ebook img

Glass-on-Glass Fabrication of Bottle-Shaped Tunable Micro-Lasers and Their Applications PDF

4.6 MB·
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Glass-on-Glass Fabrication of Bottle-Shaped Tunable Micro-Lasers and Their Applications

Glass-on-Glass Fabrication of Bottle-Shaped Tunable Micro-Lasers and Their Applications Jonathan M. Ward1,*, Yong Yang1,2, and S´ıle Nic Chormaic1 1Light-MatterInteractionsUnit,OkinawaInstituteofScienceandTechnologyGraduateUniversity,Onna-son, Okinawa904-0495,Japan. 2NationalEngineeringLaboratoryforFiberOpticsSensingTechnology,WuhanUniversityofTechnology,Wuhan, 430070,China. 6 *[email protected] 1 0 2 ABSTRACT n a We describe a novel method for making microbottle-shaped lasers by using a CO laser to melt Er:Yb glass onto silica 2 J microcapillariesorfibres. Thisisrealisedbythefactthatthetwoglasseshavedifferentmeltingpoints. TheCO laserpower 2 1 iscontrolledtoflowthedopedglassaroundthesilicacylinder. Inthecaseofacapillary,theresultinggeometryisahollow, 2 microbottle-shapedresonator. ThisisasimplemethodforfabricatinganumberofglassWGMlaserswithawiderangeofsizes onasingle,micron-scalestructure. TheEr:Ybdopedglassouterlayerispumpedat980nmviaataperedopticalfibreand ] s whisperinggallerymode(WGM)lasingisrecordedaround1535nm. Thisstructurefacilitatesanewwaytothermo-optically c tunethemicrolasermodesbypassinggasthroughthecapillary. ThecoolingeffectofthegasflowshiftstheWGMstowards i t shorterwavelengths,thusthermaltuningofthelasingmodesover70GHzisachieved. Resultsarefittedusingthetheoryof p hotwireanemometry,allowingtheflowratetobecalibratedwithaflowsensitivityashighas100GHz/sccm. Straintuningof o themicrolasermodesbyupto50GHzisalsodemonstrated. . s c i s y Introduction h p Thefabricationofglassopticalwhisperinggallerymicrolaserscanbeachievedinalimitednumberofways. Onemethod [ involvesmakingasinglecavitybydrawingoutaglasswirefromapieceofdopedglassandmeltingthetipofthewiretoform asphericalresonator.1 Alternatively,manysphericalresonatorscanbemadesimultaneouslybypassingparticlesofdoped 1 glassthroughafurnace.2,3 Bothofthesemethodsaretedious; inthefirstcase, onlyoneresonatorcanbemadeatatime. v 3 Inthesecondcase,individualspheresmustbeselectedandgluedtosomeotherstructure,e.g. thetipofafibreforeaseof 9 manipulation. Forbothmethods,onlyasingleresonatorisselectedandbroughttoanevanescentwaveguidecouplerforoptical 4 excitation. On-chipfabricationofalargenumberofactiveglassresonatorsispossiblebydopingthechipbeforefabrication 5 eitherwithionimplantation4orbySolgelcoating.5,6 Forpassivedevices,individualresonators-suchasamicrosphere-can 0 alsobeactivatedbycoatingusingtheSolgelprocess.7,8Theon-chipmethodisobviouslymorecomplicatedandrequiresmuch . 1 moreequipmentthanthesimpleheatingmethods,butithastheadvantagethatthecouplingbetweentheexcitationwaveguide 0 andanycavitiesonthechipcanbeeasilyachievedbymovingthechiprelativetothewaveguide. Coatingataperedopticalfiber 6 1 tipwithalayeroferbiumdopedphosphateglassandthenmeltingthetipintoaspherehasalsobeendemonstratedtoproduce : lasingmicrospheres.9,10 v Here,wepresentasimpleheatingmethodforfabricatinganumberofglasswhisperinggallerymode(WGM)laserswitha i X rangeofsizesonasinglemicron-scalestructurethatcanbeeasilymanipulatedrelativetotheexcitationwaveguideandcan,in r principle,bepackagedontoamillimetrescalechip. Weexperimentallydemonstratethecoatingoftaperedopticalfibresand a microcapillarieswithalayerofEr:Ybdopedphosphatelaserglass. Thisisachievedbythesimplefactthatthetwoglasseshave verydifferentmeltingtemperatures,around1,500◦Cforsilicaand500◦Cforthephosphateglass. TheEr:Ybdopedglassouter layerispumpedat980nmandlasingisobservedat1535nm. Microlaserswithdiametersrangingfrom22µmto232µmare madeonthesamestructure. Adesiredfeatureofanylaseristheabilitytotunethefrequencyofthelaseroutput.Tuningamicron-scalewhisperinggallery resonatorinafashionthatdoesnotaddtothefootprintofthedeviceorrequirecomplicatedfabricationisanontrivialtask. The mainapproachessofarincludetheuseofexternalheaters,11,12applicationofstress/strainviaanexternalclamp,13–15pressure tuning,16–20 electricfieldtuning,,21 chemicaletching,22,23 on-chipresistanceheating,24,25 andthermo-optictuning.26–28 Each ofthesemethodshasitsowndistinctadvantagesanddisadvantagesandthechoiceofmethoddependsultimatelyonthefinal application. Weshowthatthemicrolasersfabricatedusingtheglass-on-glasstechniquecanbeeasilytunedovertensofGHzby oneoftwomethods. Thefirstmethodisuniquetoourdevicesandisapplicabletothecapillarystructure;itreliesonthermal tuningofthelasingmodebyflowinggasthroughthecavity. Fromthismethodwedemonstratetheideaofgasflowsensing usingtheconceptofa“hotcavity”anemometer. Measurementsandcharacterisationofthesystemasagasflowsensorare presented. Thesecondmethodreliesonstraintuningandcanbeappliedtoboththetaperedfibreandthecapillarylasers. Methods Thismethodofmicrolaserfabricationcanbeappliedtoanopticalfibreorcapillaryandisthesameinbothcases. First,we taperedamicrocapillarywithanouterdiameter(OD)of350µmandaninnerdiameter(ID)of250µm,usingaCO laser,toa 2 uniformwaistwithanODof∼80µm. Next,aglasswirewasdrawnfromabulkpieceofdopedphosphateglass(Kigre). Thediameterofthedopedglasswirewastypicallyafewtensofmicrons. Thedopedglasswirewasthenplacedontopof andincontactwiththemicrocapillaryandtheCO laserbeamswereappliedagain. TheCO laserpowerwasincreaseduntil 2 2 thedopedglassflowedontothecapillary,asshowninFig. 1(a). AtthispointthedopedglasswirewasremovedandtheCO 2 laserpowerwascontrolledtoallowtheremainingdopedglasstoflowaroundthecapillary. Whenthedopedglasscompletely coveredthecapillarytheCO laserwasturnedoff. Theresultinggeometrywasahollowmicrobottle-shapedresonator. The 2 diameterofthedopedglassbottlewas170µmandthethicknessofthedopedglassattheequatorwas40µm. Thisthicklayer meansthatanyopticalmodeinthebottlecannotinteractwiththesilicaoranymaterialinsidethecapillary. Figure1. (a)Fabricationstepsformakingadopedglassmicrobottlelaseronasilicawire. Thecapillarydiameteris80µm andthefinaldiameterofthedopedglassresonatoris170µm. (b)ImageoftheresonatorshowingaWGMhighlightedby greenupconversionfluorescence. (c)LasingspectrumfromanEr:Ybdopedbottleshapedresonatoronasilicacapillary. (d) Lasingthresholdmeasurement. (e)Lasingspectraforthreedifferentmicrobottles(notthatshowninparts(a)to(d))onasingle capillarywithadiameterof42µm. Thediametersofcav1,cav2andcav3are120µm,170µmand155µm,respectively ThecapillarywasgluedontoaU-shapedholderandbroughtintocontactwithataperedopticalfibreforopticalpumping. Thetaperedfibrehadadiameterof∼1µmandwasconnectedtoa980nmdiodelaser. Whisperinggallerymodeswerevisible 2/9 duetogreenupconversionfluorescencefromtheerbiumions,seeFig. 1(b). Theoutputendofthetaperedfibrewasconnected toanopticalspectrumanalyser(OSA).AtypicallasingspectrumisshowninFig. 1(c),withlasingpeaksappearingbetween 1532nmand1540nm. Foragivenmicrobottlethespectrumcanbesinglemodeormultimodedependingonmanyfactors suchasthepositionofthetaperedfibrealongthecapillaryorthepositionofthecapillaryalongthetaper.7 Toverifythelasing behaviour, athresholdmeasurementwastaken, seeFig. 1(d). Forthismeasurementthepumplaserwasnottunedtoany particularWGM.The980nmpumplaserusedhadaratedlinewidthof2nmsoitwasassumedthatanumberofWGMswere simultaneouslyexcitedwithnocontroloverthecouplingefficiency. Assuch,thepumppowerlabledinFig. 1(d)represents thepumppowerlaunchedintothetaperedfibreanddoesnotrepresentthetruepumppowerlasingthreshold. Fig. 1(d)does, however,showaclearthresholdforthepeakoutputpower. Byrepeatingthefabricationprocessatdifferentpointsalongacapillaryitispossibletomakeastringofresonatorsinrow. Asademonstration,threeresonatorswithdiametersof120µm,170µmand155µmweremadeonthesamecapillary,which hadanODof42µm. Lasingwasexcitedineachresonatorinturnbysimplymovingthetaperedfibrealongthecapillarytothe nextresonator. Lasingwascollectedfromeachresonatoratthesamecouplingpointonthetaperedfibreandforthesamepump power,seeFig. 1(e). Thesamefabricationstepswererepeatedforanopticalfibre. Inthiscase,astandard780nmsinglemodeopticalfibre wastaperedusingaCO lasertoadiameterof20µm. Thesameerbium-dopedglasswasmeltedonthetaperedfibreatfive 2 differentpointscreatingfiveseparatecavitieswithdiametersrangingfrom42µmto232µm. Fig. 2(a)-(c)showstheWGM lasingspectratakenforthreeoftheseresonatorscollectedusingthesamepumppowerandpositiononthetaperedfibre;note thattheothertwoonlyshowedfluorescenceundertheseconditions. Apartfrommakingabottle-shapedorsphericalresonatoritwasalsopossibletomakeathincoatingofthedopedglass. Thiswasachievedbyheatingthesphereofdopedglassafterithadbeentransferredtothefibre(orcapillary). Thisadditional heatingcausedthespheretomovealongthefibreleavingbehindathinlayersurroundingthefibre. Thethicknessofthislayer isnotconstantsomicrocavitiesareformedbythesmallvariationsinthediameter,similartoSNAPstructures.29 Figure2(d) showssuchathinlayerspreadoutbetweentwomicrolasers. Thepositionoftheexcitationtaperedfibrewasmovedalongthis thinly-coatedregion. Thethicknessofthedopedlayerwasmeasuredusinganopticalmicroscopeandwasdeterminedtobe around1-2µm. AteachpositionaWGMspectrumwasobservedand,atsomepositions,lasingwasachieved. Inthefuture,a moreaccuratemeasurementofthediametercouldbemadeformthevariationsintheWGMspectraateachposition Figure2. (a-c)Lasingspectrafromthreeoffiveresonatorsmadeonthesame20µmfibre. Thespectracorrespondtobottle resonatorswithdiametersof42µm(top),60µm(middle)and160µm(bottom). (d)Theexcitationofacontinuousseriesof microresonatorsfromthicknessvariationsinathincoating. Thethincoatingwasformedbetweenthe42µmand60µm microbottles,seenatthetopandbottomofeachimagewithcorrespondinglasingspectrashownin(a)and(b). 3/9 Results Thermo-opticaltuningandgasflowsensing Hollow whispering gallery resonators, such as microcapillaries30 and microbubbles,14,31,32 have the unique feature that a materialcanfillorflowthroughtheirinnervolumeasalreadydemonstratedfordye-filledmicrobubblelasers,33capillaries34 andon-chipmicrofluidicchannels.35 ThelighttravelingintheWGMispartiallyabsorbedbytheglassandlocallyincreases thetemperatureoftheresonator’swall. Whenfluidflowsthroughtheresonatoritremovessomeoftheheatandreducesthe temperature. ThiscausesablueshiftinthefrequencyoftheWGM.InthiswaytheWGMmodescanbetunedandtheshiftcan becalibratedtorepresenttheflowrateofthefluid,withlargerflowratesgivinglargerblueshifts,seeFig. 3. Figure3. SchematicofaWGM”hotcavity”anemometer. TheexcitationoftheWGMisrepresentedbytheredarrowsinthe capillarywall. Withsufficientabsorbtion,thelightintheWGMcanlocallyheatthecapillary. Fluidflowingthroughthe capillaryisrepresentedbythegreenarrow. TheflowingfluidremovestheheatandshiftstheWGMstohigherfrequencies, representedbythemovementofthetransmissiondipontheleftofthefigure. Thisissimilartotheconceptofall-optical,hotwireanemometry,amethodwhichhasbeeninuseforsometime. Mostof thereporteddevicesarebasedonaSiO opticalwaveguide, whichistreatedasawirethatabsorbslighttherebycreating 2 heat.36–40 The wire is placed into, or in contact with, a fluid flow channel. The flow of the fluid cools the wire and this changestherefractiveindexorthelengthofthewire. SuchchangescanbereadoutopticallyusingafibreBragggrating (FBG),forexample.36–40 BecauseSiO isgenerallynotastrongabsorber,asignificantamountofopticalpowerisrequiredto 2 generateheat. Theprocesscanbeaidedbytheadditionofametal.40 Mostofthesystemsdiscussedabovearenotcapable ofmeasuringflowinarbitrarilysmallchannelssuchasonewouldfindinmicrofluidicsystems,thoughrecentlyaFBGhot wireanemometerwasusedtomeasureflowinsuchasystem.40 Althoughthesensorshowedgoodsensitivityinthelowflow rateregime,thedevicerequiredhundredsofmWofpumppower,theresolutionwaslow,andgoodthermalcontactneededto bemaintainedbetweentheopticalabsorberandtheflowchannel. Ahotcavityanemometerthatcanbeincorporatedontoa microcapillaryautomaticallyprovidesgoodthermaloverlapbetweenthesensorandtheflowchannel. ForanEr:Ybdoped resonator,significantheatisgeneratedbypumpabsorptionat980nmandanarrowlinewidthlasingmodeat1535nmisusedto measurethethermo-opticalshiftofthecavitymodesinducedbytheflowoffluidthroughthecapillary. Thisdeviceoffershigh resolution(byusingthelasingmodes)andhighsensitivity(duetothehightemperatures)withlowpumppowers. Itiswellknownthatthereareanumberoflargenon-radiativeenergytransitionsinerbium-dopedglasswhichcanbe accessed by pumping at 980 nm.41–43 These phonon transitions generate a significant amount of heat in the glass even for low pump powers; in fact up to 40% of the optical pumper power can be converted to heat. By flowing a gas/fluid throughthecapillarythisheatispartiallyremovedandtheWGMsshiftataratedeterminedbythethermo-opticalbehaviour (dn/dT =−21×10−7K−1)andthethermalcontraction(dr/dT =114×10−7K−1)oftheglass. Basedonthecoefficients givenbythemanufacturer44thethermalshiftrateoftheWGMsshouldbearound0.0145nm/K(or1.9GHz/K)at1535nm, wheretheshiftisdefinedas ∆λ =(α+β)∆T, (1) and∆T isthechangeincavitytemperature. ThecapillarywiththemicrolasershowninFigs. 1(a)and1(b)wasconnectedtoa sourceofpressurisedairviaapressureregulator. Theoutputofthecapillarywasconnectedtoamassflowmeter. Theshiftof thelasingpeakswasrecordedasthepumppowerwasincreased. Thiswasdonewithnoairflowingthroughthecapillaryfor increasingflowrates,withtheresultsplottedinFig. 4(a). Forthisparticularcavity,theshiftrateoftheWGMsgoesfrom-16.2 GHz/mWto-4.1GHz/mWforzeroflowand15sccm,respectively. UsingEq. 1thechangeintemperatureofthecavityforthe 4/9 maximumshiftineachcasecanbeestimatedandisplottedinFig. 4(b). Withnogasflowthetemperatureincreasesby66◦C, whereaswithamaximumflowrateof15sccmthemaximumtemperatureincreasewasreducedto13◦C.Next,theinputpump powerwasfixedandtheinputpressuretothecapillarywasincreasedwhilethepositionsoftheWGMsinthetransmittedsignal wererecordedusingtheopticalspectrumanalyser. AstheflowrateincreasedtheWGMswereobservedtoshifttowardsshorter wavelengthsduetothecoolingeffectoftheairflowthroughthecapillary,asdiscussedabove. Thisprocedurewasrepeatedfor increasingpumppowersandtheresultsareplottedinFig. 4(c). Figure4. (a)Theshiftrateofthe1535nmlasingWGMasfunctionofinputpumppowerfordifferentgasflowrates. (b)The calculatedincreaseincavitytemperatureandcorrespondingWGMshifts. (c)Theshiftofthe1535nmlasingWGMasfunction ofthemeasuredflowratefordifferentpumppowers. (d)ThesensitivityoftheWGMshiftrateasfunctionofmeasuredflow rate,calculatedfromthederivativeofthefitsin(c). Fromthetheoryofopticalhotwireanemometry,36,40theheatlost,H,fromahotwireisrelatedtotheflowrate,ν,by H=(A+Bνn)∆T (2) a whereAandBareempiricalconstantsandnisafittingparameter(usually0.5forasimplehotwire). Certainamountofpump powerisusedtogeneratethelasingsignalsothecavityisalreadyheated,thustheinitialtemperatureofthecavityisnotknown. Evenformodestpumpingtheinitialcavitytemperaturecanbeeasilygreaterthan100◦C.45Therefore,wedefine∆T =[T (ν)- a a T (ν=0)],i.e. thedifferencebetweenthecavitytemperatureatzeroflowandthecavitytemperatureatsomeflowrate,ν. Based a onthelawofenergyconservationtheheatlostmustequaltheheatputin,therefore,inthecaseoftheWGMresonator H=Iη(Q/Q ), (3) abs whereIistheinputpower,η isthecouplingefficiency,Qisthequalityfactorofthecavity,andQ istheabsorption-limited abs cavityqualityfactorgivenby 2πn eff Q = , (4) abs σλ whereσ istheabsorptionlossofthematerial,λ isthewavelengthandn istheeffectiverefractiveindex. σ wasestimated eff fromtheglassmaterialpropertiesprovidedbythemanufacturer44usinganabsorbingionconcentrationof3×1021ions/cm3 5/9 andanabsorptioncross-sectionof1.7×1020/cm2. ThecalculatedQ =1.2×106andtheloadedcavityQwasassumedtobe abs 100timeslessthanthis. Todetermine∆T ,thechangeintemperatureforeachpumppowerwasdeterminedfromthemaximum a shiftandEq. 1. TheWGMshiftintermsofthegasflowratecanthenbewrittenas36,40 δλ =λ(α+β)[H/(A+Bνn)−∆T ]. (5) a TherecordedWGMshiftswerefittedusingEq. 5,seeFig. 4(c). The980nmpumplaserusedintheexperimenthadarated linewidthof2nm,thereforethecouplingefficiencyofthepumptoaspecificWGMwasimpossibletoquantify. Forfittingwe assumedacouplingefficiencyof20%. Thisvalueisjustifiedbythefactthatweobserveabouta20-30%dipintransmitted power whenthetaperandmicrobottle makecontact. Thefittingparameter n wasset to0.84. Usingtheseparametersthe correspondingfitsagreewiththeobservedshift. ThesensitivitiesoftheWGMshiftratesaredeterminedbydifferentiatingthe fitsinFig. 4(c)andareplottedinFig. 4(d). Straintuning Straintuningofmicroresonatorshasbeenreportedpreviously;itisaneffective,fastandstabletuningmethod. Straintuningof anerbium-dopedmicrobottlelaserwasreportedbyPo¨llingeretal.46 However,etchingusinghydrofluoricacidwasneeded toaccessthecoreofanerbium-dopedfibrewhichwassubsequentlymeltedbyaCO lasertoformthebottleshape. Inour 2 work,noetchingisrequiredandalargenumberofmicrolaserswithawiderangeofsizescanbemadequicklyandeasily. The 20 µmdiameterfibrewiththefivemicrolasers,asdescribedearlier,washeldonastagethatallowedtheU-shapedmount holdingthefibretobeextended,therebyputtingstrainonthefibre. Thestagewasfittedwithapiezostackthatprovided17µm displacement. The42µmdiametermicrolaserwascoupledtothetaperedopticalfibreanditslasingoutputwasmonitored whileavoltagewasappliedtothepiezostack. Thesameprocedurewasappliedtothe42µmcapillarysupportingthethree microlasers;inthiscasethe120µmdiametermicrolaserwasselectedfortuning. Thetuningcurvesforbothmicrolasersare showninFig. 5. Figure5. Straintuningofa42µmdiametermicrolaseronanopticalfibrewithadiameterof20µmandstraintuningofa 120µmdiametermicrolaseronacapillarywithadiameterof42µm. Redcurves: increasingpiezovoltage,blackcurves: decreasingpiezovoltage Inbothcasesthetuningcurvesexperienceahysteresisduetotheintrinsicbehaviourofthepiezoactuator. Thetaperedfibre lasershowedalargertuningofaround60GHz,mostlikelyduetoitssmallerdiameter. However,anumberoffactorscould influencethefinaltuningrange,e.g. thediameterofthetaperandtheinitialtensiononthetaper. Forthecapillary,thediameter andthewallthicknessmayalsoplayarole. Thetaperorcapillaryandthedopedglassmicrobottlesarenotasinglestructureso thismayacttofurtherreducethefinaltuningrange. Nevertheless,asignificantlyusabletuningrangewasachieved. Discussion Wehavepresentedamethodforcreatingglass-on-glassstructures,whereoneglassismeltedandallowedtoflowontoanother tightlycurvedglassstructure.Thisisachievedbythefactthatthetwoglasshavesignificantlydifferentmeltingpoints;therefore, thismethodshouldalsobeapplicabletoothersoftglasses. Forexample,highindexglassessuchasleadsilicateortellurite 6/9 couldbeformedintosmallcavitiesonataperedfibrewithdiametersaround20µm. Thenumberofresonatorsonasinglefibre dependsonthesizeoftheresonatorandlengthofthefibre. Sofarwecanplaceeachcavityapproximately100µmapart. One couldenvisionanumberoffibresmountedonachipcontainingwaveguidesaddressingeachresonator. Theabilitytomakehollow,microbottle-shaped,doped-glassmicrolasersallowsustoinvestigateanewmethodofthermo- opticaltuningwherethelasingmodescanbetunedbysimplyflowingairthroughthecavity. Thethicknessofthecapillary wallandathick,doped-glasslayernegatesanyredshiftoftheopticalmodeinducedbyincreasesininternalpressure. We demonstratedthatthemodeshiftscanbecalibratedtorepresentthegasflowrate,thuscreatinganintegrated,all-optical,flow sensor with low power and high resolution. The measurement of liquid flow is also possible with this setup and we have seenawaterflowratesensitivityof1GHz/(nL/sec)inacapillarywithanIDof100 µm. Earlytestsofstraintuningalso showpromisingresultsandfurtherstudiesshouldrevealthedependenceofthetuningrangeonthefibrediameter,sizeofthe resonatorandwallthicknessofthemicrocapillary. Infutureworkweplantoexplorethismethodfurtherusingvarioussoft glassesandstructurestostudythepossibilityofcreatingnewandinterestingglass-on-glassdevices. Forexample,itmaybe possibletoflowmeltedglassintochannelswhichhavebeenpre-etchedinsilicaglass. References 1. Chen,S.,Sun,T.,Grattan,K.,Annapurna,K.&Sen,R. CharacteristicsofErandEr–Yb–Crdopedphosphatemicrosphere fibrelasers. OpticsCommunications282,3765–3769(2009). 2. Lissillour,F.etal. Whispering-gallerymodeNd-ZBLANmicrolasersat1.05µm. ProceedingsofSPIEConferenceon InfraredGlassOpticalFibersandTheirApplications3416,150–156(1998). 3. Ward, J. M., Wu, Y., Khalfi, K. & Nic Chormaic, S. Short vertical tube furnace for the fabrication of doped glass microspherelasers. TheReviewofScientificInstruments81,073106(2010). 4. Min,B.etal. Erbium-implantedhigh-Qsilicatoroidalmicrocavitylaseronasiliconchip. PhysicalReviewA70,1–12 (2004). 5. Yang,L.,Carmon,T.,Min,B.,Spillane,S.M.&Vahala,K.J. Erbium-dopedandRamanmicrolasersonasiliconchip fabricatedbythesol-gelprocess. AppliedPhysicsLetters86,1–3(2005). 6. Zheng,B.etal. Achip-basedmicrocavityderivedfrommulti-componenttelluriteglass. JournalofMaterialsChemistryC 3,5141–5144(2015). 7. Yang,L.&Vahala,K.J. Gainfunctionalizationofsilicamicroresonators. OpticsLetters28,592–4(2003). 8. Fan,H.,Hua,S.,Jiang,X.&Xiao,M. Demonstrationofanerbium-dopedmicrospherelaseronasiliconchip. Laser PhysicsLetters10,105809(2013). 9. Dong,C.-H.etal. Low-ThresholdMicrolaserinEr: YbPhosphate. IEEEPhotonicsTechnologyLetters20,342–344 (2008). 10. Dong,C.etal. ObservationofmicrolaserwithEr-dopedphosphateglasscoatedmicrospherepumpedby780nm. Optics Communications283,5117–5120(2010). 11. Chiba,A.,Fujiwara,H.,Hotta,J.-i.,Takeuchi,S.&Sasaki,K. ResonantFrequencyControlofaMicrosphericalCavityby TemperatureAdjustment. JapaneseJournalofAppliedPhysics43,6138–6141(2004). 12. Suter,J.D.,White,I.M.,Zhu,H.&Fan,X. Thermalcharacterizationofliquidcoreopticalringresonatorsensors. Applied Optics46,389–96(2007). 13. Klitzing,W.V.,Long,R.,Ilchenko,V.S.,Hare,J.&Brossel,L.K. Tunablewhisperinggallerymodesforspectroscopy andCQEDexperiments. NewJournalofPhysics3,1–14(2001). 14. Sumetsky,M.,Dulashko,Y.&Windeler,R.S. Opticalmicrobubbleresonator. Opticsletters35,898–900(2010). 15. Madugani,R.etal. TerahertztuningofwhisperinggallerymodesinaPDMSstand-alone,stretchablemicrosphere. Optics Letters37,4762–4764(2012). 16. Ioppolo,T.&O¨tu¨gen,M.V. Pressuretuningofwhisperinggallerymoderesonators. JournaloftheOpticalSocietyof AmericaB24,2721(2007). 17. Henze,R.,Seifert,T.,Ward,J.&Benson,O. Tuningwhisperinggallerymodesusinginternalaerostaticpressure. Optics letters36,4536–8(2011). 18. Weigel,T.,Esen,C.,Schweiger,G.&Ostendorf,A. Whisperinggallerymodepressuresensing. ProceedingsofSPIE- TheInternationalSocietyforOpticalEngineering8439,1–6(2012). 7/9 19. Martin,L.L.etal. Highpressuretuningofwhisperinggallerymoderesonancesinaneodymium-dopedglassmicrosphere. JournaloftheOpticalSocietyofAmericaB30,3254(2013). 20. Henze, R., Ward, J. M. & Benson, O. Temperature independent tuning of whispering gallery modes in a cryogenic environment. OpticsExpress21,675–80(2013). 21. Ioppolo, T., Ayaz,U.&Otu¨gen, M.V. Tuningofwhisperinggallerymodesofsphericalresonatorsusinganexternal electricfield. OpticsExpress17,16465–79(2009). 22. White,I.M.,Hanumegowda,N.M.,Oveys,H.&Fan,X. Tuningwhisperinggallerymodesinopticalmicrosphereswith chemicaletching. OpticsExpress13,10754–9(2005). 23. Henze,R.etal. Fine-tuningofwhisperinggallerymodesinon-chipsilicamicrodiskresonatorswithinafullspectralrange. AppliedPhysicsLetters102,10–14(2013). 24. Armani,D.,Min,B.,Martin,A.&Vahala,K.J. Electricalthermo-optictuningofultrahigh-Qmicrotoroidresonators. AppliedPhysicsLetters85,5439(2004). 25. Shainline,J.M.,Fernandes,G.,Liu,Z.&Xu,J. Broadtuningofwhispering-gallerymodesinsiliconmicrodisks. Optics Express18,14345–52(2010). 26. Dong,C.-H.etal. Fabricationofhigh-Qpolydimethylsiloxaneopticalmicrospheresforthermalsensing. AppliedPhysics Letters94,231119(2009). 27. Li,B.B.etal. Onchip,high-sensitivitythermalsensorbasedonhigh-Qpolydimethylsiloxane-coatedmicroresonator. AppliedPhysicsLetters96,2008–2011(2010). 28. Watkins,A.,Ward,J.&NicChormaic,S. Thermo-OpticalTuningofWhisperingGalleryModesinErbium:Ytterbium DopedGlassMicrospherestoArbitraryProbeWavelengths. JapaneseJournalofAppliedPhysics51,052501(2012). 29. Sumetsky,M.&Fini,J.M. Surfacenanoscaleaxialphotonics. OpticsExpress19,3–14(2011). 30. Fan, X., White, I. M., Zhu, H., Suter, J. D. & Oveys, H. ¡title¿Overview of novel integrated optical ring resonator bio/chemicalsensors¡/title¿. ProceedingsofSPIE-LaserResonatorsandBeamControlIX6452,64520M1–20(2007). 31. Yang,Y.,Ward,J.&NicChormaic,S. Quasi-dropletmicrobubblesforhighresolutionsensingapplications. Opticsexpress 22,6881–98(2014). 32. Ward,J.M.,Dhasmana,N.&NicChormaic,S. HollowCore,WhisperingGalleryResonatorSensors1935,14–16(2014). 33. Lee,W.etal. Aquasi-dropletoptofluidicringresonatorlaserusingamicro-bubble. AppliedPhysicsLetters99,091102 (2011). 34. Wu,X.,Sun,Y.,Suter,J.D.&Fan,X. Singlemodecoupledoptofluidicringresonatordyelasers. AppliedPhysicsLetters 94,241109(2009). 35. Lee,W.etal. Tunablesinglemodelasingfromanon-chipoptofluidicringresonatorlaser. AppliedPhysicsLetters98, 061103(2011). 36. Gao,S.,Zhang,A.P.,Tam,H.-Y.,Cho,L.H.&Lu,C. All-opticalfiberanemometerbasedonlaserheatedfiberBragg gratings. OpticsExpress19,10124–10130(2011). 37. Cheng,J.,Zhu,W.,Huang,Z.&Hu,P. ExperimentalandsimulationstudyonthermalgasflowmeterbasedonfiberBragg gratingcoatedwithsilverfilm. SensorsandActuatorsA:Physical228,23–27(2015). 38. Cashdollar, L.J.&Chen, K.P. FiberBragggratingflowsensorspoweredbyin-fiberlight. IEEESensorsJournal5, 1327–1331(2005). 39. Wang,X.etal. Hot-WireAnemometerBasedonSilver-CoatedFiberBraggGratingAssistedbyNo-CoreFiber. IEEE PhotonicsTechnologyLetters25,2458–2461(2013). 40. Li,Y.,Yan,G.,Zhang,L.&He,S. Microfluidicflowmeterbasedonmicro”hot-wire”sandwichedFabry-Perotinterferom- eter. OpticsExpress23,9483–9493(2015). 41. Cai,Z.,Chardon,A.,Xu,H.,Patrice,F.&St,G.M. Lasercharacteristicsat1535nmandthermaleffectsofanEr: Yb phosphateglassmicrochippumpedbyTi: sapphirelaser. OpticsCommunications203,301–313(2002). 42. O’Shea, D. G. et al. Upconversion channels in Er3+:ZBLALiP fluoride glass microspheres. The European Physical JournalAppliedPhysics40,181–188(2007). 43. Ward,J.M.,Wu,Y.&NicChormaic,S. Thermo-opticaltuningofwhisperinggallerymodesinerbiumdopedmicrospheres. AppliedPhysicsB:LasersandOptics100,847–850(2010). 8/9 44. http://kigre.com/products.html?glass. 45. Ward,J.M.,Fe´ron,P.&NicChormaic,S. Ataper-fusedmicrosphericallasersource. IEEEPhotonicsTechnologyLetters 20,392–394(2008). 46. Po¨llinger,M.,O’Shea,D.,Warken,F.&Rauschenbeutel,A. Ultrahigh-QTunableWhispering-Gallery-ModeMicrores- onator. PhysicalReviewLetters103,1–4(2009). Acknowledgments ThisworkwasfundedbytheOkinawaInstituteofScienceandTechnologyGraduateUniversity. Author contributions statement J.M.W.conceivedtheexperimentanddidthedataanalysis;J.M.W.andY.Y.conductedthemeasurements;S.N.C.supervisedthe project;allauthorscontributedtodiscussionsontheprojectandmanuscriptpreparation. Allauthorsreviewedthemanuscript. Additional information Competingfinancialinterests: Theauthorsdeclarenocompetingfinancialinterests. 9/9

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.