ebook img

Glimpsing through the high redshift neutral hydrogen fog PDF

0.33 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Glimpsing through the high redshift neutral hydrogen fog

Mon.Not.R.Astron.Soc.000,000–000(0000) Printed1February2008 (MNLATEXstylefilev2.2) Glimpsing through the high redshift neutral hydrogen fog 1⋆ 1 2 3 S. Gallerani , A. Ferrara †, X. Fan ‡, T. Roy Choudhury § 1SISSA/InternationalSchoolforAdvancedStudies,viaBeirut2-4,34014Trieste,Italy 8 2StewardObservatory,TheUniversityofArizona,Tucson,AZ85721,USA 0 3InstituteofAstronomy,MadingleyRoad,CambridgeCB3OHA,UK 0 2 n 1February2008 a J 0 ABSTRACT 3 We analyze the transmitted flux in a sample of 17 QSOs spectra at 5.74 ≤ z ≤ 6.42 to em obtaintighter constraintson the volume-averagedneutralhydrogenfraction,xHI, at z ≈ 6. ] We study separately the narrow transmission windows (peaks) and the wide dark portions h p (gaps)in the observedabsorptionspectra. By comparingthe statistics of these spectralfea- - tureswithasemi-analyticalmodeloftheLyαforest,weconcludethatxHI evolvessmoothly o from10−4.4atz =5.3to10−4.2atz =5.6,witharobustupperlimitxHI <0.36atz =6.3. r t Thefrequencyandphysicalsizesofthepeaksimplyanoriginincosmicunderdenseregions s and/or in HII regions around faint quasars or galaxies. In one case (the interveningHII re- a [ gion of the faint quasar RD J1148+5253at z = 5.70 along the LOS of SDSS J1148+5251 atz = 6.42)the increaseofthepeakspectraldensityis explainedbythefirst-everdetected 2 transverseproximityeffectintheHILyαforest;thisindicatesthatatleastsomepeaksresult v fromalocallyenhancedradiationfield.Wethenobtainastronglowerlimitontheforeground 3 QSOlifetimeoft > 11Myr.Theobservedwidthsofthepeaksarefoundtobesystemati- 5 Q callylargerthanthesimulatedones.Reasonsforsuchdiscrepancymightresideeitherinthe 0 photoionizationequilibriumassumptionorinradiativetransfereffects. 1 . 6 Keywords: cosmology:large-scalestructureofUniverse-intergalacticmedium-quasars: 0 absorptionlines 7 0 : v i X 1 INTRODUCTION ofLAEsareroutinelyfoundatz > 6(e.g.Sternetal.2005; Iye etal.2006;Starketal.2007),possiblyrequiringasubstantialfree r Althoughobservationsofcosmicepochsclosertothepresenthave a electronfraction,resultinginanIGMrelativelytransparenttoLyα indisputablyshownthattheInterGalacticMedium(IGM)isinan photons. ionized state,itisyet unclear whenthephase transitionfromthe ConstraintsontheIGMionizationstatederivedbyusingLyα neutralstatetotheionizedonestarted.Thus,theredshiftofreion- forestspectroscopymusttakeintoaccounttheextremelyhighsen- ization,z ,isstillveryuncertain. rei sitivityofτ totinyneutralhydrogenamounts.Indeed,avolume AfterthefirstyearWMAPdataapossibletensionwasidenti- GP fiedbetweenCMBandSDSSresults.Thehighelectron-scattering averaged neutral hydrogen fraction as low as xHI ∼ 10−3 (Fan etal.2002)issufficienttocompletelydepressthetransmittedflux optical depth inferred from the TE-EE power spectra τ ≈ 0.17 e inQSOabsorptionspectra;thus,thedetectionofaGunn-Peterson (Kogutetal.2003;Spergeletal.2003)seemeddifficulttoberecon- ciledwiththestrongevolutionintheGunn-Petersonopticaldepth trough only translates into alower limitfor xHI. For this reason, recently,manystudieshavetriedtoclarifyiftheSDSSdataeffec- τ at z = 6 (Fan et al. 2001; Fan et al. 2003), accompanied GP tivelyrequirethattheIGMwasreionizedaslateasz ≈6(Gallerani bytheappearanceoflargedarkportionsinQSOabsorptionspec- et al. 2006, hereafter GCF06; Becker et al. 2006): in particular, tra (Becker et al. 2001; Djorgovski et al. 2001; Fan et al. 2006, GCF06 have shown that QSO observational data currently avail- hereafter F06). The 3-yr WMAP results have released the above ablearecompatiblewithahighlyionizedUniverseatthatredshift. tension by providing a smaller value for τ ≈ 0.1, which im- e pliesz ≈ 11foramodelwithinstantaneousreionization(Page Clearlythedeterminationofthereionizationepochisstrictly rei et al. 2006; Spergel et al. 2006). However, an increasing number related to the measurement of the neutral hydrogen fraction at z ≈ 6. To investigate this issue many different approaches can be used. To start with, it is worth mentioning that many authors ⋆ E-mail:[email protected] have tried to constrain xHI at high redshift by analyzing statisti- † E-mail:[email protected] callytheopticaldepthinsideHIIregionsaroundhighredshiftQSO ‡ E-mail:[email protected] (Mesinger&Haiman2004;Mesinger&Haiman2006),orbymea- § E-mail:[email protected] suringtheQSObubblesizes(Wyithe&Loeb2004; Wyitheetal. 2 S. Gallerani,A.Ferrara,X.Fan,T. RoyChoudhury Figure1.Leftpanel:Evolutionofthevolumefillingfactorofionizedregionsfortheearly(redsolidlines)andlate(bluedottedlines)reionizationmodels. Middlepanel:Volume-averaged photoionization rateΓ−12 = ΓHI/10−12s−1.Thefilledcircles,emptycircles,filledtrianglesandemptytrianglesshow resultsobtainedbyF06,MM01,B05andB07,respectively.Rightpanel:Evolutionoftheneutralhydrogenfraction.Thicklinesrepresentaverageresultsover 100LOS,whilethethinlinesdenotetheupperandlowerneutralhydrogenfractionextremesineachredshiftinterval.Solidcirclesrepresentneutralhydrogen fractionestimatesbyF06;emptysquaresdenotetheresultsobtainedinthiswork. 2005; Bolton & Haehnelt 2007b; Maselli et al. 2007, Lidz et al. comparison are given in Section 4; in Section 5 we evaluate the 2007).However,sufficientgroundforcontroversyremainsdueto robustness of our method against the specific line of sight to the intrinsicuncertaintiesofthevarioustechniques. highestredshiftQSO.TheconclusionsaresummarizedinSection By deriving sizesof HII bubbles surrounding observed z = 6. 6.5LAEs,Malhotra&Rhoads2005haveprovidedanupperlimit fortheneutralhydrogen fractionxHI . 0.2−0.5. Thisresultis inquitegoodagreementwiththeupperlimitxHI.0.45foundby 2 SIMULATIONS Kashikawaetal.2006, byinterpretingthedeficitmeasuredatthe brightendoftheLAELuminosityFunctionatz > 6asasudden The radiation emitted by QSOs could be absorbed through Lyα changeintheintergalacticneutralhydrogencontent.Nevertheless, transitionbytheneutralhydrogenintersectingthelineofsight,the theincreasingattenuationwithredshiftoftheLyαlinetransmission so-called Gunn-Peterson (GP) effect. The Lyα forest arises from could bepartiallyexplained asaconsequence of theevolution in absorption by low amplitude-fluctuations in the underlying bary- themassfunctionofdarkmatterhalos,thusimplyingamuchlower onicdensityfield(Bi,Bo¨rner&Chu1992),andisanaturalconse- upperlimit,xHI<0.05−0.2(Dijkstraetal.2007). quenceofthehierarchicalstructureformationexpectedinthecon- GRBspectroscopyhasalsotentativelyusedtoconstrainxHI; textofCDMcosmologies1. Totani et al. 2006 have observed a damping wing at wavelengths TosimulatetheGPopticaldepth(τ )distributionweusethe GP largerthantheLyαemissionline,findingthatthisfeaturecanbe methoddescribedbyGCF06,whosemainfeaturesarerecalledin explainedatbestbyassuminganinterveningdampedLyαsystem thefollowing.Thespatialdistributionofthebaryonicdensityfield immersed in a fully ionized IGM, and quoting an upper limit of anditscorrelationwiththepeculiarvelocityfieldaretakenintoac- xHI < 0.17 and 0.60 (68% and 95% confidence levels, respec- countadoptingtheformalismintroducedbyBi&Davidsen1997. tively). Toenterthemildlynon-linearregimewhichcharacterizestheLyα Finally,thewidthdistributionofdarkportions(gaps)seenin forestabsorbersweuseaLog-NormalmodelintroducedbyColes QSO absorption spectra has been recently introduced in order to &Jones 1991, widelyadopted later on (Bi 1993; Bi & Davidsen constraintheIGMionizationstate(Paschos&Norman2005;F06; 1997; Choudhury, Padmanabhan, & Srianand 2001; Choudhury, GCF06).F06hasusedthedarkgapdistribution,asobservedin19 Srianand,&Padmanabhan2001;Vieletal.2002;GCF06).Inpar- high-z QSOspectra,toputapreliminaryupper limitontheIGM ticular,GCF06have compared various Lyαstatistics,namely the neutral fraction xHI < 0.1−0.5. GCF06, by analyzing the sta- Probability Distribution Function (PDF) and the Gap Width dis- tisticallypropertiesofthetransmittedfluxinsimulatedabsorption tribution,computedusingtheLog-Normaldistributionwiththose spectra,haveshownthatthegapandpeak(i.e.transmissionwin- dows) widthstatisticsareverypromising toolsfor discriminating betweenanearly(z >6)andalate(z ≈6)reionizationsce- 1 Throughoutthispaperwewillassumeaflatuniversewithtotalmatter, rei rei nario.Herewecombinetheprevioustworesults:bycomparingthe vacuum, andbaryonic densities inunits ofthecritical densityofΩm = observed transmitted flux in high-z QSO spectra with theoretical 0.24,ΩΛ=0.76,andΩbh2=0.022,respectively,andaHubbleconstant predictions we obtain tighter constraints on the neutral hydrogen ofH0 = 100hkms−1Mpc−1,withh = 0.73.Theparametersdefining the linear dark matter power spectrum are n = 0.95, dn/dlnk = 0, fractionaroundz=6,acrucialepochinthereionizationhistory. σ8 =0.82.Notethatwehavechosenaσ8valuehigherthantheWMAP3 The plan of the paper is the following: in Section 2 we de- one(0.74).IndeedVieletal.2006,bycombiningWMAP3datawithSDSS scribethesemi-analyticalmodelingadopted;inSection3wecom- ones,foundσ8 ≈ 0.78(0.86)analyzinghigh(low)resolutionLyαforest pareobservational datawithsimulations.Theimplicationsofthis data.Mpcarephysicalunlessdifferentlystated. Glimpsingthroughthehighredshiftneutralhydrogenfog 3 Figure2.Leftpanel:EvolutionoftheGunn-Petersonopticaldepthforearly(ERM,solidredline)andlate(LRM,bluedotted).Thicklinesrepresentaverage resultson100LOSforeachemissionredshift,whilethethinlinesdenotetheupperandlowertransmissionextremesineachredshiftbin,weightedon100 LOS.FilledandemptycirclesareobservationaldatafromSongaila2004andF06,respectively.Middlepanel:ProbabilityDistributionFunction(PDF)ofthe fluxatz=6.0.FilledcirclesareobtainedbyFanetal.2002.Thicklinesrepresentsimulatedresultsaveragedover500LOS,whilethethinlinesdenotecosmic variance.Rightpanel:GapWidthdistributionintheredshiftrange5.0-5.5.SimulatedresultsarecomparedwithobservationsbySongaila&Cowie2002(filled circles).Theerrorsassociatedtobothsimulatedandobservedresultsdenotecosmicvariance. obtainedfromHYDROPMsimulations,findingagoodagreement forthetwomodelswiththerecentestimatebyF06,andtheones betweentheresults.ForagivenIGMtemperature,theHIfraction, by McDonald & Miralda-Escude’ 2001, Bolton et al. 2005, and xHI, can be computed from the photoionization equilibrium as a Bolton&Haehnelt2007a,hereafterMM01,B05andB07,respec- functionofthebaryonicdensityfieldandphotoionizationratedue tively.Finally,theevolutionofthevolume-averagedneutralhydro- totheultravioletbackgroundradiationfield.Forallthesequantities genfractionfor theERMand LRMispresented intherightmost we follow the approach of Choudhury & Ferrara 2006, hereafter panel. CF06. By assuming as ionizing sources QSOs, PopII and PopIII Thephotoionizationratepredictedbybothmodelsisinagree- stars (the latter neglected here, see below), their model provides mentwiththeresultsbyB05andB07atintherangez = 4.0 < excellent fitstoalargenumber of observational data,namely the z <6,whereasatz =5.5(6)theERMischaracterizedbyapho- redshift evolution of Lyman-limit systems, Lyα and Lyβ optical toionizationratewhichis≈2(6)timeslargerthantheestimatesby depths,electronscatteringopticaldepth,cosmicstarformationhis- F06.Inspiteofthesedifferences,ourpredictionsforxHIarecon- tory,andthenumbercountsofhighredshiftsources.IntheCF06 sistent with F06 measurements. This apparent contradiction does model, a reionization scenario is defined by the product of two not come as a surprise. In fact, the derivation of ΓHI requires an free parameters: (i) the star-formation efficiency f∗, and (ii) the assumption concerning the IGMdensity distribution. When mea- escapefractionfesc ofionizingphotonsofPopIIandPopIIIstars; suring ΓHI at 5 < z < 6, F06 assume the density Probability itisworth noting that theseparameters aredegenerate, since dif- DistributionFunctiongivenbyMiralda-Escude’etal.2000,here- ferentparametervaluescouldprovideequallygoodfitstoobserva- after MHR3. We instead adopt a Log-Normal (LN) model which tions.Inthiswork,byfittingalltheaboveobservationalconstraints, predictsahigher probabilitytofindoverdensities ∆ = ρ/ρ¯ & 1 weselecttwosetsoffreeparametersvaluesyieldingtwodifferent thanMHR.Forexample,atz = 6andfor∆ ≈ 1.5,P (∆) ≈ LN reionizationhistories:(i)anEarlyReionizationModel(ERM)for 2×P (∆)).Forthisreason,onceτ isfixedtotheobserved MHR GP (f∗,PopII = 0.1;fesc,PopII = 0.07),and(ii)aLateReionization value,theLNmodelrequiresahigherΓHI.AsxHI∝∆,thesetwo Model (LRM)for (f∗,PopII = 0.08;fesc,PopII = 0.04). Wedo effectscombinetogiveavaluesofxHIconsistentwiththedata. not consider contributions from PopIII stars, as PopII stars alone yield τ = 0.07 (0.06) for ERM (LRM), marginally consistent e withWMAP3results2. 3 COMPARISONWITHOBSERVATIONS Fig.1showstheglobalpropertiesofthetworeionizationmodels considered.IntheERMthevolumefillingfactorofionizedregions, 3.1 Controlstatistics Q =V /V =1atz≤7;intheLRMitevolvesfrom0.65 HII HII tot Wefirsttestthepredictionsofourmodelbyapplyingvarioussta- tounityintheredshiftrange7.0-6.0,implyingthattheUniverseis tisticalanalysistothesimulatedspectraandcomparingourresults stillinthepre-overlapstageatz ≥ 6,i.e.thereionizationprocess withobservations.Specifically,weusethefollowingcontrolstatis- isnotcompleteduptothisepoch.Inthemiddlepanelofthesame tics:(i)MeanTransmittedFluxevolutionintheredshiftrange2−6; Figurewecomparethevolume-averagedphotoionizationrateΓHI 3 F06require ΓHI tomatch the MM01measurement at z = 4.5. This 2 Small contributions from PopIII stars, i.e. f∗,PopIII = 0.013 estimateisbasedonameantransmittedflux(F¯ = 0.25)whichislower (f∗,PopIII = 0.08), in the ERM (LRM), would yield τe = 0.09 thanthemorerecent measurements F¯ ≈ 0.32bySongaila2004,which (τe=0.08),withoutaffectingsensitivelytheresultsbelow. impliesΓHI≈0.3. 4 S. Gallerani,A.Ferrara,X.Fan,T. RoyChoudhury Figure3.LargestGapWidthdistributionfortheLRandtheHRcases(leftandright,respectively).Filledcirclesrepresenttheresultoftheanalysisofthe17 QSOsobservedspectra.Solidred(dottedblue)linesshowtheresultsobtainedbythesemi-analyticalmodelingimplementedfortheERM(LRM).Vertical errorbarsmeasurepoissoniannoise,horizontalerrorsdefinethebinforthegapwidths. (ii)ProbabilityDistributionFunction(PDF)ofthetransmittedflux We divide the observed spectra into two redshift-selected sub- atthemeanredshiftsz = 5.5,5.7,6.0;(iii)GapWidth(GW)dis- samples: the “Low-Redshift” (LR) sample (8 emission redshifts tribution in 3.5 ≤ z ≤ 5.5. For what concerns the GW statis- 5.7 < z < 6),andthe“High-Redshift”(HR)one(9emission em ticswedefinegapsascontiguous regionsof thespectrum having redshifts6 < z < 6.4). Simulatedspectrahavethesamez em em aτ > 2.5overrest-framewavelength(λ )intervals> 1A˚. distributionoftheobservedsamples.FormostQSOsweconsider GP RF ThismethodwasfirstsuggestedbyCroft(1998)andthenadopted the(λ ) interval 1026-1200 A˚ andwenormalize eachwidthto RF by various authors (Songaila &Cowie 2002; Paschos & Norman thecorresponding redshiftpath.NotethattheLOSdonotextend 2005; F06; GCF06).The comparison of model and observational uptoz ;theupper(lower)limitoftheintervalchosenensuresthat em resultsintermsoftheabovethreestatisticsisplottedinFig.2.By weexcludefromtheanalysistheportionsofthespectrapenetrat- checking our models wefollow thesame approach of GCF06,to inginsidetheQSOHII(Lyβ)region.FortheQSOsSDSSJ1044- whichwereferforacompletedescriptionofthetechnicaldetails. 0125andSDSSJ1048+4637wechoosedifferentintervals,namely The outcome of the test is encouraging, as both ERM and 1050-1183 and 1050-1140, respectively. These two objects have LRMsuccessfully match the observational data at z ≤ 6 for the beenclassifiedasBALQSO(Goodrichetal.2001;Fanetal.2003; controlstatisticsconsidered.Thisallowsustoconfidentlyproceed Maiolino et al. 2004), since their spectra present Broad Absorp- thecomparisonwithmoreadvancedstatisticaltools. tionLinesassociatedwithhighlyionizedatomicspecies(e.g.SiIV, CIV).Byselectingtheaboveintervalsweexcludethoseportionsof thespectracharacterizedbyCIVabsorptionfeatureswhichextend 3.2 Advancedstatistics toz ≈5.56(z≈5.75)inSDSSJ1044-0125(SDSSJ1048+4637). ObserveddataweretakenwithaspectralresolutionR ≈ 3000− Since at z ≈ 6 regions with high transmission in the Lyαforest 6000; simulated spectra have been convolved with a gaussian of becomerare,anappropriatemethodtoanalyzethestatisticalprop- FWHM = 67 km/sec, providing R ∼ 4500. Moreover each ertiesofthetransmittedfluxisthedistributionof gaps.Inpartic- observed/simulatedspectrumhasbeenrebinnedtoaresolutionof ularGCF06suggestedthattheLargestGapWidth(LGW)andthe R=2600.Finally,weaddnoisetothesimulateddatasuchthatthe LargestPeakWidth(LPW)statisticsaresuitabletoolstostudythe fluxF ineachpixelisreplacedbyF +G(1)×σ ,whereG(1)is ionizationstateoftheIGMathighredshift4.TheLGW(LPW)dis- n aGaussianrandomdeviatewithzeromeanandunitvariance,and tributionquantifiesthefractionofLOSwhicharecharacterizedby σ istheobservednoiser.m.sdeviationofthecorrespondingpixel. thelargestgap(peak)ofagivenwidth.Asfarasthisworkiscon- n The results provided by the statistics adopted in this study cerned, we apply the LGW and the LPWstatistics both to simu- aresensitive to theS/N ratio, since spurious peaks could arisein latedandobservedspectrawiththeaimofmeasuringtheevolution spectral regions with noise higher than the F adopted. Indeed, ofxHIwithredshift. th theshapeoftheLGW/LPWdistributionsdependsontheF cho- We use observational data including 17 QSOs obtained by F06. th sen.Thus,weconsidertwodifferentvaluesforF ,namely0.03 th and0.08,respectively,and,forbothofthem,computepreliminary 4 Thedefinition of“peak”inthetransmitted fluxissimilartothe“gap” LGW/LPWdistributions.Finally,theLGW/LPWdistributionspre- one. A peak is a contiguous region of the spectrum over λRF intervals sentedareobtainedasthemeanofthepreliminaryones,weighted greaterthantheobservedpixelsize(≈0.5A˚)characterizedbyatransmis- on the corresponding errors (See Appendix A for a detailed dis- sionaboveagivenfluxthreshold(Fth=0.08inthiswork). cussion). In our analysis we do not consider 2 QSOs presented Glimpsingthroughthehighredshiftneutralhydrogenfog 5 Figure4.LargestPeakWidthdistributionfortheLRandtheHRcases(leftandright,respectively).Filledcirclesrepresentobservationaldataobtainedby analyzingtheobservedspectraofthe17QSOsconsidered.Solidred(dottedblue)linesshowtheresultsobtainedbythesemi-analyticalmodelingimplemented fortheERM(LRM).Verticalerrorbarsmeasurepoissoniannoise,horizontalerrorsdefinethebinforthepeakwidths. byF06,namelySDSSJ1436+5007 andSDSSJ1630+4012, since ByapplyingthesamemethodtotheHRsampleweconstrainthe thesespectrahavesignificantlylowerS/NtoapplyLGW/LPWtests neutralhydrogenfractiontobewithinlog10xHI = −4.2+−01..804 at (continuumS/N.7). z≈5.6. AlthoughthepredictedLGWdistributionsarequitesimilarforthe two models considered, yet some differences can be pointed out. 3.2.1 LGWdistribution BothfortheLRandHRcasestheearlyreionizationLGWdistribu- tionprovidesaverygoodmatchtotheobservedpoints,thussug- WenowdiscusstheLGWdistributionforobserved/simulatedspec- gestingz & 7.TheagreementissatisfactoryalsofortheLRM, tra;theresultsareshown inFig.3. TheQSOsemissionredshifts rei butitisimportanttonoticethatlatereionizationmodelspredicttoo usedandtheλ intervalchosenfortheLRsamplearesuchthat RF manylargestgaps≈60A˚ intheLRcaseandtoofewgaps≈20A˚ the mean redshift of the absorbers is hzi = 5.26, with a mini- intheHRone.Giventhelimitedquasarsampleavailable,thestatis- mum (maximum) redshift z = 4.69 (z = 5.86), and a min max ticalrelevanceoftheLRMdiscrepanciesisnotsufficienttofirmly r.m.s. deviation σ = 0.06. For the HR sample it is hzi = 5.55, ruleout thisscenario. However, sinceintheHRcase40% of the z = 4.90,z = 6.32,σ = 0.14.TheobservedLGWdis- min max linesofsightextendatz&6,wecanusetheLRMresultstoputan tributionevolves rapidly withredshift: inthe LR sample most of theLOSarecharacterizedbyalargestgap< 40A˚,whereasgaps upperlimitonxHIatthisepoch.IndeedintheHRcasewefindthat aslargeas100A˚ appearintheHRsample.ThismeansthatLOS aneutralhydrogenfractionatz≈6higherthanthatonepredicted bytheLRMwouldimplyanevenworstagreementwithobserva- toQSOsemittingatz . 6encounter “opticallythick”regions em tions, since a more abundant HI would produce a lower (higher) whosesizeis≤20Mpc,whileforz & 6blankregionsofsize em fractionof LOScharacterized by the largest gapsmaller (higher) upto46Mpcarepresent. than40A˚ withrespect toobservations. Thus,thisstudysuggests Superposed to the data in Fig. 3 are the predicted LGW distri- butionscorresponding toERMandLRM,obtainedbysimulating xHI < 0.36 atz = 6.32 (obtained fromthemaximum valuefor 800/900 LOS in the LR/HR case, corresponding to 100 LOS for xHIfoundintheLRMatthisepoch). eachemissionredshiftineachsample.InourERMsimulatedspec- tra, at z ≈ 6 gaps are produced by regions characterized by a 3.2.2 LPWdistribution mean overdensity ∆¯ ≈ 1 (∆ = 0.05, ∆ = 18) with a min max xHI ≈ 10−4, averaging on 100 LOS (xHI,min = 1.1 × 10−5, Next,weapplytheLargestPeakWidth(LPW)statistics(Fig4)to xHI,max=3.6×10−4). bothobservedandsimulatedspectra.FromtheobservedLPWdis- ItresultsthatboththepredictedLGWdistributionsprovideagood tribution we find that, in the LR (HR) sample, about 50% of the fittoobservationaldata.Weexploittheagreementbetweenthesim- linesofsight exhibit peaksofwidth< 12(8) A˚.Inmoredetails, ulated and observed LGW distributions to derive an estimate of thesizeP of thelargesttransmissionregions intheobserved max xHI,showninFig.1.Wefindlog10xHI=−4.4+−00..8940atz≈5.35. sampleare3 . Pmax . 10(1 . Pmax . 6)Mpcathzi = 5.3 (5.6).Thefrequencyandtheamplitudeofthetransmissionregions 5 ThexHIvaluequotedisthemeanbetweentheestimatespredictedbythe ERMandtheLRM.Moreover,weconsiderthemostconservativecasein providedbytheminimumxHIvaluefoundintheERMandthemaximum whichtheerrorsforthemeasurementoftheneutralhydrogenfractionare oneintheLRM. 6 S. Gallerani,A.Ferrara,X.Fan,T. RoyChoudhury rapidly decrease toward high redshift. This could be due both to isshiningonlyforafractionoftheHubbletimet /t ≈10−2at Q H theenhancementoftheneutralhydrogenabundanceatepochsap- z=5.5. proachingreionizationortoevolutionaryeffectsofthedensityfield In addition to the peak frequency, additional constraints on the (Songaila2004). Infactthegrowth factor D+ of densityfluctua- propertiesoftheionizingsourcescomefrombubblephysicalsizes. tionsdecreaseswithredshift(D+(z=6)=3/5×D+(z=3)for ΛCDM),thusimplyingalowdensitycontrastatz = 6withre- 4.1 QSOHIIregions specttolaterepochs.Stateddifferently,underdenseregionsthatare transparentatz=3,werelessunderdenseatz =6,thusblocking First,weconsiderthecaseinwhichthelargestpeaksareproduced transmission. As a consequence of the density field evolution to- byHIIregionsaround QSOs.Thebubble sizeR isrelatedto HII wardhigherz,onlyfew/smallpeakssurviveandwideGPtroughs theionizingphotonsemissionrateN˙ andQSOlifetimet as γ Q appear. SuperposedtothedatainFig.4arethepredictedLPWdistri- R = 3N˙γtQ 1/3, (2) butionscorresponding toERMandLRM,obtainedbysimulating HII „4πnHI« 800/900 LOSintheLR/HRcase. Inour ERMsimulatedspectra, wherenHI istheneutralhydrogennumberdensity.Eq.(2)applies at z ≈ 6, gaps are interrupted by narrow transparent windows for a homogeneous IGM and does not take into account both re- (i.e. peaks) originating from underdense regions with ∆¯ ≈ 0.1, combinationsandrelativisticeffects. averaging on 100 LOS (∆ = 0.03, ∆ = 0.26) and min max Therecombinationtimescalet isgivenby: xHI≈2×10−5,(xHI,min=7.8×10−6,xHI,max=3.6×10−5). rec Regions characterized by ∆ ∈ [0.05;0.26] and xHI ∈ [1.1 × trec =[CαBnH(1−xHI)]−1, (3) 10−5;3.6×10−5]couldcorrespondtobothgapsorpeaksdepend- whereC ≃26.2917exp[−0.1822z+0.003505z2]istheclumping ing on redshift and peculiar motions of the absorbers producing factor(Ilievetal.2007),α =2.6×10−13cm3s−1isthecaseB B them. hydrogenrecombinationcoefficientevaluatedatT = 104 K,and By comparing the simulatedLPWdistributions withthe ob- nH = 7×10−5[(1+z)/7]3cm−3 isthemeanhydrogennumber servedone, itisevident that simulationspredict peak widthsthat density.Thus,attheredshiftsofinterestz ≈6,eveninthelimiting aremuchsmallerthantheobservedonesbothforLRandHRcases. case xHI = 0, trec ≈ 2×108yr, thus being larger than typical In particular, in no LOS of our simulated samples we find peaks QSOslifetimet ≈ 107.Thisshowsthateq.(2)providesaplau- largerthan8A˚.Thedisagreementbetweentheobservedandsimu- Q sible value for the HII region extent. For instance, Maselli et al. latedLPWdistributionsdoesnotaffecttheestimateofxHIthrough (2007) haveshownthateq.(2)matchesquitewellthemeanvalue theLGWdistributions,sinceathighredshiftthepeaksarenarrow oftheHIIregionsizedeterminedthroughradiativetransfercalcu- (. 10A˚).Wediscussthepossiblereasonsforthisdiscrepancyin lations. thefinalSection. InthisSection,weneglect relativisticeffectswhichcouldsquash theionizationfrontalongthesight-line(Whiteetal.2003;Wyithe etal.2005b;Yu2005;Shapiroetal.2006),possiblyreducingthe 4 PHYSICALINTERPRETATIONOFTHEPEAKS lengthofthelinesofsight interestedbytheproximityeffect. We willdiscussthisissueindetailinSec.5,whenaddressingthefirst Themostnaturalinterpretationforthepeaksisthattheycorrespond observedcaseoftransverseproximityeffect. tounderdenseregions,wherethelowHIdensityofthegasallows Atz=5.5,assumingxHI=5.6×10−5(seeFig.1),RHII = ahightransmissivity.However,inprincipletheycouldalsoariseif 1 (10) Mpc could be produced by a QSO emitting a number of individualionizedbubblesproducedbyQSOsand/orgalaxiesare ionizing photons N = N˙ t = 7 × 1065 (7 × 1068). Thus, γ γ Q crossedbytheLOS.Inthelattercasethetypicalphysicalsizeand assumingaQSOlifetime≈ 107yr,theobservedpeaksintheLR frequencyofsuchsemi-transparentregionsmustberelatedtothe (HR)samplerequireN˙ = 2.2×1051 (2.2×1054)s−1,which γ emissionpropertiesandmassesofsuchobjects.Stateddifferently, wouldcorrespond tosources≈ 6(3) ordersof magnitudefainter thefractionofLOS,fLOS,havingthelargestpeakwidthequalto than QSOs observed at z ≈ 6, typically having N˙γ ≈ 1057s−1 Pmax can be interpreted as the probability ℘ to intersect an HII (Haiman&Cen2002)andblackholemassesMBH ≈109M⊙. regionofradiusRHII around adarkmatterhalohostingeithera SofarwehaveassumedthatthegasinsidetheHIIregionis QSOoragalaxyalongtheredshiftpath(zi−zf)spannedbythe fullyionizedor,stateddifferently,thatalongtheredshiftpathen- LOS. The comoving number density nh of dark matter halos of compassedbytheionizedbubblethefluxiscompletelytransmitted. massMhisrelatedto℘throughthefollowingequation: However, this is unlikely since a sufficiently high opacity due to n (M )= 3H0Ωm1/2(πR2 )−1 (1+z)3/2|zf −1℘, (1) rheysdornoagnetn(dinasmidpein(gouwtsinidge))otphteicaHlIdIerpetghioansscoacniatperdodwuictehtdhaerkneguatprasl. h h 2 c HII h zii Thus,therelationbetweenP andR is max HII WetakeR = 1(10)Mpc,consistentwiththesmaller(larger) HII H(z¯)λ (1+z¯) size Pmax of the observed largest peaks in the HR (LR) sample. Pmax = c Lyα(1+z )ftRHII =A(z)ftRHII, (4) As it is likely that statistically the LOS crosses the bubble with em non-zeroimpactparameter,adoptingR = P seemsarea- where f is the mean transmitted flux computed inside the prox- HII max t sonableassumption.Byfurtherimposing℘ = f wefindthat imityregion.Wewillderivef inSec.5fromanobservedcaseof LOS t n = 3.7×10−6 (2.2×10−8)Mpc−3 forP = 1(10)Mpc transverseproximityeffect, notethatvalues off < 1wouldre- h max t in the redshift range z = 5 to z = 6. Given our cosmology, sultinalargerluminosityoftheQSOproducingthetransmissivity i f such halo number density can be transformed at z = 5.5 into a window. typicalhalomassofMh & 1012 (1013)M⊙ (Mo&White2002). Finally,powerfulQSOs,asthoseobservedatz≈6,couldproduce Thus,thehaloshostingtheputativeluminoussourcesproducingthe transmissionwindowsconsistentwithobservationaldataiftheyare peaksmustbemassive.NotethatthisresultholdseveniftheQSO embeddedinoverdenseregionswherethehighdensitysustainsan Glimpsingthroughthehighredshiftneutralhydrogenfog 7 initialneutral fraction,xHI & 0.1, beforetheQSOturnson.The ThetwoQSOshaveaprojectedseparationof109”,whichcor- expansion of the HII region in such environment would result in respondstoR⊥ =0.66Mpc.ThelineofsighttoQSO2intersects considerablysmallersizes(Masellietal.2007).Inthiscase,both thebubbleproducedbyQSO1foraredshiftpath(∆z )whose prox thehostdarkmatterhalomassfoundabove(Mh ≈1012M⊙),and lengthdepends ontheradiusof theHII region(RHII) itself.We the sizeof theHII region would combine togive the correct fre- findR =39Mpc,bypluggingineq.(2)thefollowingvalues: HII quencyandspectralwidthoftheobservedpeaks. tQ =1.34×107yr,xHI =8.4×10−5,N˙γ =8.6×1055sec−1, wherexHIisprovidedbythemeanvaluebetweenthosepredicted byourmodelsatz =5.7(seerightmostpanelofFig.1),whileN˙ γ 4.2 GalaxyHIIregions iscompatiblewiththeluminosityofaQSO3.5magnitudesfainter thanQSO2(Mahabaletal.2005).InthisSection,wealsotakeinto InadditiontoQSOs,transmissivitywindowscouldbeproducedby accountrelativisticeffectswhichcouldsquashtheionizationfront HII regions around high-z galaxies. Adopting the canonical rela- alongtheLOS(Whiteetal.2003; Wyitheetal.2005b; Yu2005; tions Shapiroetal.2006).TheapparentsizeoftheHIIregion,computed M∗ =f∗ΩΩb Mh; Nγ =n¯γMm∗; fescNγ = 43πnHIRH3II, (5) followingthemethodoutlinedinYu2005,isshowninFig.5.By m p zoomingtheregionclosetoQSO1(smallboxinFig.(5))itisclear where M∗ is the stellar mass, n¯γ is the number of ionizing pho- that the apparent size of the HII region extends up to 2 Mpc in tonsperbaryonintostars,andm istheprotonmass,therelation thedirectiontowardQSO2.GivenR ,takingintoaccount rel- p HII betweenMhandRHII isgivenby: ativisticeffects, theregion ∆zprox extends fromz = 5.16 upto 3 z = 5.68. We re-compute xHI along the LOS to QSO2, adding 1+z Mh =3×108M⊙„ 6.5 « y−1RH3II, (6) rtoatethΓeQuSnOifo1rpmroUviVdeBdpbhyoQtoSioOn1iz,aotibotnainraetdesΓtaHrItinthgefrpohmotothioenfiozlaltoiwon- HI wherey−1=(xHIf∗−1fe−s1c)/0.1andweareassumingn¯γ =4000, ingequations: appropriateforaPopIIstellarpopulationwithastandardSalpeter ∞ J ν −3 fIMF;=we0a.s0s1u.mTehtehemfiadssucoifalavnalhuaelsoxhHoIst=ing5.a6s×tar1-f0o−r5m,ifn∗g=reg0i.o1n, ΓQHISO1=4πZνHI hννσ0„νHI« dν; (7) esc abletoproduceRHII ≈1(10)Mpcis2×108(2×1011)M⊙.At J = N˙νhν ; (8) z ≈ 5.5objectsofthesemassescorrespondstofluctuationsofthe ν 16π2R2 densityfield&1−σ(2−σ)(Barkana&Loeb2001). ∞ ∞ ν −α AsforQSOs,thebubblesize−peakfrequencytensioncouldbeal- N˙ = N˙ dν = N˙ dν, (9) leviated if the galaxies livein overdense environments where the γ ZνHI ν ZνHI νHI„νHI« photoionization rate only supports a xHI ≈ 0.1 (resulting in a whereνHIisthehydrogenphotoionizationfrequencythreshold,σ0 largervalueofy−1,andhenceofMh ineq.(6))priortotheonset is the Thompson scattering cross section, R is the distance from ofstarformationinthegalaxy.Obviously,thepreviousarguments QSO1totheLOS,N˙ istherateoftheemittedionizingphotons νHI neglect that because of clustering (Yu & Lu 2005; Kramer et al. atthehydrogenphotoionizationfrequencythresholdandα = 1.5 2006),asmultiplesourcescouldpowerasingleHIIregion;inor- isthespectralindexoftheQSOcontinuum.Integratingeq.(9)we dertogetfirmerresultsradiativetransfercosmologicalsimulations obtain: arerequired. (α−1)N˙ N˙ = γ. (10) νHI νHI Thus,itresults: 5 PEAKSFROMTHEPROXIMITYEFFECT InSec.4,wehavediscussedthepossibilitythattheobservedpeaks ΓQSO1= α−1 N˙γσ0, (11) HI „α+2«4πR2 areproducedbyionizingsourceswhosebubblesintersectthelines ofsighttothetargetQSO.Inthiscaseonecouldaskifthesource InFig.6wecomparetheobservedtransmittedfluxinthespec- responsible for the HII region would be detected in the observed trum of QSO2 with the simulated fluxes along 3 different LOS field. If the origin of transmissivity regions resides in bubbles with(bottomrow)orwithout(top)includingthecontributionfrom around high-z galaxies, these sources are too faint to be seen in QSO1tothetotalionizingflux.Forbrevity,werefertothesecase theSDSS;however,deepHSTimaging(Stiavellietal.2005)could as“withbubble”or“withoutbubble”.VisualinspectionofFig.6 detectsuchobjects.Onthecontrary,iftheHIIregionofaquasarin- showsthatthecase“withbubble”isinbetteragreementwithob- tervenesalongtheLOStoanhigherredshiftquasar,thefirstcould servations. Such statement can be made more quantitative by in- beobservedintheSDSSfield. troducingaquantitydenotedPeakSpectralDensity(PSD),i.e.the Mahabal et al. 2005 have discovered a faint quasar (RD number ofpeaksperunitλ interval. TocomputethePSDfor RF J1148+5253,hereafterQSO1)atz =5.70inthefieldofthehigh- thetwocases,wefixtwodifferentvaluesforthefluxthresholdin- estredshiftquasarcurrentlyknown(SDSSJ1148+5251, hereafter side(FIN =0.01)andoutside(FOUT =0.08)thebubble.While th th QSO2)atz = 6.42.InthisSectionwestudytheQSO2transmit- FOUT isthesameasthevalueusedinthisworksofar,FIN has th th tedflux,inorder toanalyze theproximityeffect ofQSO1onthe beenchosenaccordinglytothemaximumobservednoiser.m.s.de- QSO2spectrum.Forclarity,Fig.5presentsaschematicpictureof viation(forreasonsexplainedintheAppendix A)intheλ in- RF theconsideredgeometry.Astheredshiftz = 5.70quotedbyMa- terval∆λ = 1087−1092A˚,whereΓQHISO1 & ΓHI.Forboththe habaletal.2005isbasedonthepeakoftheLyαemissionline,and observed and simulated spectra, we compute the PSD inside and theestimatederrorfromsuchprocedureis∆z ≈ 0.05(Goodrich outsidethebubble,findingthefollowingresults: etal.2001),weassumezQSO1=5.65andwediscussthisissuein em furtherdetailsinAppendixB. (PSDOUT,PSDIN)=(0.11,0.40); obs obs 8 S. Gallerani,A.Ferrara,X.Fan,T. RoyChoudhury QSO2 J1148+5251 (a1) (a2) (a3) 0.8 0.6 0.4 0.2 0 QSO1 J1148+5251 (b1) (b2) (b3) 0.8 0.6 0.4 0.2 0 1050 1150 1050 1150 1050 1150 1050 1150 Figure 5. Schematic positions of quasars SDSS J1148+5251 (QSO2, Figure6.Leftmostpanels:Observedtransmittedflux(blackspectra)inthe zem = 6.42,redshiftpositionnotinscale)andRDJ1148+5252(QSO1, spectrum of QSO SDSS J1148+5251 (QSO2, zem = 6.42). The solid zem = 5.65).TheprojectedseparationisdenotedbyR⊥,thesizeofthe blacklineshowstheredshiftpath(∆zprox)inwhichthebubbleproduced HIIregion,RHII,intheQSO1restframeisrepresentedbythedottedcir- by QSO RD J1148+5252 (QSO1, zem = 5.65) intersects the LOS to cle;themagentasolidlineshowstheapparentshapeoftheionizationfront; QSO2.Toppanels(ai),withi=1,3:Simulatedfluxes(cyanspectra)along thedashedblacklineshowstheredshiftpath(∆zprox)inwhichthebubble 3differentrandomLOS(cases“withoutbubble”).Bottompanels(bi),with producedbyQSO1intersectstheLOStoQSO2. i=1,3:Simulatedfluxes(magentaspectra)alongthesameLOSsshownin thetoppanels,takingintoaccountthecontributionfromQSO1tothetotal ionizingflux(cases“withbubble”). (PSDOUT,PSDIN )=(0.04+0.06,0.24+0.35), sim sim −0.04 −0.24 theresultisshowninFig.7.Theagreementbetweenobservations whereerrorbarsprovidethemaximumandminimumPSDvalues andsimulations isat 1-σ confidence level for 86% of theplotted foundinthesimulatedLOS.Observationally,thePSDisfoundto points. ForR . 2 Mpc, themean optical depth 1.5 . τ¯ . 3.5 be≈ 4times6 largerinsidethatbubblethanoutsideit.Thisboost isquitewellreproducedbythesimulatedPSD,althoughtheirab- islowerthanthemeanvalueexpectedatz¯= 5.65(τ¯5.65 ≈ 4);it solutevaluesaresomewhatlowerthantheobservedones. approachesτ¯5.65atdistanceslargerthanRτ ∼2Mpc. tioniTshtheepfhoylsloicwailnign.teIrnptrheetaλtiono(frethdeshriefst)ulitnsterervpaolrt∆edλin=th1i0s8S7e−c- BonytthaekifnogretghreoudnifdfeQreSnOcelibfeettwimeeentQRτ>anRdτ−RcR⊥⊥,w+e(steτt−altoQwSeOr1li)m≈it 1092(∆zdet = 5.63−5.67)R,FwhereΓQHISO1 & ΓHI,mostofthe s1p1onMdyinr,gwtohethreetreτdashnidftstQzSO=1 r5e.p6r8esaenndt tzhQeScOo1sm=ic5t.i6m5e,srecsoprerec-- gapspresentinthecase“withoutbubble”disappear,makingroom τ em tively. forpeaks,asaconsequence ofthedecreasedopacityintheprox- Itisworthnotingthatourmodeldoesnottakeintoaccountneither imity of QSO1. Note that the ΓHI value adopted in our calcula- (i)theclusteringoftheionizingsources,nor(ii)theoverdenseenvi- tions(showninFig.1,middlepanel,redline)isclosetothemax- ronmentexpectedaroundtheQSO.Boththeseeffects,inprinciple, imum value suggested by previous studies. Moreover, ΓQSO1 ≈ HI could strongly affect the IGM ionization state, albeit in opposite 3.4×ΓHIat0.66MpcfromtheforegroundQSO.Thus,animplau- ways.Whileclusteringofsourceswouldenhancethetransmissiv- sibleΓHI value should beassumed toexplaintheobserved boost ityintheQSOnear-zones,theoverdenseenvironmentwouldtend inthePSDwithauniformUVB.Theenhancementinthetransmis- tosuppressit.Thefactthatwefoundagreementbetweenobserva- sivitydecreasesforλ smaller(larger)than1087(1092)A˚,since RF tionsandourmodelingcouldindicatethat,atleastalongthisLOS, atthecorrespondingredshiftΓQHISO1.ΓHI.Theseresults(i)con- thetwoeffectscompensate.Forwhatconcerns(ii),bycomparing firmthedetectionofaproximityeffect,(ii)showthattheredshift theopticaldepthevolutionobservedintheproximityregionsof45 stretchaffectedbytheproximityeffectis∆z <∆z . det prox QSOsatz & 4withtheoreticalexpectations, Guimaraesetal. Asafinaltestforour model, wecomputetheobserved evo- em 2007findevidenceforadensitybiascorrelatedwiththeQSOlu- lution of the optical depth as a function of the distance R from minosity. Since QSO1 is much fainter than the QSOs studied by QSO1andcompareitwiththepredictionsofmodel”withbubble”; Guimaraes et al. 2007 it seems likely that neglecting such effect does not introduce a significant error. However, the extension of 6 Thisfactordependsonthefluxthresholdused.Forexample,itisreduced theproposedapproachtoalargersamplecouldclarifytherelation to ≈ 2.7ifFIN = FOUT = 0.05. Nevertheless, for the purpose of between the clustering of sources and the overdensities in which th th ourtestwhatreallymattersistheboostofthisfactormovingfromoutside massiveobjectsarelikelytobeembedded. towardinsidethebubble. ItisimportanttonotethattheLOStowardSDSSJ1148+5251con- Glimpsingthroughthehighredshiftneutralhydrogenfog 9 We then apply the Largest Gap Width (LGW) and Largest Peak Width(LPW)statisticsintroduced by Gallerani et al. (2006) to a sampleof17QSOsintheredshiftrange5.74−6.42.BothERM andLRMprovidegoodfitstotheobservedLGWdistribution,fa- voringa scenario inwhich xHI smoothly evolves from10−4.4 at z≈5.3to10−4.2atz≈5.6. Discriminating among the two reionization scenarios would requireasampleofQSOatevenhigherredshifts.Infact,although accordingtoLRMatz & 6thereionizationprocessisstillinthe overlapphasewithamixtureofionizedandneutralregionschar- acterizingtheIGM,only≈ 10%ofthesimulatedLOSpiercethe overlapepoch, andfor a redshift depth ∆z . 0.2. Thisexplains whythepredictedLGWdistributionsarequitesimilarforthetwo modelsconsidered. Nonetheless, ERM provides a slightly better fit to observational datawithrespecttoLRM,favoringz &7.Withinthestatistical rei relevanceofoursample,wehaveshownthatLRMmodelscanbe usedtoputarobustupperlimitxHI<0.36atz =6.3. Wehavesuggestedthatpeakspreferentiallyarisefromunder- denseregionsofthecosmicdensityfieldandalsofromisolatedHII regionsproducedbyeitherfaintquasarsorgalaxies.Thefrequency Figure7.Evolutionoftheopticaldepthτ asafunctionofthedistanceR of the observed peaks implies that the dark matter halos hosting fromQSO1.Filledcirclesdenotetheobservedmeanvalueforτ,whileerror suchsourcesisrelativelylarge,≈ 1012 (1013)M⊙.BrightQSOs barsrepresentthemaximumandtheminimumobservedτ atagivendis- areunlikelytocontributesignificantlyintermsofpeaks, because tancefromtheforegroundQSO.Solid(dotted)magentalinesarethemean giventherequiredsizeoftheHIIregions, theyshould belocated (maximum/minimum)valuesfrom500simulatedLOS,computedadopting close enough to the LOS to the target QSO, that they should be thecase“withbubble”. Thedashedcyanhorizontal lineshowsthemean detectableinthefield. opticaldepthpredictedbytheERMincorrespondenceoftheemissionred- shiftoftheforegroundQSO.Thedottedcyanhorizontal linesdenotethe The previous conclusions are substantiated by the specific maximum/minimumopticaldepthatthesameredshift. caseofaninterveningHIIregionproducedbythefaintquasarRD J1148+5253(QSO1)atz = 5.70alongtheLOStowardthehigh- estredshiftquasarcurrentlyknown(SDSSJ1148+5251,QSO2)at tributestotheLPWdistributionwiththesmallestpeak(P ≈ max z = 6.42.Itisworthnotingthatsearchesforthetransverseprox- 2A˚)intheentiresample.Thus,evenifwesucceededinreproduc- imityeffect inthe HI Lyαforest at z ≈ 3 (Schirber et al. 2004) ingthefeaturesofthisLOSwithourmodel“withbubble”,westill havebeensofarunsuccessful.Sucheffecthasbeenisolatedonlyby havetoexplainthemysteriousoriginoftransmissivitywindowsas HeIIabsorptionstudies(Worseck&Wisotzki2006;Worsecketal. largeas10−15A˚. 2007).Thus,ourresultsrepresentthefirst-everdetectionintheHI InSec.4.1,weestimatetheQSO1luminosityrequiredtoexplain Lyαforest.WehaveanalyzedtheproximityeffectofQSO1onthe the observed P value, and we comment on the result depen- max QSO2 spectrum. Moreover, we have build up a simple model to dencefromf .Pluggingineq.(4)thevaluef ≈ 0.03 computed t t estimatethelocation/extension of theproximity zone. Withinthe insidetheproximityregion,weobtainaneffectivesizeforR ; HII proximityregionofQSO1wehavefoundanincreasednumberof byfurtherusingeq.(2),thistranslatesintoN˙ =9.2×1055s−1,a γ peaksperunitfrequencywithrespecttosegmentsoftheLOSlo- valueinquitegoodagreementwiththeQSO1ionizingratequoted catedoutsidethequasarHIIbubble.Thissupportstheideathatwe byMahabaletal.2005. are indeed sampling the proximity region of the QSO1 and that atleastsomepeaksoriginatewithinionizedregionsaround(faint) sources.WethenobtainastronglowerlimitontheforegroundQSO lifetime of t > 11 Myr. Proper inclusion of galaxy clustering, Q 6 DISCUSSION whichrequiresnumericalsimulations,mightaffectourconclusions (Faucher-Giguereetal.2007).Notethateveninthisclear-cutcase, Wehavestudiedseveralstatisticalpropertiesofthetransmittedflux thesizeof thelargest observed peak in thespectrum of QSO2is in high-z QSO spectra and compared them with those obtained onlyof2A˚. fromsimulatedLyαforestspectratoinferconstraintsontheioniza- tionstateoftheIGMatz ≈ 6.Wehaveconsideredtwodifferent Thus we are left withthe puzzling discrepancy between ob- reionization models: (i) an Early Reionization Model (ERM), in servedandsimulatedtransmissivitywindows(peaks)size,thefor- whichtheuniversereionizesatz =6,and(ii)aLateReioniza- merbeingsystematicallylarger.Verylikely,thisreflectsanunwar- rei tionModel(z ≈7). rantedassumptionmadebythemodel.Wedonotbelievethatthe rei Byfirstusingstandardcontrolstatistics(meantransmittedfluxevo- discrepancy could be impute to the assumption of a Log-Normal lution,probabilitydistributionfunctionofthetransmittedflux,gap model,testedagainst HYDROPMsimulationsbyGCF06.Never- width distribution) in the redshift range 3.5 < z < 6, we show theless,weplantocomparetheobservedLargestPeakWidthdis- that both ERM and LRM match the observational data. This im- tributionwithfullhydrodynamicalsimulationsinafutureworkto pliesthatcurrentobservationsdonotexcludethatreionizationcan study the correlation properties of the underdense regions, since havetakenplaceatredshiftwellbeyondsix. Coles et al. (1993) have shown that the Log-Normal model pro- 10 S. Gallerani,A. Ferrara,X. Fan,T. RoyChoudhury ducesatoo“clumpy”distributionofthedensityfield,whencom- ChoudhuryT.R.,PadmanabhanT.,SrianandR.,2001,MNRAS,322,561 paredwithN-bodysimulations. ChoudhuryT.R.,SrianandR.,PadmanabhanT.,2001,ApJ,559,29 Atleasttwophysicaleffects,neglectedhere,couldaffectthe ColesP.,JonesB.,1991,MNRAS,248,1 calculationofxHI:(i)non-equilibriumphotoionization,and(ii)UV ColesP.,MelottA.L.,ShandarinS.F.,1993,MNRAS,260,765 backgroundradiationfluctuations. CroftR.A.C.,1998,inOlintoA.V.,FriemanJ.A.,SchrammD.N.ed., EighteenthTexasSymposiumonRelativisticAstrophysics.WorldSci- Thefirstassumptionismadebythemajorityofstudiesdealingwith entific,RiverEdge,N.J.,p.664 the Lyα forest. However, if a fraction of the Lyα forest gas has Dijkstra M., Wyithe S., Haiman Z., 2007, MNRAS in press, astro- beenshock-heatedasitcondensesintothecosmicwebfilaments,it ph/0607331. mightcoolfasterthanitrecombines.Forexample,therecombina- DjorgovskiS.G.,CastroS.,SternD.,MahabalA.A.,2001,AJ,560,L5 tiontimetrbecomeslongerthantheHubbletimewhenthedensity FanX.etal.,2001,AJ,122,2833 contrastis∆<7.5[(1+z)/6.5]−3/2;hence,largedeviationsfrom FanX.,NarayananV.K.,StraussM.A.,WhiteR.L.,BeckerR.H.,Penter- photoionization equilibrium are expected where ∆ ≪ 1. Lower icciL.,RixH.,2002,AJ,123,1247 valuesofxHI withrespecttoequilibriumareexpectedinsuchre- FanX.etal.,2003,AJ,125,1649 gions,asaresultoftheexceedinglyslowrecombinationrates. FanX.etal.,2006,AJ,132,117 FangT.etal.,2005,astro-ph/0505182 Faucher-GiguereC.A,LidzA.,ZaldarriagaM,HernquistL.,2007,astro- Thesecondpossibleexplanationforthetoonarrowsimulated ph/0701042 peaksmightresideinradiativetransfereffects,alsoneglectedhere. GalleraniS.,ChoudhuryT.R.,FerraraA.,2006,MNRAS,370,1401 Atz≈6theincreaseinthemeanGPopticaldepthisaccompanied GoodrichR.W.etal,2001,ApJ,561,L23 byanevidentenhancement ofthedispersionofthismeasurement GuimaraesR.,PetitjeanP.,RollindeE.,deCarvalhoR.R.,DjorgovskiS.G., whichhasbeenascribedtospatialfluctuationsoftheUVBintensity SrianandR.,AghaeeA.,CastroS.,2007,astro-ph/0702369 neartheendofreionization.Aconsiderable(upto10%)scatterin HaimanZ.,CenR.,2002,ApJ,578,702 theUVBHIphotoionizationrateisexpectedalreadyatz ≈ 3,as IlievI.T.,MellemaG.,ShapiroP.R.,PenU.-L.,2007,MNRAS,376,534 shownbyMaselli&Ferrara2005throughdetailedradiativetrans- IyeM.,OtaK.,KashikawaN.,FurusawaH.,HashimotoT.,HattoriT.,Mat- fer calculations. The amplitude of such illumination fluctuations sudaY.,MorokumaT.,OuchiM.,ShimasakuK.,2006,Nature,443, tendtoincreasewithredshiftbecauseoftheoverallthickeningof 186 KashikawaN.etal.,2006,ApJ,648,7 theforest.AlthoughtheobserveddispersioninthemeanGPoptical KogutA.etal.,2003,ApJS,148,161 depthmaybecompatiblewithaspatiallyuniformUVB(Liuetal. KramerR.H.,HiamanZ.,OhS.P.,2006,ApJ,649,570 2006;Lidzetal.2006), itislikelythataproper radiativetransfer LidzA.,McQuinnM.,Zaldarriaga,M.,Hernquist,L.Dutta,S.,2007,astro- treatmentbecomesmandatoryatearliertimes.Basically,themain ph/0703667 effectoffluctuationsistobreakthedependence oftheHIneutral LidzA.,OhS.P.,FurlanettoS.,2006,ApJL,639,L47. fractionondensity.Thisisreadilyunderstoodbyconsideringtwo LiuJ.etal.,2006,ApJ,645,L1 perturbationswiththesamedensitycontrast∆.Ifthefirstisclose MahabalA.,SternD.,BogosavljevicM.,DjorgovskiS.G.,ThompsonD., toaluminoussourceitwillhaveitsxHIdepressedwellbelowthat 2005,ApJ,634,L9 ofthesecondonelocatedawayfromit.Thus,opacityfluctuations MaiolinoR.,SchneiderR.,OlivaE.,BianchiS.,FerraraA.,MannucciF., naturallyarise.Ifso,peaksoflargerwidthcouldbeproducedifthe PedaniM.,RocaSogorbM.,OlivaE.,2004,Nature,431,533 density perturbation associated withithappens tobe locatedina MalhotraS.,RhoadsJ.E.,2005,astro-ph/0511196 MaselliA.,GalleraniS.,FerraraA.,ChoudhuryT.R.,2007,MNRAS,376, regionwheretheUVBintensityishigherthanthemean. 34 MaselliA.,FerraraA.,2005,MNRAS,364,1429 McDonaldP.,Miralda-Escude’J.,2001,ApJ,549,L11 ACKNOWLEDGMENTS MesingerA.,HaimanZ.,2006,preprint(astro-ph/0610258). MesingerA.,HaimanZ.,2004,ApJ,611,L69 We thank R. Cen, B. Ciardi, D. Eisenstein, J. P. Ostriker and S. Miralda-Escude’J.,HaehneltM.,ReesM.J.,2000,ApJ,530,1 Whitefor stimulatingdiscussions. Weare particularly grateful to MoH.J.,WhiteS.D.M.,2002,MNRAS,336,112 Z.Haiman,A.LidzandA.Maselliforenlighteningcommentson OhS.P.,FurlanettoS.R.,2005,ApJ,620,L9 the manuscript. XF acknowledges support from NSF grant AST PageL.etal.,2006,preprint(astro-ph/0603450) PaschosP.,NormanM.L.,2005,ApJ,631,59 03-07384,aSloanResearchFellowship,aPackardFellowshipfor SchirberM.,Miralda-Escude’J.,McDonaldP.,2004,AJ,610,105 ScienceandEngineering. ShapiroP.R.,IlievI.T..,AlvarezM.A.,ScannapiecoE.,2006,ApJ,648, 922 SongailaA.,2004,AJ,127,2598 SongailaA.,CowieL.L.,2002,AJ,123,2183 REFERENCES SpergelD.N.etal.,2006,preprint(astro-ph/0603449) BarkanaR.,LoebA.,2001,PhysicsReports,349,125 SpergelD.N.etal.,2003,ApJS,148,175 BeckerG.D.,RauchM.,SargentW.L.W.,2006,astro-ph/0607633 StarkD.P.,EllisR.S.,RichardJ.,KneibJ.P.,SmithG.P.,SantosM.R., BeckerR.H.etal.,2001,AJ,122,2850 2007,astro-ph/0701279 BiH.,1993,ApJ,405,479 SternD.,YostS.A.,EckartM.E.,HarrisonF.A.,HelfandD.J.,Djorgovski BiH.,DavidsenA.F.,1997,ApJ,479,523 S.G.,MalhotraS.,RhoadsJ.E.,2005,ApJ,619,12 BiH.G.,Bo¨rnerG.,ChuY.,1992,A&A,266,1 StiavelliM.etal.,2005,AAS,37,1329 BoltonJ.S.,HaehneltM.G.,2007a,astro-ph/0703306(B07) Totanietal.,2006,PASJ,58,485 BoltonJ.S.,HaehneltM.G.,2007b,MNRAS,374,493 VielM.,HaehneltM.G.,LewisA.,2006,MNRAS,370,L51 BoltonJ.S.,Haehnelt M.G.,VielM.,SpringelV.,2005,MNRAS,357, VielM.,MatarreseS.,MoH.J.,HaehneltM.G.,TheunsT.,2002,MNRAS, 1178(B05) 329,848 ChoudhuryT.R.,FerraraA.,2006,MNRAS,371,L55 WhiteR.L.,BeckerR.H.,FanX.,StraussM.A.,2003,AJ,126,1 ChoudhuryT.R.,FerraraA.,2005,MNRAS,361,577 WyitheJ.S.B.,LoebA.,2004,Nat,432,194

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.