ebook img

Glass-Ceramic Technology PDF

434 Pages·2019·41.98 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Glass-Ceramic Technology

Glass-CeramicTechnology Glass-Ceramic Technology ThirdEdition WolframHöland GeorgeH.Beall Copyright©2020byTheAmericanCeramicSociety.Allrightsreserved. PublishedbyJohnWiley&Sons,Inc.,Hoboken,NewJersey. PublishedsimultaneouslyinCanada. EditionHistory JohnWiley&SonsInc.(2e,2012). JohnWiley&SonsInc.(1e,2002) Allrightsreserved.Nopartofthispublicationmaybereproduced,storedinaretrievalsystem,ortransmitted,inany formorbyanymeans,electronic,mechanical,photocopying,recordingorotherwise,exceptaspermittedbylaw. Adviceonhowtoobtainpermissiontoreusematerialfromthistitleisavailableathttp://www.wiley.com/go/ permissions. TherightofWolframHölandandGeorgeH.Bealltobeidentifiedastheauthorsofthisworkhasbeenassertedin accordancewithlaw. RegisteredOffice JohnWiley&Sons,Inc.,111RiverStreet,Hoboken,NJ07030,USA EditorialOffice 111RiverStreet,Hoboken,NJ07030,USA Fordetailsofourglobaleditorialoffices,customerservices,andmoreinformationaboutWileyproductsvisitusat www.wiley.com. Wileyalsopublishesitsbooksinavarietyofelectronicformatsandbyprint-on-demand.Somecontentthatappears instandardprintversionsofthisbookmaynotbeavailableinotherformats. LimitofLiability/DisclaimerofWarranty Inviewofongoingresearch,equipmentmodifications,changesingovernmentalregulations,andtheconstantflowof informationrelatingtotheuseofexperimentalreagents,equipment,anddevices,thereaderisurgedtoreviewand evaluatetheinformationprovidedinthepackageinsertorinstructionsforeachchemical,pieceofequipment, reagent,ordevicefor,amongotherthings,anychangesintheinstructionsorindicationofusageandforadded warningsandprecautions.Whilethepublisherandauthorshaveusedtheirbesteffortsinpreparingthiswork,they makenorepresentationsorwarrantieswithrespecttotheaccuracyorcompletenessofthecontentsofthisworkand specificallydisclaimallwarranties,includingwithoutlimitationanyimpliedwarrantiesofmerchantabilityorfitness foraparticularpurpose.Nowarrantymaybecreatedorextendedbysalesrepresentatives,writtensalesmaterialsor promotionalstatementsforthiswork.Thefactthatanorganization,website,orproductisreferredtointhisworkas acitationand/orpotentialsourceoffurtherinformationdoesnotmeanthatthepublisherandauthorsendorsethe informationorservicestheorganization,website,orproductmayprovideorrecommendationsitmaymake.This workissoldwiththeunderstandingthatthepublisherisnotengagedinrenderingprofessionalservices.Theadvice andstrategiescontainedhereinmaynotbesuitableforyoursituation.Youshouldconsultwithaspecialistwhere appropriate.Further,readersshouldbeawarethatwebsiteslistedinthisworkmayhavechangedordisappeared betweenwhenthisworkwaswrittenandwhenitisread.Neitherthepublishernorauthorsshallbeliableforanyloss ofprofitoranyothercommercialdamages,includingbutnotlimitedtospecial,incidental,consequential,orother damages. LibraryofCongressCataloging-in-PublicationData Names:Höland,Wolfram,author.|Beall,G.H.,author. Title:Glass-ceramictechnology/WolframHöland,GeorgeH.Beall. Description:Thirdedition.|Hoboken,NewJersey:Wiley-AmericanCeramic Society,[2020]|Includesbibliographicalreferencesandindex.| Identifiers:LCCN2019015638(print)|LCCN2019017325(ebook)|ISBN 9781119423713(AdobePDF)|ISBN9781119423706(ePub)|ISBN9781119423690 (hardcover) Subjects:LCSH:Glass-ceramics. Classification:LCCTP862(ebook)|LCCTP862.H652019(print)|DDC 620.1/44–dc23 LCrecordavailableathttps://lccn.loc.gov/2019015638 CoverDesign:Wiley CoverImage:CourtesyofWolframHöland Setin10/12ptWarnockProbySPiGlobal,Chennai,India PrintedinUnitedStatesofAmerica 10 9 8 7 6 5 4 3 2 1 v Contents IntroductiontotheThirdEdition xi History xiii 1 PrinciplesofDesigningGlass-CeramicFormation 1 1.1 AdvantagesofGlass-CeramicFormation 1 1.1.1 ProcessingProperties 1 1.1.2 ThermalProperties 2 1.1.3 OpticalProperties 3 1.1.4 ChemicalProperties 3 1.1.5 BiologicalProperties 3 1.1.6 MechanicalProperties 3 1.1.7 ElectricalandMagneticProperties 3 1.2 FactorsofDesign 4 1.3 CrystalStructuresandMineralProperties 4 1.3.1 CrystallineSilicates 4 1.3.1.1 Nesosilicates 5 1.3.1.2 Sorosilicates 5 1.3.1.3 Cyclosilicates 5 1.3.1.4 Inosilicates 6 1.3.1.5 Phyllosilicates 7 1.3.1.6 Tectosilicates 7 1.3.2 Phosphates 27 1.3.2.1 Apatite 27 1.3.2.2 OrthophosphatesandDiphosphates 29 1.3.2.3 Metaphosphates 30 1.3.3 Oxides 31 1.3.3.1 TiO 32 2 1.3.3.2 ZrO 32 2 1.3.3.3 MgAl O (Spinel) 33 2 4 1.4 Nucleation 34 1.4.1 HomogeneousNucleation 36 1.4.2 HeterogeneousNucleation 38 1.4.3 KineticsofHomogeneousandHeterogeneousNucleation 39 1.4.4 LimitsoftheClassicalNucleationandCrystallizationTheory(CNT)and NewApproaches 42 1.4.5 ExamplesofApplyingtheNucleationTheoryintheDevelopmentof Glass-Ceramics 44 vi Contents 1.4.5.1 Internal(Volume)Nucleation 44 1.4.5.2 SurfaceNucleation 48 1.4.5.3 Temperature–Time-TransformationDiagrams 50 1.5 CrystalGrowth 53 1.5.1 PrimaryGrowth 54 1.5.2 AnisotropicGrowth 55 1.5.3 SurfaceGrowth 61 1.5.4 DendriticandSpheruliticCrystallization 62 1.5.4.1 Phenomenology 62 1.5.4.2 DendriticandSpheruliticCrystallizationApplications 64 1.5.5 SecondaryGrainGrowth 64 2 CompositionSystemsforGlass-Ceramics 67 2.1 AlkalineandAlkalineEarthSilicates 67 2.1.1 SiO –Li O(LithiumDisilicate) 67 2 2 2.1.1.1 StoichiometricComposition 67 2.1.1.2 NonstoichiometricMulticomponentCompositions 69 2.1.2 SiO –BaO(Sanbornite) 78 2 2.1.2.1 StoichiometricBariumDisilicate 78 2.1.2.2 MulticomponentGlass-Ceramics 79 2.2 Aluminosilicates 80 2.2.1 SiO –Al O (Mullite) 80 2 2 3 2.2.2 SiO –Al O –Li O(β-QuartzSolidSolution,β-SpodumeneSolidSolution) 82 2 2 3 2 2.2.2.1 β-QuartzSolidSolutionGlass-Ceramics 82 2.2.2.2 β-SpodumeneSolidSolutionGlass-Ceramics 86 2.2.3 SiO –Al O –Na O(Nepheline) 88 2 2 2 2 2.2.4 SiO –Al O –Cs O(Pollucite) 91 2 2 3 2 2.2.5 SiO –Al O –MgO(Cordierite,Enstatite,Forsterite) 93 2 2 3 2.2.5.1 CordieriteGlass-Ceramics 93 2.2.5.2 EnstatiteGlass-Ceramics 97 2.2.5.3 ForsteriteGlass-Ceramics 99 2.2.6 SiO –Al O –CaO(Wollastonite) 101 2 2 3 2.2.7 SiO –Al O –ZnO(Zn-Stuffedβ-Quartz,Willemite-Zincite) 103 2 2 3 2.2.7.1 Zinc-Stuffedβ-QuartzGlass-Ceramics 103 2.2.7.2 WillemiteandZinciteGlass-Ceramics 105 2.2.8 SiO –Al O –ZnO–MgO(Spinel,Gahnite) 105 2 2 3 2.2.8.1 SpinelGlass-Ceramicwithoutβ-Quartz 105 2.2.8.2 β-Quartz-SpinelGlass-Ceramics 107 2.2.9 SiO –Al O –CaO(SlagSital) 108 2 2 3 2.2.10 SiO –Al O –K O(Leucite) 111 2 2 3 2 2.2.11 SiO –Ga O –Al O –Li O–Na O–K O(Li–Al–GallateSpinel) 114 2 2 3 2 3 2 2 2 2.2.12 SiO –Al O –SrO–BaO(Sr–Feldspar–Celsian) 115 2 2 3 2.3 Fluorosilicates 118 2.3.1 SiO –(R3+) O –MgO–(R2+)O–(R+) O–F(Mica) 118 2 2 3 2 2.3.1.1 AlkalinePhlogopiteGlass-Ceramics 119 2.3.1.2 Alkali-FreePhlogopiteGlass-Ceramics 124 2.3.1.3 TetrasilicicMicaGlass-Ceramic 125 2.3.2 SiO –Al O –MgO–CaO–ZrO –F(Mica,Zirconia) 126 2 2 3 2 2.3.3 SiO –CaO–R O–F(Canasite) 128 2 2 Contents vii 2.3.4 SiO –MgO–CaO–(R+) O–F(Amphibole) 132 2 2 2.4 Silicophosphates 136 2.4.1 SiO –CaO–Na O–P O (Apatite) 136 2 2 2 5 2.4.2 SiO –MgO–CaO–P O –F(Apatite,Wollastonite) 137 2 2 5 2.4.3 SiO –MgO–Na O–K O–CaO–P O (Apatite) 138 2 2 2 2 5 2.4.4 SiO –Al O –MgO–CaO–Na O–K O–P O –F(Mica,Apatite) 139 2 2 3 2 2 2 5 2.4.5 SiO –MgO–CaO–TiO –P O (Apatite,MagnesiumTitanate) 143 2 2 2 5 2.4.6 SiO –Al O –CaO–Na O–K O–P O –F(NeedlelikeApatite) 144 2 2 3 2 2 2 5 2.4.6.1 FormationofNeedlelikeApatiteasaParallelReactiontoRhenanite 147 2.4.6.2 FormationofNeedlelikeApatitefromDisorderedSphericalFluoroapatite 151 2.4.7 SiO –Al O –CaO–Na O–K O–P O –F/Y O ,B O (ApatiteandLeucite) 152 2 2 3 2 2 2 5 2 3 2 3 2.4.7.1 FluoroapatiteandLeucite 152 2.4.7.2 SilicateOxyapatiteandLeucite 153 2.4.8 SiO –CaO–Na O–P O –F(Rhenanite) 156 2 2 2 5 2.5 IronSilicates 158 2.5.1 SiO –Fe O –CaO 158 2 2 3 2.5.2 SiO –Al O –FeO–Fe O –K O(Mica,Ferrite) 159 2 2 3 2 3 2 2.5.3 SiO –Al O –Fe O –(R+) O–(R2+)O(Basalt) 160 2 2 3 2 3 2 2.6 Phosphates 163 2.6.1 P O –CaO(Metaphosphates) 163 2 5 2.6.2 P O –CaO–TiO 166 2 5 2 2.6.3 P O –Na O–BaOandP O –TiO –WO 167 2 5 2 2 5 2 3 2.6.3.1 P O –Na O–BaOSystem 167 2 5 2 2.6.3.2 P O –TiO –WO System 167 2 3 2 3 2.6.4 P O –Al O –CaO(Apatite) 167 2 5 2 3 2.6.5 P O –B O –SiO 169 2 5 2 3 2 2.6.6 P O –SiO –Li O–ZrO 170 2 5 2 2 2 2.6.6.1 Glass-CeramicsContaining16wt%ZrO 171 2 2.6.6.2 Glass-CeramicsContaining20wt%ZrO 171 2 2.6.7 P O –FeO–Na O(Pyrophosphate) 174 2 5 2 2.7 IonExchangeinGlass-Ceramics 174 2.8 RareEarth-DopedLight-TransmittingGlass-Ceramics 186 2.8.1 Ce:YAGGlass-CeramicsforWhiteLEDs 186 2.8.2 Eu,Dy:SrAl O TransparentGlass-CeramicswithLongPhosphorescenceandHigh 2 4 Brightness 188 2.8.3 Eu2+-Activatedβ-Ca SiO andCa Si O GreenandRedPhosphorsforWhite 2 4 3 2 7 LEDs 191 2.8.4 Transparent(Er,Yb)NbO -β-QuartzSolidSolutionGlass-Ceramics 193 4 2.9 ExtensionofGlass-CeramicSystemsDevelopedontheBasisofMultifoldNucleation andCrystallizationMechanisms 193 2.9.1 Sr-apatite–Leucite/Pollucite/Rb-leucite 194 2.9.1.1 InternalNucleationandCrystallization 194 2.9.1.2 InternalMechanismsCombinedwithSurfaceNucleationandCrystallization 195 2.9.2 LithiumDisilicate–ApatiteGlass-Ceramic 197 2.9.3 LithiumDisilicateandCesiumAluminosilicateGlass-Ceramics 203 2.9.4 LithiumDisilicate-Diopside/WollastoniteGlass-Ceramic 205 2.9.5 LithiumDisilicate-Niobate/TantalateGlass-Ceramic 207 2.9.6 Quartz-LithiumDisilicateGlass-Ceramic 207 2.9.7 TransparentGlass-CeramicsBasedonLithiumDisilicateandPetalite 209 viii Contents 2.10 OtherSystems 210 2.10.1 Perovskite-TypeGlass-Ceramics 210 2.10.1.1 SiO –Nb O –Na O–(BaO) 210 2 2 5 2 2.10.1.2 SiO –Al O –TiO –PbO 211 2 2 3 2 2.10.1.3 SiO –Al O –K O–Ta O –Nb O 212 2 2 3 2 2 5 2 5 2.10.2 SiO –B O –TiO –La O System 213 2 2 3 2 2 3 2.10.3 TransparentandHighlyCrystallineBaAl O Glass-Ceramics 213 4 7 2.10.4 ChalcogenideGlass-Ceramics 214 2.10.5 Ilmenite-Type(SiO –Al O –Li O–Ta O )Glass-Ceramics 214 2 2 3 2 2 5 2.10.6 B O –BaFe O (BariumHexaferrite)or(BaFe O )BariumFerrite 214 2 3 12 19 10 15 2.10.7 SiO –Al O –BaO–TiO (BariumTitanate) 215 2 2 3 2 2.10.8 Bi O –SrO–CaO–CuO 216 2 3 3 MicrostructureControl 217 3.1 SolidStateReactions 217 3.1.1 IsochemicalPhaseTransformation 217 3.1.2 ReactionsBetweenPhases 218 3.1.3 Exsolution 218 3.1.4 UseofPhaseDiagramstoPredictGlass-CeramicAssemblages 218 3.2 MicrostructureDesign 219 3.2.1 NanocrystallineMicrostructures 219 3.2.2 CellularMembraneMicrostructures 221 3.2.3 Coast-and-IslandMicrostructure 222 3.2.4 DendriticMicrostructures 225 3.2.5 RelictMicrostructures 227 3.2.6 House-of-CardsMicrostructures 228 3.2.6.1 NucleationReactions 229 3.2.6.2 PrimaryCrystalFormationandMicaPrecipitation 229 3.2.7 Cabbage-HeadMicrostructures 229 3.2.8 AcicularInterlockingMicrostructures 235 3.2.9 LamellarTwinnedMicrostructures 237 3.2.10 PreferredCrystalOrientation 238 3.2.11 CrystalNetworkMicrostructures 240 3.2.12 NatureasanExample 242 3.2.13 Nanocrystals 242 3.3 ControlofKeyProperties 243 3.3.1 General 243 3.3.2 MultifoldNucleationandCrystallization 245 3.3.2.1 ControlofMechanicalandThermalProperties 245 3.3.2.2 ControlofOpticalandThermalProperties 245 3.3.2.3 ControlofMechanicalandOpticalProperties 246 3.3.2.4 ControlofMechanicalandMagneticProperties 246 3.3.2.5 ControlofBiologicalandMechanicalProperties 246 3.4 MethodsandMeasurements 246 3.4.1 ChemicalSystemandCrystallinePhases 246 3.4.2 DeterminationofCrystalPhases 247 3.4.3 KineticProcessofCrystalFormation 249 3.4.4 DeterminationofMicrostructure 252 3.4.5 Mechanical,Optical,Electrical,Chemical,andBiologicalProperties 252 Contents ix 3.4.5.1 OpticalPropertiesandChemicalCompositionofGlass-Ceramics 254 3.4.5.2 MechanicalPropertiesandMicrostructureofGlass-Ceramics 254 3.4.5.3 ElectricalProperties 256 3.4.5.4 ChemicalProperties 256 3.4.5.5 BiologicalProperties 257 4 ApplicationsofGlass-Ceramics 259 4.1 TechnicalApplications 259 4.1.1 Radomes 259 4.1.2 PhotosensitiveandEtchedPatternedMaterials 259 ® ® 4.1.2.1 Fotoform andFotoceram 259 ® 4.1.2.2 Foturan 262 4.1.2.3 AdditionalProducts 265 4.1.3 MachinableGlass-Ceramics 265 ® ® 4.1.3.1 MACOR andDICOR 265 4.1.3.2 VitronitTM 268 4.1.3.3 PhotoveelTM 269 4.1.4 MagneticMemoryDiskSubstrates 269 4.1.5 LiquidCrystalDisplays 273 4.2 ConsumerApplications 273 4.2.1 β-SpodumeneSolid-SolutionGlass-Ceramic 273 4.2.2 β-QuartzSolid-SolutionGlass-Ceramic 274 4.3 OpticalApplications 279 4.3.1 TelescopeMirrors 279 4.3.1.1 RequirementsforTheirDevelopment 279 ® 4.3.1.2 Zerodur Glass-Ceramics 279 4.3.2 IntegratedLensArrays 281 4.3.3 ApplicationsforLuminescentGlass-Ceramics 283 4.3.3.1 Cr-DopedMulliteforSolarConcentrators 283 4.3.3.2 Cr-DopedGahniteSpinelforTunableLasersandOpticalMemoryMedia 286 4.3.3.3 Rare-EarthDopedOxyfluoridesforAmplification,Upconversion,andQuantum Cutting 287 4.3.3.4 Chromium(Cr4+)-DopedForsterite,β-Willemite,andOtherOrthosilicatesforBroad WavelengthAmplification 293 4.3.3.5 Ni2+-DopedGallateSpinelforAmplificationandBroadbandInfraredSources 295 4.3.3.6 YAGGlass-CeramicPhosphorforWhiteLED 300 4.3.4 OpticalComponents 300 4.3.4.1 Glass-CeramicsforFiberBraggGratingAthermalization 300 4.3.4.2 Laser-InducedCrystallizationforOpticalGratingsandWaveguides 306 4.3.4.3 Glass-CeramicFerruleforOpticalConnectors 307 4.3.4.4 ApplicationsforTransparentZnOGlass-CeramicswithControlledInfrared AbsorbanceandMicrowaveSusceptibility 308 4.4 MedicalandDentalGlass-Ceramics 309 4.4.1 Glass-CeramicsforMedicalApplications 310 ® 4.4.1.1 CERABONE 310 ® 4.4.1.2 CERAVITAL 311 ® 4.4.1.3 BIOVERIT 312 4.4.2 Glass-CeramicsforDentalRestoration 313 4.4.2.1 MoldableGlass-CeramicsforMetal-FreeDentalRestorations 314 x Contents 4.4.2.2 MachinableGlass-Ceramics 324 4.4.2.3 FusionofGlass-CeramicsonHighToughnessSinteredCeramics 332 4.4.2.4 Leucite-ApatiteGlass-ceramiconMetalFrameworksandMetal-Free Restorations 335 4.5 ElectricalandElectronicApplications 339 4.5.1 Insulators 339 4.5.2 ElectronicPackaging 340 4.5.2.1 RequirementsforTheirDevelopment 340 4.5.2.2 PropertiesandProcessing 341 4.5.2.3 Applications 342 4.5.3 DielectricGlass-CeramicsforGHzElectronics 343 4.6 ArchitecturalApplications 345 4.7 CoatingsandSolders 347 4.8 Glass-CeramicsforEnergyApplications 348 4.8.1 Glass-CeramicComponentsforBatteries 349 4.8.1.1 Glass-CeramicsasCathodesforLithiumorSodiumIonBatteriesandGlassas Anodes 349 4.8.1.2 Electrolytes 349 4.8.2 JoiningMaterialsforSolidOxideFuelCellComponents 350 4.9 ApplicationofGlass-CeramicPrincipletoFunctionalMaterials 352 4.10 FormingProcessesforGlass-Ceramics 352 4.10.1 Pressing 352 4.10.2 Casting 353 4.10.3 Spinning(CentrifugalCasting) 353 4.10.4 Rolling 354 4.10.5 FloatProcess 354 4.10.6 DirectFormingorReformingofGlass-Ceramics 357 5 FutureDirections 358 AppendixA:Twenty-oneFiguresof23CrystalStructures 360 References 381 Index 415 xi IntroductiontotheThirdEdition Themainaimsofthethirdeditionofthisreferencebookaretopresentresearchanddevelop- menthighlightssince2012,toupdateareasoffundamentalimportancetoglass-ceramicslike nucleation and growth, and to add material concerning forming processes, including parent glassforming,novelcrystallizationprocessesandionexchangestrengthening. Therehavebeenmajoradvancesinproductsbasedonglass-ceramicsindentistryandother biomaterials. In this edition, a new approach has been chosen to present the materials for restorativedentistry:Aparticularfocusisplacedonillustratingtheimmediatebenefitsofthese productstobothdentistsandpatients.Newscientificfindingshavemadeitpossibletoincrease the processing efficiency of dental restorative materials and significantly extend their appli- cation range. Today, patients have a wide array of metal-free, inorganic biomaterials at their disposal,whichofferbothexcellentfunctionandaesthetics. In this edition, new products and potential uses involving novel optical, electronic, and mechanical properties are described. These include transparent glass-ceramics for mobile phonesandtablets,andtranslucentmaterialsforLEDsandphosphorescentdisplays. The third edition of this publication, like the first two, is a product of close collaboration betweenthetwoauthors.Theyregularlyconsultedtogetherontheirindividualsections.They discussedmanyaspectsofcomposition,phasetransformation,microstructure,andusefulnovel analytictechniques;thelatteroftenusedincombinationtobetterunderstandthesequenceof crystallizationinvariousglasssystems. W.HölandwouldliketogivespecialmentiontothefollowingpeoplefromIvoclarVivadent AG: Markus Rampf, Marc Dittmer, Christian Ritzberger, Marcel Schweiger, and Ronny Watzke for theirscientificdiscussions andR. Ganley,V.M. Rheinberger and T. Hirt for their supporttoglass-ceramicresearch.HewouldalsoliketothanktheTC07Subcommitteeofthe International Congress on Glass (ICG), and colleagues of this group, especially J. Deubener, M.J. Pascual, T. Komastsu, E.D. Zanotto, I. Mitra. A special Thanks goes to M. Höland (University of Applied Sciences, Buchs, SG, Switzerland) for many scientific discussions. S.Fuchs(SouthAfrica)isthankedfortranslationwork. BothauthorsliketothankS.Tanabe,H.HosonoandJ.Schmelzerwhohelpedwithvaluable suggestionsandadvice. G.BeallwouldliketothankCharleneSmithforherhelpfulcommentsandadvice.Hewould alsocreditD.L.Morse,G.Calabrese,C.HeckleandM.Pambianchifortheircontinuingsupport ofresearchonglass-ceramicsatCorningIncorporated. Both authors would also like to thank A. Höland (graphic design, Schaan, Liechtenstein) and M. Höland for graphs in the second and third edition of this textbook, and I. Heidelauf (Ivoclar-VivadentAG)forthegraphsofthefirstedition. Schaan,PrincipalityofLiechtenstein WolframHöland Corning,NY,USA GeorgeH.Beall April2019

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.