ebook img

GK Boo and AE For: Two low-mass eclipsing binaries with dwarf companions PDF

0.5 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview GK Boo and AE For: Two low-mass eclipsing binaries with dwarf companions

Astronomy&Astrophysicsmanuscriptno.zasche (cid:13)c ESO2012 January25,2012 GK Boo and AE For: Two low-mass ⋆ eclipsing binaries with dwarf companions P.Zasche1,P.Svoboda2,andR.Uhla´rˇ3 1 AstronomicalInstitute,FacultyofMathematicsandPhysics,CharlesUniversityPrague,CZ-18000Praha8,VHolesˇovicˇka´ch2, CzechRepublic,e-mail:[email protected] 2 Privateobservatory,Vy´pustky5,Brno,CZ-61400CzechRepublic 3 PrivateObservatory,Pohoˇr´ı71,25401J´ılove´uPrahy,CzechRepublic 2 January25,2012 1 0 ABSTRACT 2 Context.Astudyoflate-typelow-masseclipsingbinariesprovidesuswithimportantinformationaboutthemostcommonstarsinthe n Universe. a J Aims.WeobtainthefirstlightcurvesandperformperiodanalysesoftwoneglectedeclipsingbinariesGKBooandAEFortoreveal theirbasicphysicalproperties. 4 Methods.WeperformedbothaperiodanalysisofthetimesoftheminimaandaBVRlightcurveanalysis.Manynewtimesofminima 2 forboththesystemswerederivedandcollectedfromthedataobtainedbyautomaticandrobotictelescopes.Thisallowedustostudy thelong-termperiodchangesinthesesystemsforthefirsttime.Fromthelightcurveanalysis,wederivedthefirstroughestimatesof ] R thephysicalpropertiesofthesesystems. Results.Wefindthattheanalyzedsystemsaresomewhatsimilartoeachother.Bothcontainlow-masscomponentsofsimilartypes, S bothareclosetotheSun,bothhaveshortorbitalperiod,andbothcontainanotherlow-masscompanionsonlongerorbitsofafew . h years.InthecaseofGKBoo,bothcomponentsareprobablyofK3spectraltype,whilethedistantcompanionisprobablyalateM p star.ThelightcurveofGKBooisasymmetric,whichprobablycausestheshiftinthesecondaryminimaintheO−Cdiagram.System - AEForcomprisestwoK7stars,andthethirdbodyisapossiblebrowndwarfwithaminimalmassofonlyabout47MJup. o Conclusions.We succeed in completing period and light curve analyses of both systems, although a more detailed spectroscopic r analysisisneededtoconfirmthephysicalparametersofthecomponentstoahigheraccuracy. t s a Keywords.binaries:eclipsing–stars:fundamentalparameters–stars:individual:GKBoo,AEFor [ 1 1. Introduction 2. GKBoo v 3 2.1.Introduction 7 Low-massstarsare the mostcommonstars in ourGalaxy (e.g. 9 Kroupa 2002). However, owing to their low luminosity, only The system GK Boo (= BD+37 2556, V = 10.86 mag) is 4 these close to the Sun have been studied in detail and manyof max an Algol-type eclipsing binary with an orbital period of about 1. themhaveneverbeenanalyzed.Hence,wefocusedontworather 0.48 day. It is also a primary component of a visual double 0 neglectedlow-masseclipsingbinarysystems:GK Boo and AE designated WDS J14384+3632in the Washington Double Star 2 For. Their light curves as well as their period modulation had Catalog(WDS1,Masonetal.2001).Thesecondarycomponent 1 never been studied. Some studies indicate that most late-type ofthisdoublestarisabout14′′ distant,andisprobablygravita- : starsaresingle(e.g.Lada2006),butthenumberofpapersstudy- v tionallyboundtoGKBooitself.Itisabout0.4magfainter,but ingthemultiplicityofthelate-typesystemsisstillratherlimited. i sinceitsdiscoveryin1933therehasbeennodetectablemutual X Therefore,the incidenceof multiplesin late-typestars remains motionofthepair,hencetheorbitalperiodisofaboutthousands r unexplored. ofyears(roughestimationfromtheKepler’slaw). a The study of eclipsing binaries provide us with important The star is too faint, thus was not observed by Hipparcos informationaboutthe physicalpropertiesof bothoftheir com- satellite, and its distance is therefore rather uncertain. ponents–theirradii,masses,andevolutionarystatus.However, Kharchenko(2001)introducedtheparallax30.29mas,whichis whenconsideringonlywiththelightcurve,severalassumptions howeveronlyanestimate.Itsspectraltypeisalsounknown,but have to be made. For the analysis presented in this paper we the B−V index derived from the Tycho catalogue (Høgetal., alsousedthephotometricdataobtainedbyautomaticandrobotic 2000), B−V = 0.89magindicatesaspectraltypeofaboutK1. telescopes(suchas ASAS, Piofthe sky,andSWASP). Thanks Ontheotherhand,the2MASSinfraredphotometry(Cutrietal., tothesehugedatabasesofobservations,thelong-termevolution 2003)givesJ−H =0.527mag(thereforeaspectraltypeofK3). ofthesesystemscanbestudiedforthefirsttime. Finally, Ammonsetal. (2006) introduced a temperature corre- spondingtoaspectraltypeofaboutK2-3.Alltheseroughspec- tralestimatesweretakenfromPopper(1980)andCox(2000). ⋆ This paper uses observations made at the South African AstronomicalObservatory(SAAO) 1 http://ad.usno.navy.mil/wds/ 1 P.Zascheetal.:GKBooandAEFor:Twolow-masseclipsingbinarieswithdwarfcompanions 2.2.Lightcurve 1 B ThestarwasobservedbytheSuperWASP(Pollaccoetal.,2006) 0.9 V projectanditscompletelightcurve(hereafterLC) is available. R However, we did not use these data for the LC analysis be- 0.8 causethesewerenotmeasuredinanystandardphotometricfil- 0.7 ter. These data were only used to derivethe minima times (see x u below). We observed the target at the Ondˇrejov observatory in Fl0.6 theCzechRepublicwiththe65-cmtelescopeequippedwiththe 0.5 CCD camera. For the light curve analysis, only the data from two nights in May 2011 were used (see the electronic data ta- 0.4 bles). The remaining observations were used for the minima 0.3 timederivationandtoanalyzetheperiodchangesinthesystem (seebelowsection2.3).Theobservationswereobtainedinstan- 0.05 dardB,V,andRfiltersaccordingtothespecificationofBessell 0 B −0.05 (1990). 0.05 At first, the complete LC was analyzed using the program 0 V −0.05 PHOEBE(Prsˇa&Zwitter,2005),whichisbasedontheWilson- 0.05 Devinney algorithm (WD, Wilson&Devinney 1971). The de- 0 R −0.05 rived quantities are as follows: the secondary temperature T , 2 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 the inclination i, the luminosities L, the gravity darkening co- Phase i efficients gi, the albedo coefficients Ai, and the synchronicity Fig.1. Light curves in BVR filters for GK Boo, the solid lines parameters Fi. The limb darkening was approximated using representthefinalfit.Theresidualsafterthefitareplottedbelow. a linear law, and the values of xi were interpolated from the Thecurvesareshiftedalongy-axisforreasonsofclarity. vanHamme’stables,giveninvanHamme(1993). Atthebeginningofthefittingprocess,wefixedthetempera- tureoftheprimarycomponentatT1 =4700K(correspondingto rametersasdescribedabove.Atthebeginning,thevaluesof Ai spectraltypeK3,Cox2000).Intheabsenceofspectroscopy,the and g were fixedto the appropriatevaluesof 0.5 and0.32,re- i massratiowasderivedviaa so-called”q-searchmethod”.This spectively.However,toachieveatighterfitbothA andg values i i meansthatwetrieddifferentvaluesofmassratiointherange1.5 werealsovariedacrosstherangefrom0to1instepsof0.05for –0.5instepsof0.1andtriedtofindthebestLCfitaccordingto bothcomponents.ThesynchronicityparametersF convergedto i thelowestvalueofrms.Finally,wefoundthatthebest-fitsolu- much more reliable values. The value of mass ratio was fixed tionwasreachedwiththevalueq= M2/M1 =0.9,whichagrees to q = 1.0 and then also fitted as a free parameter. This was withbotheclipseshavingalmostequaldepths.Foragivenmass possiblebecausethereisacleardistortionoftheLCoutsidethe ratio,thesemi-majoraxiswasfixedto anappropriatevaluefor minima(seee.g.Terrell&Wilson2005).Forthefittingprocess, the primary mass to be equal to a typical mass of a particular thetwodifferentlimbdarkeninglawswerealsotried,namelya spectral type (e.g. Popper 1980, Harmanec 1988, or Andersen linearandlogarithmic.Thelatteroneprovidesamuchtighterfit 1991).Withthisapproach,wewereabletoestimatethemasses, toourdata.AlloftheresultingLCparametersarealsogivenin inadditiontotheradiiofbothcomponentsinabsoluteunits. Table1(togetherwithparametersoftwocoolerspotslocatedon However, during the LC fitting process we found that the theprimarycomponent–longitude,latitude,radiusandtemper- LC of GK Boo is asymmetric.In particular,the partof the LC aturefactor).Asonecansee,thetwosolutionsclearlydiffereven nearthesecondaryminimumisdistortedinallBVRfilters.The outsidetheirrespectiveerrorbarsforsomeoftheparameters. brightness just after the ascent from the secondary minimum Theindividualerrorsintheparameterswerenottakenfrom (near the phase 0.6) is higher than the brightness just before theWDcode,butderivedinthefollowingway.Wecomputeda the descent (phase 0.4). The difference is about 0.022 mag in rangeofsolutionsforGKBoo,whichwerethenusedforitserror B,0.018maginV,and0.017maginRfilter,respectively. estimation.Allsolutionswithχ2 valueclosetotheminimalone With the PHOEBE code, we tried to fix the values of A (5%fromourfinalsolution)weretakenandtheresultantvalues i and g to their appropriatevaluesof 0.5 and 0.32,respectively. ofparameterswereusedtocomputethedifferencesbetweenthe i However,afterthenwe alsoallowedtheseparameterstobefit- parameters. The errors in the individual parameters were then ted, because the fit is tighter (rms). However, probably owing computedasamaximumdifferenceandtheirindividualWDer- to the asymmetry of the LC these quantities converged to the rors,givenbymax(a −a )+δa +δa . i min i min ratherimprobablevaluesgiveninTable1,andtheshapeofthe ThissolutionobtainedwiththeROCHEprogramprovidesa observedLCcouldnotbefittedproperly.Fortheasymmetryof muchcloserfittotheobserveddataandisthefitplottedinFig. thecurve,we alsotriedtointroducea starspotoneitherofthe 1. Thevalueoftheeccentricitywasfixedat0(foradiscussion components.However,no acceptable solutionwith spot(s) was aboutpossibleeccentricityseebelow).Ourresultantparameters foundtodescribetheshapeofthelightcurvemoreaccuratelyin indicate that both the componentsare still located on the main the PHOEBE program. The parameters of the LC fit are given sequence,(asrequiredbecausetheageoftheUniversedoesnot inTable1,butthesecannotsufficientlydescribetheshapeofthe allowlow-massstarstohaveevolvedfromthemainsequence). LC. If we follow the assumption of a K3V primary, then the sec- We therefore tried a different code, called ROCHE, devel- ondary is also of K3V spectral type. These are consistent with oped by Theo Pribulla (Pribulla, 2004), which is also based thephotometricindicespresentedabove,aswellaswiththein- on the WD code but has for instance also some other comput- dividualmassesandradiiforthesetypesofstars(e.g.Harmanec ingmethodsanddifferentcontrollingofthecalculationprocess. 1988).Anundetectablevalueofthethirdlightwasalsoresulted Withthisprogram,weusedtwostarspotsandsimilarinputpa- derivedbythisanalysis.Thepresenceofphotosphericspotson 2 P.Zascheetal.:GKBooandAEFor:Twolow-masseclipsingbinarieswithdwarfcompanions Table1.LightcurveparametersofGKBoo. Table2.FinalparametersofthelongorbitforGKBoo. Parameter Value Parameter Value PHOEBE ROCHE HJD 2454305.4570±0.0006 0 T [K] 4700∗ P[day] 0.47777174±0.00000022 1 T [K] 4540±50 4615±63 p [day] 1472.7±170.0 2 3 q(=M /M ) 0.9±0.1 0.95±0.12 p [yr] 4.032±0.450 2 1 3 e 0∗ A[day] 0.0126±0.0012 i[deg] 89.83±0.57 89.28±0.37 T 2454263.3±1108.3 0 g 0.00±0.04 0.35±0.05 ω [deg] 56.54±15.0 1 3 g 0.00±0.03 0.35±0.05 e 0.084±0.267 2 3 A 0.00±0.08 0.80±0.05 Q[·10−10] -1.071±0.206 1 A2 1.00±0.08 0.80±0.05 f(M3)[M⊙] 0.000633±0.000002 F1 1.892±0.107 1.131±0.096 M3,min[M⊙] 0.115±0.001 F2 1.866±0.116 1.295±0.108 M3,60[M⊙] 0.134±0.002 L1(B)[%] 54.8±1.9 52.4±1.1 M3,30[M⊙] 0.242±0.005 L2(B)[%] 45.2±1.8 47.6±1.0 a12sini[AU] 0.217±0.108 L1(V)[%] 53.5±1.5 51.6±1.2 a3[mas] 88.7±9.8 L (V)[%] 46.5±1.3 48.4±1.1 2 L (R)[%] 52.1±1.4 51.1±1.1 1 L (R)[%] 47.9±1.3 48.9±1.0 2 partofthelong-termperiodmodulation,althoughwehaveonly Spots: limiteddatacoverage. l [deg] – 287.2±7.9 1 b [deg] – 60.5±3.2 Amoreinterestingfindingisthatofaperiodofabout4years. 1 r [deg] – 37.9±2.0 ApplyingtheLITEhypothesis,weobtainedafinalsetofparam- 1 k – 0.75±0.04 eters given in Table 2, namely the period of the third body p , 1 3 l2[deg] – 63.3±7.4 the semi-amplitude of the effect A, the time of periastron pas- b2[deg] – 47.4±12.8 sageT0,the argumentofperiastronω3, andthe eccentricitye3. r2[deg] – 28.7±4.1 Despitethelowamplitude(aboutonly1.8minutes)oftheLITE, k – 0.76±0.04 2 mostofthe observedminimatimes areof higherprecisionand Derivedquantities: themodulationisclearlyvisible.Table2alsoprovidesthemass R [R ] 0.83±0.18 0.89±0.15 1 ⊙ functionofthethirdbody f(M ),whichhelpsustoestimateits R [R ] 0.86±0.18 0.86±0.14 3 2 ⊙ predictedmass. M [M ] 0.73±0.06 0.73±0.06 1 ⊙ M [M ] 0.66±0.06 0.70±0.06 Havingnoinformationabouttheinclinationbetweentheor- 1 ⊙ Note:∗-fixed. bits of the eclipsing pair and the hypothetical third body, we plotted Fig. 3, where a plot mass versus inclination is shown. Assuming the coplanar orbits (i.e. i = 90◦ → M = M ), 3 3 3,min the resulted minimum mass of the third body is only about bothcomponentsofsuchalatespectraltypestarisalsoforesee- 0.116 M , which places this body at the lower end of stellar ⊙ able. masses,hencewecanruleoutthehypothesisofabrowndwarf or even an exoplanet. Despite of there being no upper limit to this mass (it goes to infinity with i → 0◦), we can estimate a 2.3.Periodanalysis 3 lower limit to the mass. Taking into accountthat no third light To monitor the detailed long-term evolution of the sys- is detected in the LC solution, e.g. L /(L + L ) < 0.01 and 3 1 2 tem or its short-period modulation, we collected all avail- assuming a main-sequencestar, we can estimate its mass to be able published minima observations. Photometry from the lower than 0.22 M , which is shown in Fig. 3 as a gray area. ⊙ SWASP (Pollaccoetal., 2006), ASAS (Pojmanski, 2002), and Furtherobservationsarestill neededto confirmthis hypothesis PiOfTheSky (Burdetal., 2005) projects were used to derive withhigherconclusiveness. many new minima times for GK Boo. All of these data are If we assume the parallax of GK Boo as given by given in Table 10, which is available in electronic form only. Kharchenko(2001),π=30.29mas,wearealsoabletocompute ThemethodofKwee&vanWoerden(1956)wasused.Someof theangulardistanceofahypotheticalbodytobeabout89mas. thedatawereofpoorquality,butmostwereaccurateenoughto Thisseparationofcomponentsiswellabovethelimitformod- perform a detailed period analysis of the system. The range of ernstellarinterferometers.However,thereisaproblemwiththe thesedataisabout12years. brightnessofthethirdcomponent,whichwasfoundtobeabout We used these data to analyze the period modulation and morethan fivemagnitudesfainterthan the eclipsingpair itself. found some interesting results. Applying the hypothesis of a Withthebrightnessofabout11magforthesystem,thismakesa thirdbodyinthesystem(theso-calledLIght-TimeEffect,here- detectionimpossible.Themagnitudedifferenceofthethirdbody afterLITE,describede.g.byIrwin1959),wefoundaweakpe- withrespecttotheclosepairalsoclarifywhynothirdlightwas riodmodulationwith a periodof aboutfouryears.The finalfit detectedintheLCsolution. to the data together with the theoretical curve is shown in Fig. Anotherinteresting resultwas a detection ofdisplaced sec- 2.Asonecansee,thereisalsosomelong-termperiodevolution ondaries. This can be clearly seen in more precise data points oftheorbitalperiod(thebluedashedline),whichwasdescribed (SWASPandournewobservations).Thatsecondaryminimaoc- as a quadratic term in ephemerides. It can be understood as a cur at a different phase of φ , 0.5 from the primary usually 2 slow period decrease caused by the mass loss from the system indicates that the system is on an eccentric orbit. GK Boo is a ormassflowbetweenthecomponents(orevenmomentumloss, well-detachedsystem,sotheeccentricorbitcannotberuled-out magneticbreaking,etc.).Anotherexplanationisthatthisisonly easily.Therefore,weassumedanapsidalmotionhypothesisfor 3 P.Zascheetal.:GKBooandAEFor:Twolow-masseclipsingbinarieswithdwarfcompanions 2452000 2453000 2454000 2455000 Table4.MethodsofminimafittingforGKBoo. 0.006 2000 2002 2004 2006 2008 2010 2012 0.01 0.004 Methodofminimafitting rms BIC 0.002 0.005 O−C (days)−−00..0000042 −−000..00105O−C (Period) LITLEITanEdaQqnuudaaLdldiirrnnaaeettaaiiccrreeeepppphhhheeeemmmmeeeerrrriiiissss:::: 0000....00000000001178154091 55226193....4025 −0.006 −0.015 LITE,quadraticephemerisandapsidalmotion: 0.00060 72.6 −0.008 −0.01 −0.02 0.005 0.01 2451000 2452000 2453000 2454000 2455000 2456000 0 0 0.004 2000 2002 2004 2006 2008 2010 2012 −0.005 −0.01 0.005 −6000 −5000 −4000 −3000 −2000 −1000 0 1000 2000 3000 0.002 Freipgr.e2s.ePnetsrioqduiacdrmatoidcuelpathieomneorfEisppo,echwriohdileGrKedBsoool.idBlluineedsatsahneddslifnoer O−C (days) 0 0 O−C (Period) −0.002 the LITE hypothesis. Residuals are plotted in the bottom plot. −0.005 The largerthe symbol, the higherthe weight(higherthe preci- −0.004 sion). −7000−6000−5000−4000−3000−2000−1000 0 1000 2000 3000 4000 Epoch Fig.4. O−C diagram of GK Boo with the apsidal motion hy- 1 pothesis,blackcolorisforprimaryminima,whileblueonefor 0.8 secondary. M)Sun0.6 ass ( 0.4 sidalmotionanalysisbasedonlyontheminimatimesofapar- M ticularsystem.Somestudiesfoundthatthesecondaryminimum 0.2 is displaced because of the distortionof the LC, thusany stan- dard routine for derivingthe time of minimum (e.g. Kwee-van 0 10 20 30 40 50 60 70 80 90 Woerden,bisectorchordmethodorpolynomialfitting)cannotbe Inclination (deg) used properly because these consider symmetric minima only. Fig.3.GKBoo:MassofthethirdbodybasedonfromtheLITE Whenusingthesemethodstodetermineminimawherebothas- hypothesiswithrespecttotheinclinationbetweentheorbits. cending and descending branches have different slopes, we re- coveronlya”falseeccentricity”. One can also ask about a significance of the fits presented Table3.ApsidalmotionparametersforGKBoo. inFigs. 2and4.Forthiscomparison,we summarizeddifferent approachesinTable4.Inadditiontothermsvalues,wealsopro- Parameter Value videthevaluesofBIC(BayesianInformationCriterion,seee.g. e 0.0944±0.0068 ω[deg] 268.9±2.5 Liddle2007),whichshowthesignificanceofthefit.According ω˙ [deg/cycle] 0.00026±0.00001 to thismethod,the smaller thermsvalue,the tighterthe fit. To U[yr] 1790±50 conclude,ourfinalfitprovidesthe smallest rms,butits signifi- canceislowandstillhighlyspeculative.Thisisalsocausedby thepoordatacoverage,andlargescatterintheminimaandtheir low accuracy.Determinationsof new more precise minima are ourdatasetofminimatimes.Wefollowedaproceduredescribed thereforeneededtoconfirmorexcludethishypothesis. bye.g.Gime´nez&Garc´ıa-Pelayo(1983)orGime´nez&Bastero (1995)andobtainedasetofapsidalmotionparameters.Theplot of residuals (after subtraction of the LITE fit) with the apsidal 3. AEFor motionfitisshowninFig.4. Itisobviouslyveryslow because the position of secondariesversusprimarieschangesonly very 3.1.Introduction slowly. The resultant values of apsidal motion parameters are giveninTable3. The Algol-type system AE For (= HIP 14568, V = max However,wehavetoruleoutthishypothesisbecauseitlead 10.22mag)isalsoapoorlystudiedbinary.Itspublishedspectral tounacceptableresults.Withsomeinformationaboutthephysi- types range from K4 to M0, with the most probableone being calparametersofbothcomponents,wecanusetheapsidalmo- K7V as derived by (Torresetal., 2006). The system was pre- tion parametersto estimate the internal structure constant. The sentedasawide doublewith thestar HD19632basedontheir theoretical log k value taken from Claret (2004) should similarparallaxesandpropermotions(seePovedaetal.1994). 2,theor rangefrom-1.35to-1.65.However,themeanvalueoflogk of Neither the light curve nor the radial velocity curve of 2 both componentsthat can be derivedfrom our solution is very AE For have been studied. The star was observed by the different, even when k < 0, which is unacceptable. Thus, the Hipparcos satellite and a few times also for the minima obser- 2 systemisveryprobablyonacircularorbit. vations.Itwasalsocontinuouslymonitoredwithautomaticpho- Wemayaskwhythesecondaryminimadeviatefromthe0.5 tometricsystemssuchasPiOfTheSkyandASAS.However,the phase.Wepublishedafindingthatthedisplacedsecondarymin- qualityofthesedatadonotallowustousethemforaLCanal- ima can also be present in contact binaries where no eccentric ysis.ThedistancetothesystemwasderivedfromtheHipparcos orbit is possible (Zasche, 2011), so one cannot perform an ap- datatobed=31.5pc. 4 P.Zascheetal.:GKBooandAEFor:Twolow-masseclipsingbinarieswithdwarfcompanions Table5.LightcurveparametersofAEFor. 1 B 0.9 Parameter Value V T [K] 4100∗ 0.8 1 T [K] 4065±48 2 0.7 R q(=M2/M1) 1.0∗ ux e 0∗ Fl0.6 i[deg] 86.51±0.31 g =g 0.32∗ 0.5 1 2 A =A 0.50∗ 1 2 0.4 F1 =F2 1.000∗ L (B)[%] 63.2±1.3 1 0.3 L (B)[%] 36.8±1.0 2 L (V)[%] 63.1±1.2 1 0.05 L (V)[%] 36.9±1.0 0 B 2 −0.05 L1(R)[%] 62.6±1.4 0.05 L2(R)[%] 37.4±1.0 0 V Derivedquantities: −0.05 0.05 R1[R⊙] 0.66±0.10 0 R R [R ] 0.52±0.08 2 ⊙ −0.05 M [M ] 0.50±0.05 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 M1[M⊙] 0.50±0.05 Phase 1 ⊙ Note:∗-fixed. Fig.5.Lightcurvein BVRfiltersforAEFor,thesolidlinerep- resents the final fit. The curves are shifted along the y-axis for 2448000 2450000 2452000 2454000 2456000 greaterclarity. 0.004 1990 1995 2000 2005 2010 20150.004 0.003 0.003 0.002 0.002 3W.2e.oLbigshertvceudrvtehe star from the South African Astronomical O−C (days)−−000...0000000121 −−00.000..00010021O−C (Period) Observatory (SAAO) in 2010, using the classical one-channel −0.003 −0.003 −0.004 −0.004 photoelectricphotometer mountedon the 50-cm telescope. All −6000 −5000 −4000 −3000 −2000 −1000 0 1000 2000 3000 4000 5000 measurements were carefully reduced to the Cousins E-region Epoch standardsystem (Menziesetal., 1989) andcorrectedfordiffer- entialextinction. 0.002 Thanks to its orbital period close to one day, its complete lightcurvewasobservedonceinstandardBVRfilters,withsome 0.001 overlappingpoints(about170datapointsineachfilterwereob- ays) tained).Unfortunately,the qualityof the data acquiredforsev- −C (d 0.0 O eralnightswas notverygood,hence the scatter in the curveis 0.001 affected by these conditions. Two secondary and one primary −0.002 minimawereobserved(seebelow). 0 0.25 0.5 0.75 1 1.25 1.5 We analyzedourdata using the same computationalproce- Phase dureas for GK Boo. The primarytemperaturewas fixed to the Fig.6. O −C diagram of AE For. Up: With linear ephemeris. appropriatevalueof4100K(spK7V),theeccentricitywasfixed Bottom:Withrespecttothephase.Thedatapointsarefittedwith to 0, the values of gravity darkening coefficients were fixed at thecurverepresentingthethirdbodyhypothesis(seethetextfor 0.32, and the albedo coefficients to 0.5 (as recommended for details). stars with convectiveenvelopes), while the limb darkeningco- efficients were interpolated from values given in vanHamme (1993).Thecomputationalapproachwas differentforthemass 3.3.Periodanalysis ratioq,whichwasfixedtoq=1.0becauseoftheweakoutside- eclipse ellipsoidal variations and its detached configuration.In SimilarlytoGKBoo,wetriedtoperformtheperiodanalysisof addition, the synchronicityparameters Fi were set to values of allavailableminima.Thecollectionofminimaismuchsmaller, 1.0 for both components. The program ROCHE was used and butthankstothefirstobservationbyHipparcos(Perrymanetal., theresultingLCparametersaregiveninTable5,whilethefinal 1997)thesecoveralongertimespanthanforGKBoo.Several solutionispresentedinFig.5. new minimawerederivedbased onournew observationsfrom OnecanseethatthesecondarytemperatureT isclosetothe SAAOaswellasthosefromtheASASandPiOfTheSkysurveys. 2 valueofT ,indicatingthatthecomponentsaresimilar.Thus,the ThesamehypothesisasforGKBoowasappliedtothedata 1 estimatedspectraltypesofbothstarsareprobablyK7V+K7V. points here. All of the minima times used for the analysis are Bothcomponentsarestilllocatedonthemainsequenceandtheir summarized in Table 11, which is available in electronic form propertiesareinagreementwiththetypicalvaluesofK7Vstars only.AsonecanseefromFig.6,thereisaclearvariationinthe (aspresentedbye.g.Harmanec1988).Thethirdlightwas also minimatimes.We usedthesamethird-bodyhypothesis(LITE) notdetectedhereinanyfilter.IncontrasttoGKBoo,theLCof as for GK Boo, derivinga final fit to the data givenby the pa- AEForseemstobesymmetric. rametersinTable6.TheLITEhypothesisresultedinaratherec- 5 P.Zascheetal.:GKBooandAEFor:Twolow-masseclipsingbinarieswithdwarfcompanions Table6.FinalparametersofthelongorbitforAEFor. metricandspectroscopicobservationsareneededtoconfirmor refutethishypothesis. Parameter Value The system GK Boo has an asymmetric light curve, which HJD 2452605.97070±0.00035 istheprobablyaccountsfortheshiftinthesecondaryminimum 0 P[day] 0.91820943±0.00000012 in phase with the primary one. The apsidal motion hypothesis p3[day] 2524.6±149.6 cannotexplainthisdiscrepancy. p3[yr] 6.912±0.409 In general, if the third body hypothesis as proposed based A[day] 0.00083±0.00032 on the period analysis is found to be the correct one, here we T 2453548.8±413.1 0 haveconsideredquitecuriousexamplesofhierarchicalquadru- ω [deg] 146.2±57.8 3 ple systems of low masses. As far as we know, there are only e 0.601±0.414 3 a few similar multiple late-type systems for which one of the f(M )[M ] 0.000098±0.000001 3 ⊙ M [M ] 0.047±0.001 componentsisaneclipsingbinary(e.g.BBSclorMRDel). 3,min ⊙ M [M ] 0.055±0.001 3,60 ⊙ M [M ] 0.098±0.003 Acknowledgements. Wethankthe”ASAS”,”SWASP”and”Piofthesky”teams 3,30 ⊙ formakingalloftheobservationseasilypublicavailable.PZwishtothankthe a sini[AU] 0.167±0.064 12 staffatSAAOfortheirwarmhospitalityandhelpwiththeequipment.Authors a [mas] 117.2±8.3 3 arealsogratefultoTheoPribullaforhishelpfulcommentsabouttheROCHE code.Ananonymousrefereeisalsoacknowledgedforhis/herhelpfulandcrit- ical suggestions. This work was supported by the Czech Science Foundation Table7.MethodsofminimafittingforAEFor. grantno.P209/10/0715andalsobytheResearchProgrammeMSM0021620860 oftheCzechMinistryofEducation.ThisresearchhasmadeuseoftheSIMBAD Methodofminimafitting rms BIC database, operated at CDS, Strasbourg, France, and of NASA’s Astrophysics Linearephemeris: 0.000255 24.4 DataSystemBibliographicServices. LITEandlinearephemeris: 0.000163 44.8 References centricorbit,althoughtheresultisaffectedbyarelativelylarge Ammons,S.M.,Robinson,S.E.,Strader,J.,Laughlin,G.,Fischer,D.,&Wolf, A.2006,ApJ,638,1004 error,hencemaybethee valueshouldbelower.Onlyadditional 3 Andersen,J.1991,A&ARev.,3,91 observationswouldhelpusconfirmorrefutethishypothesis,re- Bessell,M.S.1990,PASP,102,1181 finetheperiod,andpossiblydetectsomelong-termevolutionof Burd,A.,etal.2005,NewA,10,409 the period similar to that in GK Boo, because the first obser- Claret,A.2004,A&A,424,919 vation from Hipparcosdeviates significantly from the fit. With Cox,A.N.2000,Allen’sAstrophysicalQuantities, Cutri,R.M.,etal.2003,VizieROnlineDataCatalog,2246,0 the same procedure as for GK Boo, we computed the signifi- Gime´nez,A.,&Garc´ıa-Pelayo,J.M.1983,Ap&SS,92,203 cance of the fits according to the BIC criterion (see Table 7). Gime´nez,A.,&Bastero,M.1995,Ap&SS,226,99 Asonecansee,thefitisstill verypoorandhighlyspeculative. vanHamme,W.1993,AJ,106,2096 However,usingonlythelinearephemeris,thereremainsaclear Harmanec,P.1988,BAICz,39,329 Høg,E.,etal.2000,A&A,355,L27 quasi-sinusoidalvariation,whichneedssomephysicalexplana- Irwin,J.B.1959,AJ,64,149 tion. Kharchenko,N.V.2001,KinematikaiFizikaNebesnykhTel,17,409 From the LITE parameters, we were able to calculate the Kroupa,P.2002,Science,295,82 minimal mass of the third body (i.e. coplanar orbits), which Kwee,K.K.,vanWoerden,H.1956,BAN,12,327 we found to be only about 47 M , which is even lower than Lada,C.J.2006,ApJ,640,L63 Jup Liddle,A.R.2007,MNRAS,377,L74 the limit of stellar masses. Therefore, if the orbits were copla- Mason,B.D.,Wycoff,G.L.,Hartkopf,W.I.,Douglass,G.G.,&Worley,C.E. nar (which only would be our assumption, because the pro- 2001,AJ,122,3466 cessoftidalcoplanarizationisveryslow),thethirdbodywould Menzies,J.W.,Cousins,A.W.J.,Banfield,R.M.,Laing,J.D.1989,SAAOC13, veryprobablybeabrowndwarf(exoplanetshavemassesabout 1 Perryman,M.A.C.,Lindegren,L.,Kovalevsky,J.,etal.1997,A&A,323,L49 one half of this value). With such a body, we reach minimal Pojmanski,G.2002,AcA,52,397 massesthatcanbedetectedbythismethod,becausetheampli- Pollacco,D.L.,etal.2006,PASP,118,1407 tudeofLITEiscomparabletothetypicalprecisionofindividual Popper,D.M.1980,ARA&A,18,115 minima-timemeasurements.Whateverappliestothepossiblein- Poveda, A., Herrera, M. A., Allen, C., Cordero, G., & Lavalley, C. 1994, terferometricdetectionofGKBoocompanionalsoapplieshere, RMxAA,28,43 Pribulla,T.2004,SpectroscopicallyandSpatiallyResolvingtheComponentsof becauseitsluminosityistoolow. theCloseBinaryStars,318,117 Prsˇa,A.,&Zwitter,T.2005,ApJ,628,426 Terrell,D.,&Wilson,R.E.2005,Ap&SS,296,221 4. Discussionandconclusions Torres,C.A.O.,Quast,G.R.,daSilva,L.,deLaReza,R.,Melo,C.H.F.,& Sterzik,M.2006,A&A,460,695 We have derived preliminary light-curve solutions and period Wilson,R.E.,&Devinney,E.J.1971,ApJ,166,605 Zasche,P.2011,IBVS,5991,1 analyses of the poorly studied Algol-type eclipsing binaries GK Boo and AE For, which we have foundto have severalin- terestingandsimilarfeatures.Sincebothofthemarelow-mass starsofverysimilartypes(K3+K3forGKBoo,andK7+K7for AEFor),bothofthemhaveshortorbitalperiods.Moreover,both are relatively close to the Sun and also appear to contain third bodies in their systems, which cause a periodic modulation of theorbitalperiodsofbothsystems. Assuminga coplanarorbit, forAEForthisthirdbodyappearsto bea browndwarf,which makesthissystemevenmoreinteresting.However,morephoto- 6 P.Zascheetal.:GKBooandAEFor:Twolow-masseclipsingbinarieswithdwarfcompanions Table8.HeliocentricminimaofGKBoousedfortheanalysis. Table9.MinimaofGKBoo,cont. HJD-2400000 Error Type Filter Reference HJD-2400000 Error Type Filter Reference 51260.8547 0.0007 sec - IBVS5060 54163.55942 0.00065 prim - SWASP 51273.9890 prim - A.Paschke-Rotse 54165.70909 0.00037 sec - SWASP 51311.7377 0.0004 prim - IBVS5060 54166.66462 0.00022 sec - SWASP 53128.46588 0.00024 sec - SWASP 54167.62053 0.00034 sec - SWASP 53128.70498 0.00041 prim - SWASP 54170.72638 0.00023 prim - SWASP 53129.66141 0.00056 prim - SWASP 54171.68178 0.00043 prim - SWASP 53130.61697 0.00047 prim - SWASP 54189.59755 0.00032 sec - SWASP 53132.52777 0.00021 prim - SWASP 54190.55322 0.00019 sec - SWASP 53135.39435 0.00010 prim - SWASP 54191.50702 0.00053 sec - SWASP 53137.54360 0.00024 sec - SWASP 54194.61418 0.00029 prim - SWASP 53138.49891 0.00028 sec - SWASP 54195.57050 0.00029 prim - SWASP 53139.45491 0.00021 sec - SWASP 54202.49743 0.00046 sec - SWASP 53141.60560 0.00027 prim - SWASP 54206.55909 0.00039 prim - SWASP 53152.59424 0.00025 prim - SWASP 54208.46922 0.00027 prim - SWASP 53153.54982 0.00020 prim - SWASP 54208.70823 0.00143 sec - SWASP 53154.50553 0.00017 prim - SWASP 54210.61908 0.00030 sec - SWASP 53155.46071 0.00015 prim - SWASP 54212.53056 0.00050 sec - SWASP 53156.41642 0.00014 prim - SWASP 54213.48698 0.00049 sec - SWASP 53158.56492 0.00048 sec - SWASP 54214.44267 0.00029 sec - SWASP 53159.52074 0.00022 sec - SWASP 54214.68147 0.00039 prim - SWASP 53160.47640 0.00021 sec - SWASP 54215.63620 0.00057 prim - SWASP 53161.43169 0.00026 sec - SWASP 54216.59233 0.00019 prim - SWASP 53163.58313 0.00031 prim - SWASP 54217.54805 0.00038 prim - SWASP 53164.53862 0.00031 prim - SWASP 54218.50359 0.00021 prim - SWASP 53165.49392 0.00015 prim - SWASP 54219.45928 0.00030 prim - SWASP 53166.44965 0.00020 prim - SWASP 54220.41494 0.00069 prim BVR PS 53169.55361 0.00034 sec - SWASP 54220.41498 0.00029 prim - SWASP 53170.50939 0.00024 sec - SWASP 54222.56423 0.00066 sec BVR PS 53171.46489 0.00034 sec - SWASP 54222.56444 0.00028 sec - SWASP 53172.42077 0.00031 sec - SWASP 54223.51949 0.00169 sec BVR PS 53175.52707 0.00024 prim - SWASP 54223.51994 0.00108 sec - SWASP 53176.48289 0.00047 prim - SWASP 54224.47565 0.00035 sec - SWASP 53180.54262 0.00022 sec - SWASP 54225.43110 0.00022 sec - SWASP 53181.49835 0.00017 sec - SWASP 54225.67010 0.00026 prim - SWASP 53182.45376 0.00018 sec - SWASP 54226.38671 0.00034 sec - SWASP 53183.41009 0.00076 sec - SWASP 54226.62544 0.00036 prim - SWASP 53191.53267 0.00080 sec - SWASP 54227.58111 0.00026 prim - SWASP 53192.48678 0.00031 sec - SWASP 54228.53676 0.00031 prim - SWASP 53193.44381 0.00026 sec - SWASP 54230.44800 0.00019 prim - SWASP 53194.39850 0.00045 sec - SWASP 54231.40365 0.00019 prim - SWASP 53197.50383 0.00080 prim - SWASP 54231.64168 0.00048 sec - SWASP 53198.46046 0.00023 prim - SWASP 54232.59790 0.00032 sec - SWASP 53199.41623 0.00026 prim - SWASP 54233.55304 0.00025 sec - SWASP 53203.47632 0.00029 sec - SWASP 54234.50899 0.00034 sec - SWASP 53209.44918 0.00047 prim - SWASP 54235.46550 0.00054 sec - SWASP 53215.42110 0.00040 sec - SWASP 54236.42047 0.00028 sec - SWASP 53220.43588 0.00083 prim - SWASP 54236.65842 0.00085 prim - SWASP 53221.39317 0.00039 prim - SWASP 54237.37517 0.00137 sec BVR PS 53226.40796 0.00058 sec - SWASP 54239.52553 0.00091 prim BVR PS 53231.42630 0.00045 prim - SWASP 54249.55879 0.00027 prim - SWASP 53232.38275 0.00032 prim - SWASP 54250.51471 0.00031 prim - SWASP 53237.39732 0.00033 sec - SWASP 54251.47023 0.00057 prim - SWASP 53243.37030 0.00082 prim - SWASP 54252.42644 0.00028 prim - SWASP 53248.38731 0.00078 sec - SWASP 54254.57647 0.00059 sec - SWASP 53259.85637 0.00078 sec - SWASP 54256.48657 0.00172 sec BVR PS 53827.68574 0.00085 prim - SWASP 54256.48655 0.00039 sec - SWASP 53829.59740 0.00088 prim - SWASP 54257.44222 0.00025 sec - SWASP 53830.55201 0.00069 prim - SWASP 54261.50367 0.00031 prim - SWASP 53831.50729 0.00051 prim - SWASP 54262.45860 0.00020 prim - SWASP 53832.46270 0.00015 prim - SWASP 54263.41487 0.00037 prim - SWASP 53832.70138 0.00024 sec - SWASP 54265.56380 0.00079 sec - SWASP 53833.65681 0.00047 sec - SWASP 54266.51892 0.00042 sec - SWASP 53837.47803 0.00029 sec - SWASP 54267.47491 0.00020 sec - SWASP 53851.57305 0.00105 prim - SWASP 54268.43084 0.00017 sec - SWASP 53852.52690 0.00049 prim - SWASP 54271.53663 0.00070 prim - SWASP 53853.48213 0.00027 prim - SWASP 54272.49225 0.00033 prim - SWASP 53854.43799 0.00032 prim - SWASP 54273.44808 0.00026 prim - SWASP 53855.39312 0.00090 prim - SWASP 54276.55314 0.00095 sec - SWASP 53855.63171 0.00037 sec - SWASP 54277.50813 0.00065 sec - SWASP 53856.58695 0.00051 sec - SWASP 54278.46353 0.00031 sec - SWASP 53887.40789 0.00024 prim - SWASP 54279.41942 0.00021 sec - SWASP 53901.50285 0.00080 sec - SWASP 54305.45758 0.00157 prim BVR PS 54140.62657 0.00022 prim - SWASP 54307.37045 0.00141 prim BVR PS 54149.70458 0.00021 prim - SWASP 54568.70649 0.00072 prim - Piofthesky 54150.65998 0.00028 prim - SWASP 54568.94557 0.00097 sec - Piofthesky 54153.76487 0.00119 sec - SWASP 54925.36514 0.0001 sec R OEJV107 54154.71989 0.00026 sec - SWASP 54937.3112 0.0020 sec Ir IBVS5918 54155.67581 0.00061 sec - SWASP 54937.5462 0.0005 prim Ir IBVS5918 54156.63161 0.00053 sec - SWASP 54947.34260 0.0014 sec R OEJV107 54157.58667 0.00065 sec - SWASP 54958.8085 0.0007 sec V IBVS5894 54159.73799 0.00019 prim - SWASP 54959.52489 0.0001 prim R OEJV107 54160.69347 0.00018 prim - SWASP 55354.40380 0.00148 sec BVR PS 54161.64928 0.00022 prim - SWASP 55364.4367 0.0001 sec BVRI IBVS5965 54162.60325 0.00019 prim - SWASP 55385.45891 0.00131 sec BVR PS 7 P.Zascheetal.:GKBooandAEFor:Twolow-masseclipsingbinarieswithdwarfcompanions Table10.MinimaofGKBoo,cont. HJD-2400000 Error Type Filter Reference 55386.41381 0.00104 sec BVR PS 55391.43075 0.00097 prim BVR PS 55392.38658 0.00113 prim BVR PS 55590.66335 0.00036 prim - RU 55599.50146 0.00018 sec - RU 55616.46275 0.00005 prim B PZ 55616.46266 0.00012 prim R RU 55619.56796 0.00010 sec R RU 55634.61898 0.00016 prim R RU 55640.58947 0.00019 sec R RU 55644.41169 0.00005 sec B PZ 55650.62303 0.00014 sec R RU 55651.34031 0.00113 prim B PZ 55662.56706 0.00013 sec R RU 55671.40664 0.00007 prim VR PZ 55685.50021 0.00012 sec R RU 55687.41150 0.00011 sec BVR PZ 55692.42853 0.00004 prim BVR PZ 55700.55071 0.00004 prim BVR PZ 55707.47805 0.00008 sec BVR PZ Table11.HeliocentricminimaofAEForusedfortheanalysis. HJD-2400000 Error Type Filter Reference 48500.6581 0.001 prim Hp Hipparcos 51180.9089 prim R VSOLJ37 51180.9090 0.0002 prim R VSOLJ47 51191.0099 prim R VSOLJ37 51191.0100 0.0002 prim R VSOLJ47 51191.9279 prim V VSOLJ37 51191.9280 0.0001 prim V VSOLJ47 51196.9770 0.0001 sec R VSOLJ47 51196.9774 sec R VSOLJ37 51504.11886 prim I VSOLJ37 51504.1190 0.0002 prim I VSOLJ47 52065.14178 0.00121 prim V ASAS 52065.60355 0.0025 sec V ASAS 52235.0140 prim I VSOLJ39 52240.9825 sec I VSOLJ39 52258.8860 0.0002 prim R VSOLJ39 52605.9710 prim I VSOLJ40 52818.07823 0.00077 prim V ASAS 52818.53514 0.00165 sec V ASAS 52901.1754 sec I VSOLJ42 52929.1801 prim I VSOLJ42 52936.0674 sec I VSOLJ42 52957.1865 sec V VSOLJ42 52970.0410 sec I VSOLJ42 52976.0097 prim I VSOLJ42 52987.0267 prim V VSOLJ42 52987.9466 prim I VSOLJ42 53300.1379 prim V VSOLJ43 53335.0300 prim V VSOLJ43 53340.0796 sec V VSOLJ43 53705.0677 0.0002 prim V VSOLJ44 53728.02219 0.00093 prim V ASAS 53728.48316 0.00194 sec V ASAS 54039.75501 0.00027 sec - PiOfTheSky 54040.67301 0.00045 sec - PiOfTheSky 54047.1000 0.0001 sec V VSOLJ45 54052.60840 0.00149 sec - PiOfTheSky 54448.81542 0.00039 prim - PiOfTheSky 54726.11607 0.00187 prim V ASAS 54726.57421 0.00131 sec V ASAS 54862.9297 0.0002 prim V VSOLJ50 55558.0139 prim V VSOLJ51 55570.41065 0.00072 sec BVR PZ-SAAO 55571.32812 0.00105 sec BVR PZ-SAAO 55576.37847 0.00065 prim BVR PZ-SAAO 8

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.