Glass-on-Glass Fabrication of Bottle-Shaped Tunable Micro-Lasers and Their Applications Jonathan M. Ward1,*, Yong Yang1,2, and S´ıle Nic Chormaic1 1Light-MatterInteractionsUnit,OkinawaInstituteofScienceandTechnologyGraduateUniversity,Onna-son, Okinawa904-0495,Japan. 2NationalEngineeringLaboratoryforFiberOpticsSensingTechnology,WuhanUniversityofTechnology,Wuhan, 430070,China. 6 *[email protected] 1 0 2 ABSTRACT n a We describe a novel method for making microbottle-shaped lasers by using a CO laser to melt Er:Yb glass onto silica 2 J microcapillariesorfibres. Thisisrealisedbythefactthatthetwoglasseshavedifferentmeltingpoints. TheCO laserpower 2 1 iscontrolledtoflowthedopedglassaroundthesilicacylinder. Inthecaseofacapillary,theresultinggeometryisahollow, 2 microbottle-shapedresonator. ThisisasimplemethodforfabricatinganumberofglassWGMlaserswithawiderangeofsizes onasingle,micron-scalestructure. TheEr:Ybdopedglassouterlayerispumpedat980nmviaataperedopticalfibreand ] s whisperinggallerymode(WGM)lasingisrecordedaround1535nm. Thisstructurefacilitatesanewwaytothermo-optically c tunethemicrolasermodesbypassinggasthroughthecapillary. ThecoolingeffectofthegasflowshiftstheWGMstowards i t shorterwavelengths,thusthermaltuningofthelasingmodesover70GHzisachieved. Resultsarefittedusingthetheoryof p hotwireanemometry,allowingtheflowratetobecalibratedwithaflowsensitivityashighas100GHz/sccm. Straintuningof o themicrolasermodesbyupto50GHzisalsodemonstrated. . s c i s y Introduction h p Thefabricationofglassopticalwhisperinggallerymicrolaserscanbeachievedinalimitednumberofways. Onemethod [ involvesmakingasinglecavitybydrawingoutaglasswirefromapieceofdopedglassandmeltingthetipofthewiretoform asphericalresonator.1 Alternatively,manysphericalresonatorscanbemadesimultaneouslybypassingparticlesofdoped 1 glassthroughafurnace.2,3 Bothofthesemethodsaretedious; inthefirstcase, onlyoneresonatorcanbemadeatatime. v 3 Inthesecondcase,individualspheresmustbeselectedandgluedtosomeotherstructure,e.g. thetipofafibreforeaseof 9 manipulation. Forbothmethods,onlyasingleresonatorisselectedandbroughttoanevanescentwaveguidecouplerforoptical 4 excitation. On-chipfabricationofalargenumberofactiveglassresonatorsispossiblebydopingthechipbeforefabrication 5 eitherwithionimplantation4orbySolgelcoating.5,6 Forpassivedevices,individualresonators-suchasamicrosphere-can 0 alsobeactivatedbycoatingusingtheSolgelprocess.7,8Theon-chipmethodisobviouslymorecomplicatedandrequiresmuch . 1 moreequipmentthanthesimpleheatingmethods,butithastheadvantagethatthecouplingbetweentheexcitationwaveguide 0 andanycavitiesonthechipcanbeeasilyachievedbymovingthechiprelativetothewaveguide. Coatingataperedopticalfiber 6 1 tipwithalayeroferbiumdopedphosphateglassandthenmeltingthetipintoaspherehasalsobeendemonstratedtoproduce : lasingmicrospheres.9,10 v Here,wepresentasimpleheatingmethodforfabricatinganumberofglasswhisperinggallerymode(WGM)laserswitha i X rangeofsizesonasinglemicron-scalestructurethatcanbeeasilymanipulatedrelativetotheexcitationwaveguideandcan,in r principle,bepackagedontoamillimetrescalechip. Weexperimentallydemonstratethecoatingoftaperedopticalfibresand a microcapillarieswithalayerofEr:Ybdopedphosphatelaserglass. Thisisachievedbythesimplefactthatthetwoglasseshave verydifferentmeltingtemperatures,around1,500◦Cforsilicaand500◦Cforthephosphateglass. TheEr:Ybdopedglassouter layerispumpedat980nmandlasingisobservedat1535nm. Microlaserswithdiametersrangingfrom22µmto232µmare madeonthesamestructure. Adesiredfeatureofanylaseristheabilitytotunethefrequencyofthelaseroutput.Tuningamicron-scalewhisperinggallery resonatorinafashionthatdoesnotaddtothefootprintofthedeviceorrequirecomplicatedfabricationisanontrivialtask. The mainapproachessofarincludetheuseofexternalheaters,11,12applicationofstress/strainviaanexternalclamp,13–15pressure tuning,16–20 electricfieldtuning,,21 chemicaletching,22,23 on-chipresistanceheating,24,25 andthermo-optictuning.26–28 Each ofthesemethodshasitsowndistinctadvantagesanddisadvantagesandthechoiceofmethoddependsultimatelyonthefinal application. Weshowthatthemicrolasersfabricatedusingtheglass-on-glasstechniquecanbeeasilytunedovertensofGHzby oneoftwomethods. Thefirstmethodisuniquetoourdevicesandisapplicabletothecapillarystructure;itreliesonthermal tuningofthelasingmodebyflowinggasthroughthecavity. Fromthismethodwedemonstratetheideaofgasflowsensing usingtheconceptofa“hotcavity”anemometer. Measurementsandcharacterisationofthesystemasagasflowsensorare presented. Thesecondmethodreliesonstraintuningandcanbeappliedtoboththetaperedfibreandthecapillarylasers. Methods Thismethodofmicrolaserfabricationcanbeappliedtoanopticalfibreorcapillaryandisthesameinbothcases. First,we taperedamicrocapillarywithanouterdiameter(OD)of350µmandaninnerdiameter(ID)of250µm,usingaCO laser,toa 2 uniformwaistwithanODof∼80µm. Next,aglasswirewasdrawnfromabulkpieceofdopedphosphateglass(Kigre). Thediameterofthedopedglasswirewastypicallyafewtensofmicrons. Thedopedglasswirewasthenplacedontopof andincontactwiththemicrocapillaryandtheCO laserbeamswereappliedagain. TheCO laserpowerwasincreaseduntil 2 2 thedopedglassflowedontothecapillary,asshowninFig. 1(a). AtthispointthedopedglasswirewasremovedandtheCO 2 laserpowerwascontrolledtoallowtheremainingdopedglasstoflowaroundthecapillary. Whenthedopedglasscompletely coveredthecapillarytheCO laserwasturnedoff. Theresultinggeometrywasahollowmicrobottle-shapedresonator. The 2 diameterofthedopedglassbottlewas170µmandthethicknessofthedopedglassattheequatorwas40µm. Thisthicklayer meansthatanyopticalmodeinthebottlecannotinteractwiththesilicaoranymaterialinsidethecapillary. Figure1. (a)Fabricationstepsformakingadopedglassmicrobottlelaseronasilicawire. Thecapillarydiameteris80µm andthefinaldiameterofthedopedglassresonatoris170µm. (b)ImageoftheresonatorshowingaWGMhighlightedby greenupconversionfluorescence. (c)LasingspectrumfromanEr:Ybdopedbottleshapedresonatoronasilicacapillary. (d) Lasingthresholdmeasurement. (e)Lasingspectraforthreedifferentmicrobottles(notthatshowninparts(a)to(d))onasingle capillarywithadiameterof42µm. Thediametersofcav1,cav2andcav3are120µm,170µmand155µm,respectively ThecapillarywasgluedontoaU-shapedholderandbroughtintocontactwithataperedopticalfibreforopticalpumping. Thetaperedfibrehadadiameterof∼1µmandwasconnectedtoa980nmdiodelaser. Whisperinggallerymodeswerevisible 2/9 duetogreenupconversionfluorescencefromtheerbiumions,seeFig. 1(b). Theoutputendofthetaperedfibrewasconnected toanopticalspectrumanalyser(OSA).AtypicallasingspectrumisshowninFig. 1(c),withlasingpeaksappearingbetween 1532nmand1540nm. Foragivenmicrobottlethespectrumcanbesinglemodeormultimodedependingonmanyfactors suchasthepositionofthetaperedfibrealongthecapillaryorthepositionofthecapillaryalongthetaper.7 Toverifythelasing behaviour, athresholdmeasurementwastaken, seeFig. 1(d). Forthismeasurementthepumplaserwasnottunedtoany particularWGM.The980nmpumplaserusedhadaratedlinewidthof2nmsoitwasassumedthatanumberofWGMswere simultaneouslyexcitedwithnocontroloverthecouplingefficiency. Assuch,thepumppowerlabledinFig. 1(d)represents thepumppowerlaunchedintothetaperedfibreanddoesnotrepresentthetruepumppowerlasingthreshold. Fig. 1(d)does, however,showaclearthresholdforthepeakoutputpower. Byrepeatingthefabricationprocessatdifferentpointsalongacapillaryitispossibletomakeastringofresonatorsinrow. Asademonstration,threeresonatorswithdiametersof120µm,170µmand155µmweremadeonthesamecapillary,which hadanODof42µm. Lasingwasexcitedineachresonatorinturnbysimplymovingthetaperedfibrealongthecapillarytothe nextresonator. Lasingwascollectedfromeachresonatoratthesamecouplingpointonthetaperedfibreandforthesamepump power,seeFig. 1(e). Thesamefabricationstepswererepeatedforanopticalfibre. Inthiscase,astandard780nmsinglemodeopticalfibre wastaperedusingaCO lasertoadiameterof20µm. Thesameerbium-dopedglasswasmeltedonthetaperedfibreatfive 2 differentpointscreatingfiveseparatecavitieswithdiametersrangingfrom42µmto232µm. Fig. 2(a)-(c)showstheWGM lasingspectratakenforthreeoftheseresonatorscollectedusingthesamepumppowerandpositiononthetaperedfibre;note thattheothertwoonlyshowedfluorescenceundertheseconditions. Apartfrommakingabottle-shapedorsphericalresonatoritwasalsopossibletomakeathincoatingofthedopedglass. Thiswasachievedbyheatingthesphereofdopedglassafterithadbeentransferredtothefibre(orcapillary). Thisadditional heatingcausedthespheretomovealongthefibreleavingbehindathinlayersurroundingthefibre. Thethicknessofthislayer isnotconstantsomicrocavitiesareformedbythesmallvariationsinthediameter,similartoSNAPstructures.29 Figure2(d) showssuchathinlayerspreadoutbetweentwomicrolasers. Thepositionoftheexcitationtaperedfibrewasmovedalongthis thinly-coatedregion. Thethicknessofthedopedlayerwasmeasuredusinganopticalmicroscopeandwasdeterminedtobe around1-2µm. AteachpositionaWGMspectrumwasobservedand,atsomepositions,lasingwasachieved. Inthefuture,a moreaccuratemeasurementofthediametercouldbemadeformthevariationsintheWGMspectraateachposition Figure2. (a-c)Lasingspectrafromthreeoffiveresonatorsmadeonthesame20µmfibre. Thespectracorrespondtobottle resonatorswithdiametersof42µm(top),60µm(middle)and160µm(bottom). (d)Theexcitationofacontinuousseriesof microresonatorsfromthicknessvariationsinathincoating. Thethincoatingwasformedbetweenthe42µmand60µm microbottles,seenatthetopandbottomofeachimagewithcorrespondinglasingspectrashownin(a)and(b). 3/9 Results Thermo-opticaltuningandgasflowsensing Hollow whispering gallery resonators, such as microcapillaries30 and microbubbles,14,31,32 have the unique feature that a materialcanfillorflowthroughtheirinnervolumeasalreadydemonstratedfordye-filledmicrobubblelasers,33capillaries34 andon-chipmicrofluidicchannels.35 ThelighttravelingintheWGMispartiallyabsorbedbytheglassandlocallyincreases thetemperatureoftheresonator’swall. Whenfluidflowsthroughtheresonatoritremovessomeoftheheatandreducesthe temperature. ThiscausesablueshiftinthefrequencyoftheWGM.InthiswaytheWGMmodescanbetunedandtheshiftcan becalibratedtorepresenttheflowrateofthefluid,withlargerflowratesgivinglargerblueshifts,seeFig. 3. Figure3. SchematicofaWGM”hotcavity”anemometer. TheexcitationoftheWGMisrepresentedbytheredarrowsinthe capillarywall. Withsufficientabsorbtion,thelightintheWGMcanlocallyheatthecapillary. Fluidflowingthroughthe capillaryisrepresentedbythegreenarrow. TheflowingfluidremovestheheatandshiftstheWGMstohigherfrequencies, representedbythemovementofthetransmissiondipontheleftofthefigure. Thisissimilartotheconceptofall-optical,hotwireanemometry,amethodwhichhasbeeninuseforsometime. Mostof thereporteddevicesarebasedonaSiO opticalwaveguide, whichistreatedasawirethatabsorbslighttherebycreating 2 heat.36–40 The wire is placed into, or in contact with, a fluid flow channel. The flow of the fluid cools the wire and this changestherefractiveindexorthelengthofthewire. SuchchangescanbereadoutopticallyusingafibreBragggrating (FBG),forexample.36–40 BecauseSiO isgenerallynotastrongabsorber,asignificantamountofopticalpowerisrequiredto 2 generateheat. Theprocesscanbeaidedbytheadditionofametal.40 Mostofthesystemsdiscussedabovearenotcapable ofmeasuringflowinarbitrarilysmallchannelssuchasonewouldfindinmicrofluidicsystems,thoughrecentlyaFBGhot wireanemometerwasusedtomeasureflowinsuchasystem.40 Althoughthesensorshowedgoodsensitivityinthelowflow rateregime,thedevicerequiredhundredsofmWofpumppower,theresolutionwaslow,andgoodthermalcontactneededto bemaintainedbetweentheopticalabsorberandtheflowchannel. Ahotcavityanemometerthatcanbeincorporatedontoa microcapillaryautomaticallyprovidesgoodthermaloverlapbetweenthesensorandtheflowchannel. ForanEr:Ybdoped resonator,significantheatisgeneratedbypumpabsorptionat980nmandanarrowlinewidthlasingmodeat1535nmisusedto measurethethermo-opticalshiftofthecavitymodesinducedbytheflowoffluidthroughthecapillary. Thisdeviceoffershigh resolution(byusingthelasingmodes)andhighsensitivity(duetothehightemperatures)withlowpumppowers. Itiswellknownthatthereareanumberoflargenon-radiativeenergytransitionsinerbium-dopedglasswhichcanbe accessed by pumping at 980 nm.41–43 These phonon transitions generate a significant amount of heat in the glass even for low pump powers; in fact up to 40% of the optical pumper power can be converted to heat. By flowing a gas/fluid throughthecapillarythisheatispartiallyremovedandtheWGMsshiftataratedeterminedbythethermo-opticalbehaviour (dn/dT =−21×10−7K−1)andthethermalcontraction(dr/dT =114×10−7K−1)oftheglass. Basedonthecoefficients givenbythemanufacturer44thethermalshiftrateoftheWGMsshouldbearound0.0145nm/K(or1.9GHz/K)at1535nm, wheretheshiftisdefinedas ∆λ =(α+β)∆T, (1) and∆T isthechangeincavitytemperature. ThecapillarywiththemicrolasershowninFigs. 1(a)and1(b)wasconnectedtoa sourceofpressurisedairviaapressureregulator. Theoutputofthecapillarywasconnectedtoamassflowmeter. Theshiftof thelasingpeakswasrecordedasthepumppowerwasincreased. Thiswasdonewithnoairflowingthroughthecapillaryfor increasingflowrates,withtheresultsplottedinFig. 4(a). Forthisparticularcavity,theshiftrateoftheWGMsgoesfrom-16.2 GHz/mWto-4.1GHz/mWforzeroflowand15sccm,respectively. UsingEq. 1thechangeintemperatureofthecavityforthe 4/9 maximumshiftineachcasecanbeestimatedandisplottedinFig. 4(b). Withnogasflowthetemperatureincreasesby66◦C, whereaswithamaximumflowrateof15sccmthemaximumtemperatureincreasewasreducedto13◦C.Next,theinputpump powerwasfixedandtheinputpressuretothecapillarywasincreasedwhilethepositionsoftheWGMsinthetransmittedsignal wererecordedusingtheopticalspectrumanalyser. AstheflowrateincreasedtheWGMswereobservedtoshifttowardsshorter wavelengthsduetothecoolingeffectoftheairflowthroughthecapillary,asdiscussedabove. Thisprocedurewasrepeatedfor increasingpumppowersandtheresultsareplottedinFig. 4(c). Figure4. (a)Theshiftrateofthe1535nmlasingWGMasfunctionofinputpumppowerfordifferentgasflowrates. (b)The calculatedincreaseincavitytemperatureandcorrespondingWGMshifts. (c)Theshiftofthe1535nmlasingWGMasfunction ofthemeasuredflowratefordifferentpumppowers. (d)ThesensitivityoftheWGMshiftrateasfunctionofmeasuredflow rate,calculatedfromthederivativeofthefitsin(c). Fromthetheoryofopticalhotwireanemometry,36,40theheatlost,H,fromahotwireisrelatedtotheflowrate,ν,by H=(A+Bνn)∆T (2) a whereAandBareempiricalconstantsandnisafittingparameter(usually0.5forasimplehotwire). Certainamountofpump powerisusedtogeneratethelasingsignalsothecavityisalreadyheated,thustheinitialtemperatureofthecavityisnotknown. Evenformodestpumpingtheinitialcavitytemperaturecanbeeasilygreaterthan100◦C.45Therefore,wedefine∆T =[T (ν)- a a T (ν=0)],i.e. thedifferencebetweenthecavitytemperatureatzeroflowandthecavitytemperatureatsomeflowrate,ν. Based a onthelawofenergyconservationtheheatlostmustequaltheheatputin,therefore,inthecaseoftheWGMresonator H=Iη(Q/Q ), (3) abs whereIistheinputpower,η isthecouplingefficiency,Qisthequalityfactorofthecavity,andQ istheabsorption-limited abs cavityqualityfactorgivenby 2πn eff Q = , (4) abs σλ whereσ istheabsorptionlossofthematerial,λ isthewavelengthandn istheeffectiverefractiveindex. σ wasestimated eff fromtheglassmaterialpropertiesprovidedbythemanufacturer44usinganabsorbingionconcentrationof3×1021ions/cm3 5/9 andanabsorptioncross-sectionof1.7×1020/cm2. ThecalculatedQ =1.2×106andtheloadedcavityQwasassumedtobe abs 100timeslessthanthis. Todetermine∆T ,thechangeintemperatureforeachpumppowerwasdeterminedfromthemaximum a shiftandEq. 1. TheWGMshiftintermsofthegasflowratecanthenbewrittenas36,40 δλ =λ(α+β)[H/(A+Bνn)−∆T ]. (5) a TherecordedWGMshiftswerefittedusingEq. 5,seeFig. 4(c). The980nmpumplaserusedintheexperimenthadarated linewidthof2nm,thereforethecouplingefficiencyofthepumptoaspecificWGMwasimpossibletoquantify. Forfittingwe assumedacouplingefficiencyof20%. Thisvalueisjustifiedbythefactthatweobserveabouta20-30%dipintransmitted power whenthetaperandmicrobottle makecontact. Thefittingparameter n wasset to0.84. Usingtheseparametersthe correspondingfitsagreewiththeobservedshift. ThesensitivitiesoftheWGMshiftratesaredeterminedbydifferentiatingthe fitsinFig. 4(c)andareplottedinFig. 4(d). Straintuning Straintuningofmicroresonatorshasbeenreportedpreviously;itisaneffective,fastandstabletuningmethod. Straintuningof anerbium-dopedmicrobottlelaserwasreportedbyPo¨llingeretal.46 However,etchingusinghydrofluoricacidwasneeded toaccessthecoreofanerbium-dopedfibrewhichwassubsequentlymeltedbyaCO lasertoformthebottleshape. Inour 2 work,noetchingisrequiredandalargenumberofmicrolaserswithawiderangeofsizescanbemadequicklyandeasily. The 20 µmdiameterfibrewiththefivemicrolasers,asdescribedearlier,washeldonastagethatallowedtheU-shapedmount holdingthefibretobeextended,therebyputtingstrainonthefibre. Thestagewasfittedwithapiezostackthatprovided17µm displacement. The42µmdiametermicrolaserwascoupledtothetaperedopticalfibreanditslasingoutputwasmonitored whileavoltagewasappliedtothepiezostack. Thesameprocedurewasappliedtothe42µmcapillarysupportingthethree microlasers;inthiscasethe120µmdiametermicrolaserwasselectedfortuning. Thetuningcurvesforbothmicrolasersare showninFig. 5. Figure5. Straintuningofa42µmdiametermicrolaseronanopticalfibrewithadiameterof20µmandstraintuningofa 120µmdiametermicrolaseronacapillarywithadiameterof42µm. Redcurves: increasingpiezovoltage,blackcurves: decreasingpiezovoltage Inbothcasesthetuningcurvesexperienceahysteresisduetotheintrinsicbehaviourofthepiezoactuator. Thetaperedfibre lasershowedalargertuningofaround60GHz,mostlikelyduetoitssmallerdiameter. However,anumberoffactorscould influencethefinaltuningrange,e.g. thediameterofthetaperandtheinitialtensiononthetaper. Forthecapillary,thediameter andthewallthicknessmayalsoplayarole. Thetaperorcapillaryandthedopedglassmicrobottlesarenotasinglestructureso thismayacttofurtherreducethefinaltuningrange. Nevertheless,asignificantlyusabletuningrangewasachieved. Discussion Wehavepresentedamethodforcreatingglass-on-glassstructures,whereoneglassismeltedandallowedtoflowontoanother tightlycurvedglassstructure.Thisisachievedbythefactthatthetwoglasshavesignificantlydifferentmeltingpoints;therefore, thismethodshouldalsobeapplicabletoothersoftglasses. Forexample,highindexglassessuchasleadsilicateortellurite 6/9 couldbeformedintosmallcavitiesonataperedfibrewithdiametersaround20µm. Thenumberofresonatorsonasinglefibre dependsonthesizeoftheresonatorandlengthofthefibre. Sofarwecanplaceeachcavityapproximately100µmapart. One couldenvisionanumberoffibresmountedonachipcontainingwaveguidesaddressingeachresonator. Theabilitytomakehollow,microbottle-shaped,doped-glassmicrolasersallowsustoinvestigateanewmethodofthermo- opticaltuningwherethelasingmodescanbetunedbysimplyflowingairthroughthecavity. Thethicknessofthecapillary wallandathick,doped-glasslayernegatesanyredshiftoftheopticalmodeinducedbyincreasesininternalpressure. We demonstratedthatthemodeshiftscanbecalibratedtorepresentthegasflowrate,thuscreatinganintegrated,all-optical,flow sensor with low power and high resolution. The measurement of liquid flow is also possible with this setup and we have seenawaterflowratesensitivityof1GHz/(nL/sec)inacapillarywithanIDof100 µm. Earlytestsofstraintuningalso showpromisingresultsandfurtherstudiesshouldrevealthedependenceofthetuningrangeonthefibrediameter,sizeofthe resonatorandwallthicknessofthemicrocapillary. Infutureworkweplantoexplorethismethodfurtherusingvarioussoft glassesandstructurestostudythepossibilityofcreatingnewandinterestingglass-on-glassdevices. Forexample,itmaybe possibletoflowmeltedglassintochannelswhichhavebeenpre-etchedinsilicaglass. References 1. Chen,S.,Sun,T.,Grattan,K.,Annapurna,K.&Sen,R. CharacteristicsofErandEr–Yb–Crdopedphosphatemicrosphere fibrelasers. OpticsCommunications282,3765–3769(2009). 2. Lissillour,F.etal. Whispering-gallerymodeNd-ZBLANmicrolasersat1.05µm. ProceedingsofSPIEConferenceon InfraredGlassOpticalFibersandTheirApplications3416,150–156(1998). 3. Ward, J. M., Wu, Y., Khalfi, K. & Nic Chormaic, S. Short vertical tube furnace for the fabrication of doped glass microspherelasers. TheReviewofScientificInstruments81,073106(2010). 4. Min,B.etal. Erbium-implantedhigh-Qsilicatoroidalmicrocavitylaseronasiliconchip. PhysicalReviewA70,1–12 (2004). 5. Yang,L.,Carmon,T.,Min,B.,Spillane,S.M.&Vahala,K.J. Erbium-dopedandRamanmicrolasersonasiliconchip fabricatedbythesol-gelprocess. AppliedPhysicsLetters86,1–3(2005). 6. Zheng,B.etal. Achip-basedmicrocavityderivedfrommulti-componenttelluriteglass. JournalofMaterialsChemistryC 3,5141–5144(2015). 7. Yang,L.&Vahala,K.J. Gainfunctionalizationofsilicamicroresonators. OpticsLetters28,592–4(2003). 8. Fan,H.,Hua,S.,Jiang,X.&Xiao,M. Demonstrationofanerbium-dopedmicrospherelaseronasiliconchip. Laser PhysicsLetters10,105809(2013). 9. Dong,C.-H.etal. Low-ThresholdMicrolaserinEr: YbPhosphate. IEEEPhotonicsTechnologyLetters20,342–344 (2008). 10. Dong,C.etal. ObservationofmicrolaserwithEr-dopedphosphateglasscoatedmicrospherepumpedby780nm. Optics Communications283,5117–5120(2010). 11. Chiba,A.,Fujiwara,H.,Hotta,J.-i.,Takeuchi,S.&Sasaki,K. ResonantFrequencyControlofaMicrosphericalCavityby TemperatureAdjustment. JapaneseJournalofAppliedPhysics43,6138–6141(2004). 12. Suter,J.D.,White,I.M.,Zhu,H.&Fan,X. Thermalcharacterizationofliquidcoreopticalringresonatorsensors. Applied Optics46,389–96(2007). 13. Klitzing,W.V.,Long,R.,Ilchenko,V.S.,Hare,J.&Brossel,L.K. Tunablewhisperinggallerymodesforspectroscopy andCQEDexperiments. NewJournalofPhysics3,1–14(2001). 14. Sumetsky,M.,Dulashko,Y.&Windeler,R.S. Opticalmicrobubbleresonator. Opticsletters35,898–900(2010). 15. Madugani,R.etal. TerahertztuningofwhisperinggallerymodesinaPDMSstand-alone,stretchablemicrosphere. Optics Letters37,4762–4764(2012). 16. Ioppolo,T.&O¨tu¨gen,M.V. Pressuretuningofwhisperinggallerymoderesonators. JournaloftheOpticalSocietyof AmericaB24,2721(2007). 17. Henze,R.,Seifert,T.,Ward,J.&Benson,O. Tuningwhisperinggallerymodesusinginternalaerostaticpressure. Optics letters36,4536–8(2011). 18. Weigel,T.,Esen,C.,Schweiger,G.&Ostendorf,A. Whisperinggallerymodepressuresensing. ProceedingsofSPIE- TheInternationalSocietyforOpticalEngineering8439,1–6(2012). 7/9 19. Martin,L.L.etal. Highpressuretuningofwhisperinggallerymoderesonancesinaneodymium-dopedglassmicrosphere. JournaloftheOpticalSocietyofAmericaB30,3254(2013). 20. Henze, R., Ward, J. M. & Benson, O. Temperature independent tuning of whispering gallery modes in a cryogenic environment. OpticsExpress21,675–80(2013). 21. Ioppolo, T., Ayaz,U.&Otu¨gen, M.V. Tuningofwhisperinggallerymodesofsphericalresonatorsusinganexternal electricfield. OpticsExpress17,16465–79(2009). 22. White,I.M.,Hanumegowda,N.M.,Oveys,H.&Fan,X. Tuningwhisperinggallerymodesinopticalmicrosphereswith chemicaletching. OpticsExpress13,10754–9(2005). 23. Henze,R.etal. Fine-tuningofwhisperinggallerymodesinon-chipsilicamicrodiskresonatorswithinafullspectralrange. AppliedPhysicsLetters102,10–14(2013). 24. Armani,D.,Min,B.,Martin,A.&Vahala,K.J. Electricalthermo-optictuningofultrahigh-Qmicrotoroidresonators. AppliedPhysicsLetters85,5439(2004). 25. Shainline,J.M.,Fernandes,G.,Liu,Z.&Xu,J. Broadtuningofwhispering-gallerymodesinsiliconmicrodisks. Optics Express18,14345–52(2010). 26. Dong,C.-H.etal. Fabricationofhigh-Qpolydimethylsiloxaneopticalmicrospheresforthermalsensing. AppliedPhysics Letters94,231119(2009). 27. Li,B.B.etal. Onchip,high-sensitivitythermalsensorbasedonhigh-Qpolydimethylsiloxane-coatedmicroresonator. AppliedPhysicsLetters96,2008–2011(2010). 28. Watkins,A.,Ward,J.&NicChormaic,S. Thermo-OpticalTuningofWhisperingGalleryModesinErbium:Ytterbium DopedGlassMicrospherestoArbitraryProbeWavelengths. JapaneseJournalofAppliedPhysics51,052501(2012). 29. Sumetsky,M.&Fini,J.M. Surfacenanoscaleaxialphotonics. OpticsExpress19,3–14(2011). 30. Fan, X., White, I. M., Zhu, H., Suter, J. D. & Oveys, H. ¡title¿Overview of novel integrated optical ring resonator bio/chemicalsensors¡/title¿. ProceedingsofSPIE-LaserResonatorsandBeamControlIX6452,64520M1–20(2007). 31. Yang,Y.,Ward,J.&NicChormaic,S. Quasi-dropletmicrobubblesforhighresolutionsensingapplications. Opticsexpress 22,6881–98(2014). 32. Ward,J.M.,Dhasmana,N.&NicChormaic,S. HollowCore,WhisperingGalleryResonatorSensors1935,14–16(2014). 33. Lee,W.etal. Aquasi-dropletoptofluidicringresonatorlaserusingamicro-bubble. AppliedPhysicsLetters99,091102 (2011). 34. Wu,X.,Sun,Y.,Suter,J.D.&Fan,X. Singlemodecoupledoptofluidicringresonatordyelasers. AppliedPhysicsLetters 94,241109(2009). 35. Lee,W.etal. Tunablesinglemodelasingfromanon-chipoptofluidicringresonatorlaser. AppliedPhysicsLetters98, 061103(2011). 36. Gao,S.,Zhang,A.P.,Tam,H.-Y.,Cho,L.H.&Lu,C. All-opticalfiberanemometerbasedonlaserheatedfiberBragg gratings. OpticsExpress19,10124–10130(2011). 37. Cheng,J.,Zhu,W.,Huang,Z.&Hu,P. ExperimentalandsimulationstudyonthermalgasflowmeterbasedonfiberBragg gratingcoatedwithsilverfilm. SensorsandActuatorsA:Physical228,23–27(2015). 38. Cashdollar, L.J.&Chen, K.P. FiberBragggratingflowsensorspoweredbyin-fiberlight. IEEESensorsJournal5, 1327–1331(2005). 39. Wang,X.etal. Hot-WireAnemometerBasedonSilver-CoatedFiberBraggGratingAssistedbyNo-CoreFiber. IEEE PhotonicsTechnologyLetters25,2458–2461(2013). 40. Li,Y.,Yan,G.,Zhang,L.&He,S. Microfluidicflowmeterbasedonmicro”hot-wire”sandwichedFabry-Perotinterferom- eter. OpticsExpress23,9483–9493(2015). 41. Cai,Z.,Chardon,A.,Xu,H.,Patrice,F.&St,G.M. Lasercharacteristicsat1535nmandthermaleffectsofanEr: Yb phosphateglassmicrochippumpedbyTi: sapphirelaser. OpticsCommunications203,301–313(2002). 42. O’Shea, D. G. et al. Upconversion channels in Er3+:ZBLALiP fluoride glass microspheres. The European Physical JournalAppliedPhysics40,181–188(2007). 43. Ward,J.M.,Wu,Y.&NicChormaic,S. Thermo-opticaltuningofwhisperinggallerymodesinerbiumdopedmicrospheres. AppliedPhysicsB:LasersandOptics100,847–850(2010). 8/9 44. http://kigre.com/products.html?glass. 45. Ward,J.M.,Fe´ron,P.&NicChormaic,S. Ataper-fusedmicrosphericallasersource. IEEEPhotonicsTechnologyLetters 20,392–394(2008). 46. Po¨llinger,M.,O’Shea,D.,Warken,F.&Rauschenbeutel,A. Ultrahigh-QTunableWhispering-Gallery-ModeMicrores- onator. PhysicalReviewLetters103,1–4(2009). Acknowledgments ThisworkwasfundedbytheOkinawaInstituteofScienceandTechnologyGraduateUniversity. Author contributions statement J.M.W.conceivedtheexperimentanddidthedataanalysis;J.M.W.andY.Y.conductedthemeasurements;S.N.C.supervisedthe project;allauthorscontributedtodiscussionsontheprojectandmanuscriptpreparation. Allauthorsreviewedthemanuscript. Additional information Competingfinancialinterests: Theauthorsdeclarenocompetingfinancialinterests. 9/9