ebook img

Giving gifts to groups : how altruism depends on the size on the number of recipients PDF

19 Pages·2007·0.74 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Giving gifts to groups : how altruism depends on the size on the number of recipients

JournalofPublicEconomics91(2007)1731–1749 www.elsevier.com/locate/econbase Giving gifts to groups: How altruism depends on the ☆ number of recipients James Andreoni UniversityofCalifornia,SanDiego Received27January2007;receivedinrevisedform22June2007;accepted28June2007 Availableonline10July2007 Abstract Whenasinglegiftgoestoagroupofrecipients,howdoesgivingdependonthesizeofthegroup?This questionisimportantforunderstandingcharitablegivingandfund-raising,publicgoodsprovision,family altruism,andmore.Ifwethinkofthegiftasgivingupadollartocreateasocialsurplus,thenwewanttoknow howthenumberofrecipientsofthatsurplusaffectsitsvaluetothegiver.Inotherwords,howcongestibleis altruism?Thispaperbuildsatheoreticalframeworkforthisquestionandbeginstoansweritwithacontrolled experiment.Thefindingisthatformostsubjectsaltruismiscongestible.Fortheaveragesubject,agiftthat resultsinonepersonreceivingxisequivalenttooneinwhichnpeoplereceivex/n0.68each. ©2007Elsevier B.V. All rightsreserved. Keywords:Altruism;Publicgoods;Charitablegiving;Revealedpreference 1. Introduction Howmuch wouldyou give upif each dollar youforfeitedbenefited anotherperson by$10? Whatifinsteadyourdollargave$5eachtotwoothers,or$2eachtofiveothers,or$1eachtoten others?Ineachcasetheprivatecostsandsocialbenefitsarethesame,butwouldweviewtheseas thesamesituation?Similarly,whatifeachdollaryougaveupbenefitedoneotherby$1each,or benefited2othersby$1each,or3others,andsoon?Ifthesameprivatecostgeneratesbenefits for more people,do you spend more or less on giving? Thesequestionsareimportantforunderstandinggiftgivingwhentherearegroupsofrecipients. Considertwopublicgoods,oneatalocallevelandoneatanationallevel.Supposethelocalgood ☆ IamextremelygratefultoJosephGuseforhisoutstandingresearchassistance,andtoBillHarbaugh,MartinSefton, and Megan Ritz for their helpful comments. I also acknowledge the financial support from the National Science FoundationandtheRussellSageFoundation. E-mailaddress:[email protected]. 0047-2727/$-seefrontmatter©2007ElsevierB.V.Allrightsreserved. doi:10.1016/j.jpubeco.2007.06.002 1732 J.Andreoni/JournalofPublicEconomics91(2007)1731–1749 provideshighvaluetoafewpeople,thenationalgoodprovideslowvaluetomany,andthatthetotal valueoftheseisidentical.Whichwouldanaltruistprefer?Anotherexamplewouldbecharitable solicitations from both the local chapter and the national organization of a charity. A particular donationmightaffectmorepeopleatahigherlevel.Woulddonorsgivemoreorlessasaresult? Supposeinsteadthegiftistoafoodbank.Thereisafiniteamountoffood,andmorerecipients means each gets less. Do you give more or less as the number of recipients increases? Another exampleisarestaurantstaffthatpoolsitstips.Agiventipwillnowonlygopartlytoyourwaiter, and partly to the others. Does that make people more or less generous? Or consider a parent thinking of buying a new television for the family. Will she spend more, all else equal, if the householdhas4 members rather than 3? Thesequestionsarealsorelevantforexperimentalresearch.Ifagenerousactinanexperiment, suchasgivingtoapublicgoodorstrikingafairbargain,issharedwithmorepeopleatthesame cost, do people value it more orless? Economictheorycangiveussomeguidanceinansweringthesequestions.Considerthefirst counterfactualabove:Thesamesocialsurplusisdividedamongmoreindividuals.Ifpeoplecare onlyaboutthetotalamountreceived,thenincreasingthenumberofothers,n,willhavenoeffect. If, at the opposite extreme, they care about the average amount received, then increasing n increases the effective price of giving, which means they may reduce giving. Considerthesecondcounterfactual:Increasingthegroupsizeexpandsthesurplus,butkeeps theaveragebenefitsthesame.Increasingnheremeansthatanydollargivenupwillgeneratemore benefits, indicating people should be more generous as n increases—an income effect. On the otherhand,thesamesocialbenefitcanbeattainedatlowercost.Thismeanspeoplemaygiveless away—asubstitutioneffect.Whicheffectdominateswilldependonpreferencesofindividuals. Aunifyingapproachtothisistoframetheissueintermsofcongestion,asintheliteratureon congestiblepublicgoods.Thecongestionhere,however,isintheheartsofthealtruists,ratherthan inthetechnologyofthepublicgood.Thinkfirstofthetotalsocialsurplusgeneratedforothersby the dollars forfeited. Call this total surplus Π . Then let π =Π /n be the average surplus for o o o others.Iftheindividualgiverviewsthegift,g,asbeingthetotalsocialsurplus,independentofn, thenthisisagoodthatisnotcongestedatallandg =Π =nπ .Ontheotherextreme,ifthegiver 0 o o thinksofthegiftastheaveragesocialsurplus,thenthegoodiscompletelycongested,g =Π / 1 o n=π . As with congestible public goods, actual congestion may be better described as a o combinationofthesetwo,g=gbg1−b=nbπ ,withb∈[0,1].Thispaperwillbeaboutidentifyingb. 0 1 o There have been no field studies and only a few experimental studies of altruism and the effectsofgroupsize.Comparinggroupsofsizetwoandfourinpublicgoodsprovision,Goeree, Holt and Laury (2002) found no clear effect. Isaac and Walker (1988) and Isaac, Walker and Williams (1994) compared public goods games with groups of size 4, 10, 40 and 100, with varying marginal returns to giving. They found no effect of group size when the price was low (0.33),butwhenthepriceofgivingwashigh(2.33)groupsof4werelessgenerousthangroupsof 10—the income effect dominates the substitution effect—but the effect largely vanished when comparinggroupsof40and100.TheexperimentsofKahnemanandKnetsch(1992)findsimilar effects.Whensubjects were asked theirwillingnesstopayfor alocal publicgood, followedby askingabouta regional ornational public good,giving rose.1 1 Othersstudygroupsizeandgivingtodiscreteorsteplevelpublicgoods.Thesearequitedifferentfromwhatisin mindhere,astheseexperimentsusuallyrequireaminimumtotalcontributionornumberofcontributorsinordertomove theprovisionofapublicgoodfromzerotoasinglepositivevalue.SeeBagnoliandMcKee(1991),CrosonandMarks (1998),forinstance. J.Andreoni/JournalofPublicEconomics91(2007)1731–1749 1733 Although themain interest instudyingcongestionin giving is, obviously, real world giving, webeginthestudyofitherewithacontrolledlaboratoryexperiment.Theeffectswefindcould help shape the field studies necessary todemonstrate the validityof thelaboratory findings. Theexperimentreported inthispaper offerssubjectsaseries of24decisions whichvarythe number of recipients and the “price” of generosity. The experiment builds on earlier work by AndreoniandMiller(2002)whousedsimilartechniquestouncoverpreferencesforaltruism,but who kept thenumber ofrecipients fixed at one. We will use three approaches to uncover preferences. First is a non-parametric revealed pref- erence approach that holds n fixed. Next is a semi-parametric approach. This begins by hypoth- esizingaparametric“giving”functionthatentersutility,andthenbyusingnon-parametricanalysis ofutilitytofindthebestparametersonthegivingfunctions.Thatis,wefindtheparameterinthe givingfunctionthatresultsinnoviolations(orthesmallestviolations)ofrevealedpreference.Third isafullyparametricapproachtotheestimationofutilityfunctions.Witheachapproachwedescribe andcataloguethevarietyofpreferencesexhibitedbyoursubjects. The findings are, first, that there is a remarkable degree of consistency within subjects, and surprisingly few violations of the axioms of revealed preference. Second, while there are many examplesofindividualswhobehaveasthoughb=0orb=1,themajorityofsubjectsarebestdescribed byabbetween0 and1.Combining the entiresample andestimatingasinglerepresentative utility function, we estimate the best aggregate b to be b=0.68. This means that, whether looking at the problemnon-parametrically,semi-parametricallyorfullyparametrically,orwhetheritisindividualor aggregateanalysis,wemustconcludethataltruismisacongestiblegood,butthecongestionispartial— doublingthenumberofrecipientsincreasesbutdoesnotdoublethevalueofaltruismtothegiver. The paper is organized as follows. The next section will present the formal framework of congestiblealtruism.Section3willpresenttheexperimentaldesign.Wepresentthegeneralresultsin Section 4, followed by non-parametric and semi-parametric analysis of the data using revealed preferencetechniquesinSection5.Sections6and7turntoparametricanalysis,presentingestimates ofutilityforeachindividualsubjectaswellasforarepresentativealtruist.Section8concludes. 2. Model Letπ bethemarginalpayofftoindividualiandletπ betheadditionalpayofftoeachofthe i o others as a consequence of i's choice. Again, let n be the number of others affected. Then the maintained hypothesis is that individuals have utility u =u(π, π ; n), where preferences are i i i o convexinπ andπ ,and(weakly)increasinginn.Itisalsonaturaltoexpectthatuisincreasingin i o both π and π , as found byAndreoni and Miller (2002).2 i o Supposeutilityisseparableon(π ,n).Thenthereissomefunctiong(π ,n)suchthatutilitycanbe o o written as u(π, π , n)=u(π, g(π , n)). We can think of g abstractly as an individual's “giving” i i o i i o function, that is, the particular aggregation of π that this person cares about.3 The question for o 2 SeealsoFisman,KarivandMarkovits(inpress).Withdownwardslopingbudgetsitisimpossibletoidentifypreferences whereπ maybea“bad”atthemargin.However,offeringsomeupwardslopingbudgets,AndreoniandMiller(2002)foundthat o therewasasignificantminorityofsubjectsforwhomtheindifferencecurvemayactually“bendback”forsomeextremeinequality. Andreoni,CastilloandPetrie(2003)confirmthisforstrategicgamesaswell.Sinceweareconcernedwithvoluntaryaltruismhere, wedonotconcernourselveswithsuch“jealous”or“resentful”preferences,butthisisaninterestingareaforfutureresearch. 3 Themainrestrictionimposedbytheassumptionofseparabilityisthathowpeopleaggregategivingisindependentof theirownlevelofconsumption,thatis,themarginalrateofsubstitutionbetweenπ andnisindependentofx.Inour o experiments,asubject'sincomevariesonlyslightly,sothisisunlikelytobeacostlyassumption.Whetheritisavalid assumptionforfielddataisaninterestingquestion. 1734 J.Andreoni/JournalofPublicEconomics91(2007)1731–1749 researchistoidentifytheseaggregations,g(π ,n),aswellaslearnhowutilitychangesasthevalueof o thisaggregationchanges.4Thinkingfirstaboutg(π ,n),atoneextremewecouldhaveg(π ,n)=π , o o o thatis,peoplecareonlyabouttheaveragereceived.Attheotherextremewecouldhaveg(π ,n)=nπ , o o sopeoplecareaboutthetotalamountreceived.Whataboutsomethingintermediate?Intheliterature oncongestioninpublicgoods,thereisahistoryofestimating“crowding”withaparameter,b,anda function,g(π ,n)=nbπ .Thusforb=0orb=1wehavetheextremecases,whileforb∈[0,1]we o o allowintermediatecases.5 Considerapersonfacingalinearbudgetoverpayoffs.Forsimplicitywewillalwaystreatπ as i thenumeraire, anduse p asthe price of π . Thus, write the optimization problemas o maxuðp;nbp Þ i i o p;p s:ti:po þpp ¼m i o Itisconvenienttothinkofthepersonaschoosingg=g(π ,n)ratherthanπ .Thus,substitute o o π =g/nb andlet the price be p/nb. Thenwe canrewrite this optimization as o maxuðp;gÞ pi;g ip i ð1Þ s:t:p þ g ¼m i nb Letp′=p/nb.SolvingEq.(1)wegetademandfunctiong(p′,m).Asusual,assume∂g/∂p′b0. Thenwecanmeasuretotalgivingaspπ =p′g.Howdoesthischangewithn?Takingthederivative o wesee (cid:1) (cid:3) App Ag ApV 0 ¼ pV þg a0: An ApV An We can now see the income and substitution effects of n on giving, π . As n increases, the o priceofgfallsbutthetotalamountofbenefitrises,andtheeffectontotalspendingisambiguous. With this as our setup, we use the axioms of revealed preference to identify whether, for a given b, preferences are consistent with maximizing behavior. We do this by applying the Generalize Axiom, GARP. We say a bundle (π , g ) is directly revealed preferred to a bundle ia a (π , g ) if π +p′ g ≥π +p′ g . The relation is strict if the inequality is strict. We then say a ib b ia a a ib a b bundle(π ,g )isrevealedpreferredtoabundle(π ,g )ifthereisachainofdirectlyrevealed ia a ib b preferred relations that links the two. That is, the revealed preferred relation is the transitive closureof thedirectly revealedpreferred relation. Then define GARP this way (Varian,1982): Definition 1. Generalized Axiom of Revealed Preference (GARP): If (π , g ) is revealed ia a preferredto (π ,g ) then (π , g ) isnever strictly directly revealed preferredto (π ,g ). ib b ib b ia a 4 Notethatwearegeneralizingthemodelof“warm-glowgiving”(Andreoni,1989,1990)tomeanthatutilityofgiving dependsonthenumberofrecipients.Withnconstant(orasweseelater,nlarge)thedistinctionisirrelevant.Theanalysis could be generalized to a strategic environment where altruism also depends on the contributions of others, but the fundamentalinsightsofthismodelwouldbeunaffected. 5 Suppose,forinstance,thatg(π ,n)combinesthetwoextremenotionsinaCobb–Douglasproductionfunctionfor o giving,sog(π,n)=(nπ)bπ1−b=nbπ .Onthegenesisoftheliteratureoncongestiblepublicgoods,seeBergstromand o o o o Goodman(1973),forinstance.Forageneraltreatmentofpublicgoodsandgroupsize,seeBergstrom,BlumeandVarian (1986)andAndreoni(1988a). J.Andreoni/JournalofPublicEconomics91(2007)1731–1749 1735 AsVarian(1982)shows,ifthedataisconsistentwithGARP,thenthereexistsautilityfunction that could have generated thedata. CheckingGARP will beattheheart ofour analysis. 2.1. Interpreting the price How do we think about price p in this setting? Recall, we constructed π as the value per o recipient.Thus,ifgivingistoapurepublicgood,theaveragevaluecansimplybemeasuredasthe cost to thegiver.In this case, absent any subsidies orother distortions, we can assume p=1. Whatifinsteadthegiftisapureprivategood,asintheexampleofpoolingoftips?Ifπ isthe o tip received byeach of thewaitstaff,then total spending on tips is nπ .This means p=n. o Itispossible,aswell,thatthegiftprovidedisitselfacongestiblepublicgood.Perhapsthegift providesforaseminarseriesintheeconomicsdepartment.Ifseminarsarecrowdedthepleasure oftheexperienceisdecreasedforall.Followingtheliteratureoncongestioninpublicgoods,we wouldsaythetotalsurplusisΠ=ncπ ,where0≤c≤1.Inordertogenerateagivenπ inaverage o o value, therefore, a person will need to spend ncπ dollars. Thus, p=nc, meaning that techno- o logicalcongestionhas theeffect ofraisingthe price ofaltruism. Intheexperimentsbelowweenforcegivingasapurepublicgood,butweartificiallyvarythe priceinordertoallowustoidentifypreferences.Whenapplyingtheseresultstotherealworld, however, we need tobe thoughtful about what isdeterminingthe price. 3. Experimental design TherestatementoftheprobleminEq.(1)indicatesthatwewillneedvariationinn,m,pand p/n in order to identify both the utility function and the parameter b. With this in mind, we designed a task with 24 decisions. The decisions were presented to the subjects on a computer screen like that shown in Fig. 1. Subjects filled in the blanks in sentences like this: “Divide 60 tokens: Hold _ _ _ @ 20 cents, and Pass _ _ _ @ 10 cents, to each of 2 other people”. The computerautomaticallymadesure thatchoiceswereonthebudgetconstraint. Italsocalculated Fig.1.Sampledecisionscreen. 1736 J.Andreoni/JournalofPublicEconomics91(2007)1731–1749 theearningsforthesubjectsinthestudy,andreportedtheminthecolumnsontheright,asseenin Fig.1.Itcalculatedearningsintwoways.Firstisaverageearnings(“Eachofnothersearns”)and second istotal earnings(“In Total the nothers earn”), ascan be seenin thefigure. Thedecisionswerepresentedonpagesorganizedbyn.Subjects,however,werefreetotabbackand forthacrosspagesandcouldfillinblanksinanyorder.Theycouldnotsubmittheirdecisionsuntilall blankswerefilled.Tocheckforpossibleordereffectswepresentedthegameintwoorders,forward,as showninthefigure,andreverse,wherethetabsandthedecisionsoneachtabwereallinreverseorder. Foranychoice,wecancalculatepandmasfollows.ThetaskistodivideMtokenswithahold value of H cents and a pass value of P cents. Let X be the amount held and Y be the amount passed,adheringtothetokenconstraintX+Y=M.Thenπ =HXandπ =PY.Substitutetheseinto i o thetoken constraint andrearrange toget H p þ p ¼HM: i P o Finally,substitutingg(π ,n)=nbπ ,anddefining p=H/Pandm=HM,werewritethisasthe o o budget constraint p p þ g ¼m; i nb asinEq.(1)above.Thus,mhastheinterpretationoftheearningsbyplayeriifhepasseszeroand keeps M,and p isthe cost toperson iof increasing thepayoffof each other person. ThefullsetofexperimentalparametersisshowninTable1.Therearesixpossiblevaluesforthe numberofothers,n∈{1,2,3,4,5,9}.Likewiseptakeson10possiblevalues,andp/ntakeson 12.Carewastakentoassurethattherewouldbeseveralsetsofbudgetsthatwouldbeidenticalonp andmbutdifferonp/n(budgets4and12,5and9,10and21),andthatotherswouldbethesame onp/nandmbutdifferonp(budgets6and12,and11and22).Thiswillhelpwithidentifyingb apartfromutilityparameters.Wealsoassuredthatallbudgetscrossedwithinagivenn. Whilesubjectsmade24choices,theywereonlypaidforonechoiceselectedatrandom.6Each choice was equally likely tobe chosen. Subjects were told this prior totheir decisions. We were also interested in the possible effect of reciprocal altruism. For instance, is there a differenceingivingwhenitcanbereciprocated,asinapublicgood,andgivingwhenitisexplicitly non-reciprocal? We explored this with two matching conditions. Under reciprocal matching peopleareexplicitlyputintogroupsandthesamedecisioniscarriedoutforeachmemberofthe group.Wetellsubjectsthatthosewhoreceivetheirpassamountsarealsoinapositiontopassto them.7Weweightedtheprobabilitiesofchoosingdifferentgroupssothateachdecisionisequally likely to be chosen. We compare this to circular matching, which only allows for unilateral altruism.8Afterchoicesweremade,thecomputerprogramrandomlyplacedsubjectsina“circle”. 6 HeyandLee(2005)presentevidencetosuggestthatrandomlyselectingoneofasubject'schoicesissuccessfulin gettingthesubjecttotreatthemasseparateindependentevents,ratherthanasaportfolioofrandomevents. 7 Forthereciprocalmatchingtheinstructionsread:“Youwillalsoberandomlyselectedtobearecipientofothers'Pass allocations.TherecipientsofyourPassportionwillbethosewhowillbepassingtoyou.Thatis,anypassedtokensyou receive will be from the same other participants who may receive tokens passed by you. Moreover, these other participantswillhavethesamedecisionchosenbythecomputerthatyoudo.Forexample,supposethecomputerselects thisdecisionforyouand4others:Divide80tokens:Hold____@20cents,andPass____@30centstoeachof4 otherpeople.Thenyouwillbeinagroupof5people.Eachofthe5hasthesamedecisionchosen,andeachispotentially passingtokenstothesameothermembersinthatgroup”. 8 Forthecircularmatchingtheinstructionsread:“Youwillalsoberandomlyselectedtobearecipientofothers'Pass allocations.TherecipientsofyourPassportionwillnotbethesameparticipantswhowillbepassingtoyou.Thatis,you willnotreceiveanypassedtokensfromthoseotherparticipantswhomayreceivetokenspassedbyyou”. J.Andreoni/JournalofPublicEconomics91(2007)1731–1749 1737 Table1 Experimentalparametersandaveragepassed Experimentalparametersa Averagepassedb Budget n M Holdvalue Passvalue p/n p m Circulartokens Reciprocaltokens 1 1 40 10 40 0.25 0.25 400 14.6 15.9 2 48 10 30 0.33 0.33 480 17.3 18.6 3 60 10 20 0.50 0.50 600 17.1 22.9 4 90 10 10 1 1 900 19.9 24.2 5 60 20 10 2 2 1200 12.1 14.3 6 2 45 20 30 0.33 0.67 900 15.1 18.1 7 81 10 20 0.25 0.50 810 27.7 32.2 8 100 10 10 0.50 1 1000 27.5 32.2 9 60 20 10 1 2 1200 12.8 16.7 10 40 40 10 2 4 1600 7.0 9.3 11 3 40 10 30 0.11 0.33 400 15.8 16.6 12 90 10 10 0.33 1 900 29.9 31.4 13 40 30 20 0.50 1.5 1200 10.9 12.1 14 52 30 10 1 3 1560 10.8 12.6 15 4 80 10 10 4 0.25 800 28.7 28.0 16 72 20 10 2 0.50 1440 22.3 23.5 17 42 10 20 0.5 0.125 420 17.3 17.9 18 50 40 10 4 1 2000 11.4 12.3 19 5 60 10 10 0.20 1 600 20.7 21.3 20 51 20 10 0.40 2 1020 15.5 17.5 21 40 40 10 0.80 4 1600 10.3 11.2 22 9 40 10 10 0.11 1 400 16.6 13.5 23 30 20 10 0.22 2 600 10.6 10.0 24 20 40 10 0.44 4 800 6.3 6.6 a Misreportedintokens.Holdvalue,Passvalueandmarereportedincents. b Averageacrossallsubjects,pooledacrossthetwoorders. Foreachsubjectiachoiceamongthe24madewasselectedatrandom,andthenpeopletotheright ofiweretherecipients.Hence,thisgameassuressubjectsthatnoneofthepeoplewhoreceivetheir generositywillhaveanoptiontogiveanythingback,andthisisexplainedtoallthesubjects. Weran6sessionsof20subjectseach,foratotalof120subjectsinthisstudy.Threesessionswererun withcircularmatchingandthreewithreciprocalmatching.Withineachmatchingtype,twosessions wererunwiththeforwardpresentationandonewiththereversepresentation.Eachsessionlastedless than1h,andsubjectsearnedanaverageof$14.23.Completeinstructionsareavailablefromtheauthor.9 Weshouldnotethatthisdesigndiffersfrompriorpublicgoodsexperiments.Earlierexperiments, typifiedbyIsaacandWalker(1988),usuallyexamineasinglegroupsizeandasinglepriceduringany session,plustheyusuallyhaverepeatedinteractionseitherwiththesamegrouporwith“strangers” rematching (Andreoni, 1988b, 1995). This experiment, by contrast, asks for a series of decisions withoutanyfeedback,andcompareschoicesoveranumberofdifferentpricesandgroupsizes. 4. Overall results Table 1showstheaverageamountpassedoneachbudgetforboththecircularandreciprocal treatments.TheseresultsarealsoshowninFigs.2and3.Bothfiguresshowthebudgetsfor(π,g). i 9 Gotohttp://econ.ucsd.edu/~jandreon/. 1738 J.Andreoni/JournalofPublicEconomics91(2007)1731–1749 Fig.2.Budgetsassumingg(π,n)=π . o o Fig.2showstheaveragechoiceundertheassumptionofb=0,whileFig.3assumesb=1.Ascan beseen,bothshowsensitivitytopriceandincomeinthepredictedway.10 Nextaskwhethertherewereeffectsofeithertheorderofdecisionsorthematchingofsubjects. WeconductedMann–Whitneytestsonthedistributionsofaverageholdamountsacrosssubjects. Keepingthematchingconstant,wefoundnodifferencefororderforeitherthecircularorreciprocal matching, or for the whole sample combined. Combining all 120 subjects, for instance, we find z=1.22 (α≤0.22).11 This gives us confidence that the data is not biased by the presentation of thedecisiontask.Comparingthematchingschemes,weagainemployMann–Whitneytestsand, perhapssurprisingly,weagainfoundnosignificantdifferencebetweenmatchingrules.Comparing allsubjectsincircularmatchingtothosereciprocalmatching,wefindz=0.33(α≤.74).12 Thisis evidence that there is no real effect of reciprocal versus unilateral altruism. These two findings indicatethatwecan safelypoolall120 subjectsintoasinglesample. We willnonethelessreport 10 AlthoughaggregatedataneednotsatisfyGARP,therearenoviolationsofrevealedpreferencesforb=0,whileforthe b=1aggregationthereisoneviolationinvolvingbudgets17and22.Thesetwobudgetsarenearlyidenticalwhenb=1 andthechoicesnearlyoverlapattheintersection. 11 Forreciprocalmatching,z=0.679(α≤0.49)andforcircularmatchingz=0.88(α≤0.38). 12 Thisalsoholdswhenwelookattheforwardandreverseordersseparately.Forforwardorder,z=0.48.(α≤.63)and forreverseorderz=0.13(α≤0.89). J.Andreoni/JournalofPublicEconomics91(2007)1731–1749 1739 Fig.3.Budgetsassumingg(π,n)=nπ . o o resultsseparatedbycondition,whenconvenient.Aswewillsee,however,thebehaviorinallfour conditionsisremarkablysimilarthroughouttheanalysis. 4.1. The power of the GARP tests Thereareseveralmethodsforlookingatthepowerofrevealedpreferencetests.13Theeasiestarethe Bronarsindex(Bronars,1987)andabootstrappingindex(AndreoniandHarbaugh,2006).Bronars specifiesasthealternativehypothesisthatchoicesaredrawnrandomlyfromauniformdistributionon eachbudget.Thebootstrappingindexalsodrawsrandomlyoneachbudget,butinsteadusestheactual distribution ofchoicesmadeoneachbudgetbythe pooledsetofsubjects.Aftercreatingsynthetic subjects,GARPtestsareconducted.Theprocessistheniteratedasufficientnumberoftimes. Applyingthesepowerteststoourdatarequiresthatwealsospecifyagivingfunction,g(π ,n). o Choosingg(π ,n)=nbπ ,wecalculatedbothpowerindicesfor41valuesofbbetween0and1.In o o eachcase,using10,000randomiterations,over99.6%ofallrandomlygenerateddatahadviolations ofGARP,forbothBronarsandbootstrappingindices.14Giventhesemethodsofrandomlygenerating 13 SeeAndreoniandHarbaugh(2006)foracompletediscussionofthepowerofrevealedpreferencetests. 14 Thisistruewhetherboostrappingwasconditionaloncircularmatching,reciprocalmatching,orpooled. 1740 J.Andreoni/JournalofPublicEconomics91(2007)1731–1749 alternativeorganizationsofthedata,thesetwotestsindicatethatwehavedesignedapowerfultestof consistentpreferences.15 5. Non-parametric analysis ThissectionbeginsbyaskingwhetherchoicesareconsistentwithGARP.Wefirstholdgroup sizeconstantandcheckGARPconditionalonn.Wethencombineallthedataandtrytouncover theoptimal b ing(π , n)=nbπ for each subject. o o 5.1. Checking GARP within group size TheadvantageofcheckingGARPwithinagroupsizeisthatweneednoassumptionsonhow preferencesdependonn.Table2showsthenumberofviolationsofGARPconditionaloneachn andthematching scheme.Within eachn only asmall numberof subjects had anyviolationsof GARP.Ofthoseviolations,onlyafractionwere“significant”asmeasuredbytheAfriatcriticalcost efficiencyindex,A.Thisindexisameasureofgoodnessoffit.Itindicateshowmuchabudgethas i tobe“relaxed”toavoidviolationsofGARP.Theindexhastheinterpretationthatapersoncould havepurchasedarevealedpreferredbundleatafractionA ofwhatwasspent.16IfA ¼1thereare i i no violations, and the lower A the worse the violation. The standard proposed by Varian for a i significantviolationofGARPisAb0:95.Ofthe30violationslistedinTable2,12aresignificant i bythisdefinition,whichcomefromonlynineindividualsubjects.Thismeans92%ofthesubjects havechoicesthatareconsistentbasedonthesetests.Thisisaveryhighdegreeofrationalizability. 5.2. Checking GARP across group sizes WenextturntoevaluatingGARPwhenwepoolacrossgroupsizes.Whetherdataisconsistent withGARPwilldependonthedefinitionofthegivingfunctiong(π ,n)=nbπ .Hereweask,does o o there exist a b∈[0,1] for an individual isuch that there are no violationsof GARP? Theanswertothisquestionisyesformostsubjects.Forboththecircularandreciprocalmatching, exactly83subjects,69%,havechoicesthatdidnotviolateGARPasingletimeforatleastonevalue ofb.ThoseforwhomtheanswerisnoaresummarizedinTables3and4.Herewereportthevalueof b that resulted in the highest value of the Afriat index A for all the subjects that always violate i GARP.Ofthe 37subjectswithviolations,16haveindicesabovetheAz0:95 threshold,and20 i below. By this measure, 16% of subjects have severe violations of GARP, and 84% are ratio- nalizable.17Withinthecontextofrevealedpreferenceexperiments,thisisarelativelyhighdegreeof agreementwiththemodel,especiallyforsuchalargenumberofbudgetconstraints.18 15 WealsoconductedBronars(1987)powerovereachsubsetofbudgetswiththesamen.Thiswillnecessarilyreveal lowerpowersincetherearefewerbudgets.Forn=1,2,3,4,5,9theBronarspowerfindsthefractionofiterationswith GARPviolationsis,respectively,0.7,0.60,0.50,0.36,0.30,0.36.Thiswasover10,000iterationeach.Togetaperspective onhowhighthesenumbersare,notethatwithtwobudgetsthemaximumvalueaBronarsindexcantakeis0.25. 16 SeeAfriat(1972)andVarian(1982)fordiscussionsofthisindex. 17 We also conducted further tests of differences between circular and reciprocal matching and again found no significantdifferences.Comparingtheb'sreportedinTables3and4withaMann–Whitneytest,z=0.127.Comparing theA'sreported,z=0.427.Finally,comparingthenumberofGARPviolations,z=0.174. i 18 See Andreoni and Harbaugh (2006) for a discussion of recent experiments using revealed preference tests. An intrestingrecentcomparisonisFisman,KarivandMarkovits(inpress)whoprovidesubjectswith50choicesofdividing apiewithoneothersubject.Theyfindonly10.2%ofsubjectshadnoviolationsofGARP,and41%wereabovethe Az0:95threshold. i

Description:
Jul 10, 2007 If the individual giver views the gift, g, as being the total social . research is to identify these aggregations, g(πo, n), as well as learn how n) combines the two extreme notions in a Cobb–Douglas production function for.
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.