) kU·(z0′,u′)kWm,1([0,t],H(2V)) ≤Ckz0′kl,VeC(kukC0m+1)t. (2.8) Replacing (2.8) into (2.7), we get (2.6). Let us rewrite (1.1)-(1.3) in the Duhamel form t z(t)=S(t)z i S(t s)[u(s)Qz(s)]ds, (2.9) 0− Z − 0 whereS(t)=eit(∆−V) is the freeevolution. Letus takeanyw L1(R ,R)and + ∈ estimate the following integral t G (z):= S( s)[w(s)Qz(s)]ds. t Z − 0 5 We take controls from the weighted space space := u L1(R ,R):u()eB· L1(R ,R) + + G { ∈ · ∈ } endowed with the norm u = u()eB· , where the constant B >0 will be G L1 k k k · k chosen later. For B > C +1, where C is the constant in Lemma 2.2, we have the following result. Proposition 2.4. Let us take any l 4d, z Hl ,w and u Cm, ≥ 0 ∈ (V) ∈ G ∈ 0 and let z(t) := (z ,u). Then there are constants δ,C > 0 such that for any t 0 U u BCm(0,δ) and for any t>s 0 ∈ 0 ≥ t G (z) G (z) C z(τ) w(τ)dτ, (2.10) k t − s kH ≤ Z k kHl| | s and the following integral converges in H +∞ G (z):= S( τ)[w(τ)Qz(τ)]dτ. (2.11) ∞ Z − 0 Proof. Using(2.5)withv =0,thedefinitionof ,andchoosingδ >0sufficiently G small, we see that +∞ z(τ) w(τ)dτ <+ . Z k kHl| | ∞ 0 Combining this with (2.10), we prove the convergence of the integral in (2.11). Let us prove (2.10). To simplify the notation, let us suppose that d = 2; the proofofthegeneralcaseissimilar. LetV(x ,x )=V (x )+V (x ). Integration 1 2 1 1 2 2 by parts gives 1 ∂2 Qz(s),e e = ( +V )(Qz),e e h j1,V1 j2,V2i λ h −∂x2 1 j1,V1 j2,V2i j1,V1 1 1 ∂2 ∂2 = ( +V )(Qz),( +V )e e λ2 h −∂x2 1 −∂x2 1 j1,V1 j2,V2i j1,V1 1 1 = 1 1 ∂2 (Qz)e dx ∂ e x1=1 λ2j1,V1 Z0 ∂x21 j2,V2 2∂x1 j1,V1(cid:12)(cid:12)x1=0 1 ∂2 + V ( +V )(Qz),e e λ2 (cid:16)h 1 −∂x2 1 j1,V1 j2,V2i j1,V1 1 ∂ ∂2 ∂ + ( +V )(Qz), e e h∂x1 −∂x21 1 ∂x1 j1,V1 j2,V2i(cid:17) =:I +J . j j Let us estimate I . Since ∂2 (Qz(s))= 0 for all x [0,1] and for x = 0 and j ∂x21 1 ∈ 2 6 x =1, integration by parts in x implies 2 2 I = 1 1( ∂2 +V ) ∂2 (Qz) e dx ∂ e x1=1 j λ2j1,V1λj2,V2 Z0 −∂x22 2 (cid:16)∂x21 (cid:17) j2,V2 2∂x1 j1,V1(cid:12)(cid:12)x1=0 = 1 1( ∂2 +V ) ∂2 (Qz) ( ∂2 +V )e dx ∂ e x1=1 λ2j1,V1λ2j2,V2 Z0 −∂x22 2 (cid:16)∂x21 (cid:17) −∂x22 2 j2,V2 2∂x1 j1,V1(cid:12)(cid:12)x1=0 = 1 ( ∂2 +V ) ∂2 (Qz) ∂ e ∂ e x2=1 x1=1 λ2j1,V1λ2j2,V2 −∂x22 2 (cid:16)∂x21 (cid:17)∂x2 j2,V2∂x1 j1,V1(cid:12)(cid:12)x2=0(cid:12)(cid:12)x1=0 + 1 1V ( ∂2 +V ) ∂2 (Qz) e dx ∂ e x1=1 λ2j1,V1λ2j2,V2 Z0 2 −∂x22 2 (cid:16)∂x21 (cid:17) j2,V2 2∂x1 j1,V1(cid:12)(cid:12)x1=0 + 1 1 ∂ ( ∂2 +V ) ∂2 (Qz) ∂ e dx ∂ e x1=1 λ2j1,V1λ2j2,V2 Z0 ∂x2 −∂x22 2 (cid:16)∂x21 (cid:17)∂x2 j2,V2 2∂x1 j1,V1(cid:12)(cid:12)x1=0 =:I +I +I . (2.12) j,1 j,2 j,3 Let us consider the term I : j,1 2j j π2 ∂2 ∂2 1 2 I = ( +V ) (Qz) cos(j πx )cos(j πx ) j,1 (cid:16)λ2 λ2 −∂x2 2 (cid:16)∂x2 (cid:17) 1 1 2 2 j1,V1 j2,V2 2 1 + 1 ( ∂2 +V ) ∂2(Qz) ∂2 (e e e e ) x2=1 x1=1. λ2j1,V1λ2j2,V2 −∂x22 2 (cid:16)∂x21 (cid:17)∂x1∂x2 j1,V1 j2,V2− j1,0 j2,0(cid:17)(cid:12)(cid:12)x2=0(cid:12)(cid:12)x1=0 Using (1.13), (1.15) and the Sobolev embedding Hs ֒ L∞,s> d, we get → 2 t t j1s,ju2p≥1(cid:12)(cid:12)j13j23Zs ei(λj1,V1+λj2,V2)τw(τ)Ij,1dτ(cid:12)(cid:12)≤CZs kz(τ)kHl|w(τ)|dτ. (cid:12) (cid:12) The Riemann–Lebesgue theorem and (1.15) imply that t j13j23Z ei(λj1,V1+λj2,V2)τw(τ)Ij,1dτ→0 as j1+j2→+∞. s Thus t j13j23Z ei(λj1,V1+λj2,V2)τw(τ)Ij,1dτ ∈ℓ∞0 . s The terms I ,I and J are treated exactly in the same way. We omit the j,2 j,3 j details. Thus we get that t t G (z) G (z) = S( τ)[w(τ)Qz(τ)]dτ C z(τ) w(τ)dτ. k t − s kH kZ − kH ≤ Z k kHl| | s s Let Tn + be a sequence such that e−iλV,jTn 1 as n for any j 1 → ∞ → →∞ ≥ (e.g., see Lemma 2.1 in [24]). Then S(T )z z as n + in for any z and t 0. (2.13) n → → ∞ H ∈H ≥ 7 Indeed, since +∞ S(t)z = e−iλj,Vt z,e e , (2.14) j,V j,V h i X j=1 we have kS(Tn)z−zkH ≤ sup (j13·...·jd3)|e−iλj1,...,jd,VTn −1||hz,ej1,...,jd,Vi| λj1,...,jd,V≤N ε ε +2 sup (j3 ... j3) z,e + =ε 1 · · d |h j1,...,jd,Vi|≤ 2 2 λj1,...,jd,V>N for sufficiently large integers N,n 1. ≥ Let us take t = T in (2.9) and pass to the limit n . Using Proposi- n →∞ tion 2.4, the embedding Hl ֒ and (2.13), we obtain the following result. (V) →H Lemma 2.5. Let us take any l 4d and z Hl . There is a constant δ >0 ≥ 0 ∈ (V) such that for any u BCm(0,δ) the following limit exists in ∈ 0 ∩G H lim (z ,u)=: (z ,u). (2.15) n→+∞UTn 0 U∞ 0 2.2 Exact controllability in infinite time Let l 4d be the integer in Proposition 2.4. Take any integer s l and let ≥ ≥ Hs(R ,R):= u Hs(R ,R):u(k)(0)=0,k=0,...,s 1 . 0 + { ∈ + − } The set of admissible controls is the Banach space := Hs(R ,R) (2.16) F G∩ 0 + endowed with the norm u := u + u . Equality (2.4) implies that F G Hs k k k k k k it suffices to consider the controllability properties of (1.1), (1.2) on the unit sphere S in L2. We prove the controllability of (1.1), (1.2) under below condition. Condition 2.6. Suppose that the functions V,Q C∞(D,R) are such that ∈ (i) inf (p j ... p j )3Q >0,Q := Qe ,e , p1,j1,...,pd,jd≥1| 1 1· · d d pj| pj h p1,...,pd,V j1,...,jd,Vi (ii) λ λ =λ λ for all i,j,p,q 1 such that i,j = p,q and i,V j,V p,V q,V − 6 − ≥ { }6 { } i=j. 6 See[24]and[26,23,18]fortheproofofgenericityof(i)and(ii),respectively. Let us set :=span e . (2.17) j,V E { } Below theorem is the main result of this paper. 8 Theorem 2.7. Under Condition 2.6, for any z˜ S there is σ >0 such that ∈ ∩E problem (1.1), (1.2) is exactly controllable in infinite time in S B (z˜,σ), i.e., H ∩ for any z S B (z˜,σ) there is a control u such that limit (2.15) exists 1 H ∈ ∩ ∈F in and z = (z˜,u). 1 ∞ H U SeeSection3.3fortheproof. SincethespaceH3d iscontinuouslyembedded (V) into , we obtain H Theorem 2.8. Under Condition 2.6, for any z˜ S there is σ > 0 such ∈ ∩E that for any z S B (z˜,σ) there is a control u such that limit (2.15) 1 ∈ ∩ H(3Vd) ∈F exists in and z = (z˜,u). 1 ∞ H U Remark 2.9. Asinthecased=1(seeTheorems3.7and3.8in[24])herealsoone can prove controllability in higher Sobolev spaces with more regular controls, and a global controllability property using a compactness argument. 3 Proof of Theorem 2.8 3.1 Controllability of linearized system In this section, we study the controllability of the linearization of (1.1), (1.2) around the trajectory (z˜,0),z˜ S : t U ∈ ∩E iz˙ = ∆z+V(x)z+u(t)Q(x) (z˜,0), (3.1) t − U z =0, (3.2) ∂D | z(0,x)=z . (3.3) 0 The controllability in infinite time of this system is proved in [24], Section 2. Forthe proofofTheorem2.8we needtoshowcontrollabilityof(3.1)-(3.3)in H which is larger than the space considered in [24]. Hence a generalization of the arguments of [24] is needed. Let S be the unit sphere in L2. For y S, let T be the tangent space to S y ∈ at y S: ∈ T = z L2 :Re z,y =0 . y { ∈ h i } By Lemma 2.1, for any z H2 and u L1 (R ,R), problem (3.1)-(3.3) has 0 ∈ (V) ∈ loc + a unique solution z C(R ,H2 ). Let ∈ + (V) R (, ):H2 L1([0,t],R) H2 , t · · (V)× → (V) (z ,u) z(t) 0 → be the resolving operator. Then R (z ,u) T for any z T H2 and t 0 ∈ Ut(z˜,0) 0 ∈ z˜∩ (V) t 0. Indeed, ≥ d Re R , =Re R˙ , +Re R , ˙ t t t t t t dt h U i h U i h U i =Re i(∆ V)R iu(t)Q(x) , +Re R ,i(∆ V) t t t t t h − − U U i h − U i =Re i(∆ V)R , +Re R ,i(∆ V) =0. t t t t h − U i h − U i 9 Since Re R , =Re z ,z˜ =0, we get R (z ,u) T . h 0 U0i h 0 i t 0 ∈ Ut(z˜,0) As (3.1)-(3.3) is a linear control problem, the controllability of system with z = 0 is equivalent to that with any z T . Henceforth, we take z = 0 in 0 0 z˜ 0 ∈ (3.3). Let us rewrite this problem in the Duhamel form t z(t)= i S(t s)u(s)Q(x) (z˜,0)ds. (3.4) − Z − Us 0 LetT be the sequence definedin Section2.1. Forany u the following n →∞ ∈F limit exists in H R (0,u):= lim z(T )= lim R (0,u). (3.5) ∞ n→+∞ n n→+∞ Tn Using (2.14) and (3.4), we obtain +∞ t hz(t),em,Vi=−i e−iλm,Vthz˜,ek,ViQmkZ eiωmksu(s)ds, m≥1, (3.6) Xk=1 0 where ω = λ λ and Q := Qe ,e . Let us take t = T in mk m,V k,V mk m,V k,V n − h i (3.6) and pass to the limit as n + . The choice of the sequence T implies n → ∞ that +∞ +∞ hR∞(0,u),em,Vi=−i hz˜,ek,ViQmkZ eiωmksu(s)ds. (3.7) Xk=1 0 Moreover,R (0,u) T . Indeed, using (3.5) andthe convergence (z˜,0) z˜ ∞ ∈ z˜ UTn → in , we get H Re R (0,u),z˜ = lim Re R (0,u), (z˜,0) =0. h ∞ i n→∞ h Tn UTn i Lemma 3.1. The mapping R (0, ) is linear continuous from to T . ∞ z˜ · F ∩H Proof. By(2.24)in[24], thereis aconstantC >0suchthatforanym ,k 1, j j ≥ j =1,...,d we have (m ... m )3 1 d · · Qe ,e C. (3.8) (cid:12) (k1 ... kd)3 h k1,...,kd,V m1,...,md,Vi(cid:12)≤ (cid:12) · · (cid:12) (cid:12) (cid:12) Then (3.7), (3.8) and the Schwarz inequality imply that R (0,u) = sup (m3 ... m3) R (0,u),e k ∞ kH | 1· · d h ∞ m1,...,md,Vi| m1,...,md≥1 +∞ C sup (m3 ... m3) z˜,e Qe ,e u(s)ds ≤ m1,...,md≥1(cid:12)(cid:12) 1· · d h m1,...,md,Vih m,V m,ViZ0 (cid:12)(cid:12) (cid:12) (m ... m )3 +∞ (cid:12) +Ckz˜kVm,k≥su1p,m6=k(cid:12)(cid:12) (k11··...··kdd)3 hQek1,...,kd,V,em1,...,md,ViZ0 eiωmksu(s)ds(cid:12)(cid:12) C z˜ 2 u 2 <+(cid:12) , (cid:12) ≤ k kVk kF ∞ where is defined by (1.12). V 10

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.