ebook img

Giant negative magnetoresistance in high-mobility 2D electron systems PDF

0.36 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Giant negative magnetoresistance in high-mobility 2D electron systems

Giantnegativemagnetoresistance inhigh-mobility 2D electron systems A.T. Hatke,1 M.A. Zudov,1,∗ J.L. Reno,2 L.N. Pfeiffer,3 and K.W. West3 1School ofPhysicsandAstronomy, UniversityofMinnesota, Minneapolis, Minnesota 55455, USA 2Sandia National Laboratories, Albuquerque, New Mexico 87185, USA 3Department of ElectricalEngineering, PrincetonUniversity, Princeton, NewJersey08544, USA Wereport onagiant negativemagnetoresistance inveryhigh mobilityGaAs/AlGaAsheterostructures and quantum wells. Theeffectisthestrongest atB ≃ 1 kG,where themagnetoresistivity develops aminimum 2 emergingatT .2K.Unlikethezero-fieldresistivitywhichsaturatesatT ≃2K,theresistivityatthisminimum 1 continuestodropatanacceleratedratetomuchlowertemperaturesandbecomesseveraltimessmallerthanthe 0 zero-fieldresistivity. Unexpectedly,wealsofindthattheeffectisdestroyednotonlybyincreasingtemperature 2 butalsobymodestin-planemagneticfields. Theanalysisshowsthatgiantnegativemagnetoresistancecannot beexplainedbyexistingtheoriesconsideringinteraction-inducedordisorder-inducedcorrections. n a PACSnumbers:73.43.Qt,73.63.Hs,73.40.-c J 7 2 Over the past decade, low field magnetotransport in high turesandlowin-planefields,theresistivityatthisminimumis mobility two-dimensionalelectron systems (2DESs) became asmallfractionofthezero-fieldresistivity. Remarkably,the ] l a subject of considerable interest, in part, owing to the dis- GNMRisquicklysuppressednotonlybytemperaturebutalso l a covery of many unexpected phenomena.1–14 While the char- by modest (a few kG) in-plane magnetic fields. Our analy- h acteristicfeaturesofthemajorityofthesephenomenaarenow sisofthelow-fieldmagnetoresistivityshowsthattheobserved - understoodreasonablywell,15–27therearestillexistmanyun- GNMRcannotbeexplainedbyexistingtheoriesconsidering s e solvedpuzzles.Onesuchpuzzleistherecentlyreportedgiant either interaction-inducedor disorder-induced corrections to m microwavephotoresistivitypeakwhichemergesinthevicin- theDruderesistivity. . ityofthesecondharmonicofthecyclotronresonance.13,14,28 Oursamples(A,B,andC)arelithographicallydefinedHall t a While its origin remains unclear, this peak so far has been bars(widthswA = 50µm, wB = 150µm, wC = 100µm). m observed only in 2DESs which also exhibit giant negative Sample A is fabricated from a GaAs/AlGaAs Sandia-grown - magnetoresistance(GNMR).13,14 Therefore,investigatingthe heterostructurewith densitynA 1.6 1011 cm−2 andmo- d GNMR effect29 is not only interesting and important in its bility µA 5.4 106 cm2/Vs. S≈ample·B (C) is made from n ≈ · ownrightbutmayalsoprovidenecessarycluestoaccountfor a Princeton-grown 24(30) nm-wide GaAs/AlGaAs quantum o c otherphenomena. well with density nB 4.3 1011 cm−2 (nC 3.4 1011) [ The magnetoresistance can be characterized by the ratio andmobilityµB 1.0≈107cm· 2/Vs(µC 1.2 ≈107cm·2/Vs). ρ(B)/ρ0,whereρ(B)andρ0arethelongitudinalresistivities Magnetoresistivit≈y ρ(B·) was measured ≈in a 3H· e cryostat at 1 measured with and without perpendicular magnetic field B, temperaturesuptoT =6.0Kusingastandardlowfrequency v respectively. Inthepresentstudy,we focusontheregimeof lock-intechnique. 9 7 weak magnetic fields where Shubnikov-deHaas oscillations InFig.1(a)[(b)]wepresentthemagnetoresistivityρ(B)in 6 arenotyetdeveloped.Inthisregime,thecharacteristicfeature sample A [sample B] measured at T from 0.5 K to 1.75 K 5 ofρ(B)isa broadminimumoccurringatB0 1kG.Quite [from 0.4 K to 1.6 K], in a step of 0.25 K [0.2 K]. In addi- 1. remarkably, the resistivity at this minimum, ρ≃(B0) ρmin, tiontoShubnikov-deHaasoscillations,bothsamplesreveala ≡ 0 canbesignificantlylowerthanρ0,i.e. ρmin/ρ0 1,invery GNMR effectmarked by a pronouncedminimumwhich oc- 2 high mobility samples.13,14 In what follows we≪will use the cursatB0 1kGandbecomesprogressivelydeeperwithde- 1 valueofρmin/ρ0toquantitativelydescribetheGNMR. creasingT≃; incontrasttothezero-fieldresistivity, ρ0, which : v While negative magnetoresistance effect has been known remainsnearlytemperature-independent,theresistanceatthis i for nearly three decades,30–32 systematic experimental stud- minimum, ρmin, decays rapidly and becomes a small frac- X iesinveryhighmobility(µ 107 cm2/Vs)2DESshaveap- tion of the zero-field resistivity. For example, in sample A, ar pearedonlyrecently. Moresp∼ecifically,Bockhornetal.33 re- ρmin/ρ0 0.2atT =0.5K. ≈ portedthattheeffectquicklydisappearswithincreasingden- To examine the MR effect at higher T, we present in sity; ρmin/ρ0 increased from 0.3 to 0.7 as the carrier Fig.1(c)themagnetoresistivityρ(B)insampleAattempera- densitychangedfrom 2to ≈3 1011≈cm−2.34 Inaddition, turesfrom2Kto6K,inastepof0.5K.Here,wenoticethat itwasfound33 (forthe≈carrier≈den·sityof 2.3 1011 cm−2) atT <4K,ρ(B)exhibitsphonon-inducedresistanceoscilla- ≈ · that the minimum resistivity roughly doubleswhen the tem- tions, owing to resonantelectron scattering on thermallyex- peratureisraisedfrom0.1to0.8K. cited2k -acousticphonons.2,25,26,35–37Thesecondordermax- F InthisRapidCommunicationwesystematicallyinvestigate imaoftheseoscillationsoccuratB 1.3kG,asmarkedby the roles of temperature and in-plane magnetic field on the nextto thetrace atT = 3.0K in F≈ig.1(c).38 AtT & 4K, ↓ GNMR effect observed in high mobility GaAs/AlGaAs het- the position of the resistivity minimumis shifted to a higher erostructures and quantum wells. In all of our samples, the field( 1.5kG)andbothρ0andρmingrowataboutthesame ≈ effectmanifestsitself asa welldefinedminimumin the lon- rate,asevidencedbyroughlyparalleltracesinFig.1(c). The gitudinalresistivityemergingatB0 1kG.Atlowtempera- spacingbetweenadjacenttracesremainsroughlyconstantin- ≃ 2 a c a 8 1.75 K T = 6.0 K 14 12 6 )(cid:58) Sample A ()(cid:85)(cid:58)4 ((cid:85)min 8 12 ,0 (cid:85) 4 2 Sample A T = 0.5 K 0 0 b b 2 1.6 K 10 1.0 Sample B (cid:70) (cid:70) 0.8 0 )(cid:58) (cid:18)(cid:85) 0.6 ((cid:85) 1 8 (cid:85)min0.4 Sample A 0.2 Sample B T = 0.4 K Sample A T = 2.0 K 0 6 0.0 -2 -1 0 1 2 -2 -1 0 1 2 0 1 2 3 4 5 6 B (kG) B (kG) T (K) FIG.2. (Coloronline)(a)ρ (opencircles)andρ (solidcircles) 0 min FIG.1.(Coloronline)(a)ρ(B)ofsampleAat0.5K≤T ≤1.75K, versus T in sample A. Vertical line“separates” high and low tem- withastep∆T =0.25K.(b)ρ(B)ofsampleBat0.4K≤T ≤1.6 perature regimes in sample A. (b) ρ /ρ versus T in sample A min 0 K,∆T = 0.2K.(c)ρ(B)ofsampleAat2K≤ T ≤ 6K,∆T = (circles)andinsampleB(squares). 0.5 K. Arrows mark the second order maxima of phonon-induced resistanceoscillations(seetext). which is introduced by tilting the sample normal by angle θ with respect to the magnet axis. Figure 3(a) shows magne- dicatinglineartemperaturedependenceoftheresistivityover toresistivity ρ(B) at selected θ from 0◦ to 89◦ measured in theentirerangeofmagneticfields. sampleCatT 0.3K.Atθ = 0◦ weagainobserveGNMR ≃ For a quantitative analysis of the GNMR we present in characterizedbyρmin/ρ0 0.14. Withincreasingθ thedata ≈ Fig.2(a) the zero-field resistivity, ρ0 (open circles), and the revealrathercomplexbehavior;ρmin increaseswhileB0 be- resistivity at the minimum, ρmin (solid circles), measured in comes smaller, decreasing roughlyby a factor of four at the sample A for each T studied. The data clearly show that at highestangle. T & 2.5K(totherightofthedashedverticalline),theresis- Toestimatethecharacteristicin-planefieldrequiredtosup- tivitiesareclosetoeachother,ρ0 ρmin,bothfeaturingvery pressGNMRweextractρmin/ρ0fromthedatainFig.3(a)and similar,approximatelylinear,tem≃peraturedependence. Such presenttheresultinFig.3(b)asafunctionof1/cosθ.Wefind behaviorisconsistentwiththeelectronscatteringonthermal that ρmin/ρ0 doublesat 1/cosθ 5 which gives the scale ≃ acousticphonons.36,39 ofthein-planefield,Bk = B0/cosθ 5kG.Wenotethat ≃ similarin-planefieldvalueswerefoundnecessarytosuppress At lower temperatures, T . 2.5 K (to the left of the microwave-induced42 and Hall field-induced43 resistance os- vertical line), the T dependences of ρ0 and ρmin become cillationsoccurringinasimilarperpendicularfieldrange. At markedly different. The decrease of ρ0 gets considerably slowerastheacousticphononcontributionbecomesirrelevant highertiltanglesρmin/ρ0appearstosaturateat 0.8. ≈ andtheresistivitysaturatesatavaluedeterminedbyimpurity At first glance observed increase of ρmin with increasing scattering.36,39,40Quiteremarkably,incontrasttoρ0,ρminnot tiltanglemightoriginatefromthein-planefield-inducedpos- itivemagnetoresistanceeffect,recentlyreportedinveryhigh onlycontinuestodropatlowertemperaturesbutalsodoesso mobility2DEG.44 However,accordingtoRef.44anorderof ata muchfasterrate. Sucha suddenchangeofthetempera- magntitude higher B is needed to double the resistance in turedependenceofρministotallyunexpected.Quantitatively, k a 30 nm-wide quantum well. Therefore, further studies are oncethe temperatureis loweredfrom2.5K to 0.5K, ρ0 de- neededtoclarifytheoriginoftheB -inducedsuppressionof creasesonlyby about20%while ρmin dropsbymorethana k factoroffive.41 theGNMReffect. IntheremainderofthisRapidCommunication,wefocuson Usingρ0andρminshowninFig.2(a),wecalculateρmin/ρ0 thetemperaturedependenceofthelow-fieldmagnetoresistiv- and present the result (circles) in Fig.2(b) as a function of itypreceedingtheformationofthedeepminimumatB =B0. temperature. ResultsforsampleBobtainedinthesameway More specifically, we analyze the low B part of the data in using the data in Fig.1(b) are represented by squares. Both termsof samples show a rapid increase of ρmin/ρ0 with increasing temperatureandeventualsaturationatρmin/ρ0 1. ρ(B) ≃ =1 βB2, (1) We next examine the effect of an in-plane magnetic field ρ0 − 3 a a z (cid:84) Btot 1.0 2.0 K Sample A 2.0 y 0.8 1.5 K x o 89 (cid:70) 87o (cid:85)00.6 1.5 (cid:70) o /(cid:85) 1.0 K 86 (cid:70) 0.4 )(cid:58) 0.5 K ((cid:85) 83o 0.2 1.0 (cid:70) 0.0 80o -2 -1 0 1 2 (cid:70) B (kG) 0.5 7(cid:84)4 =o 0o b c 1 Sample C T = 0.3 K 0.0 ) -2 -1 0 1 2 -2G0.1 B (kG) k ( 1.0 (cid:69) b 0.8 0.01 (cid:85)00.6 4 6 8 1 2 4 60 1 2 3 4 5 6 (cid:18) (cid:85)min0.4 T (K) T (K) FIG.4.(Coloronline)(a)Solidcurvesrepresentρ(B)/ρ measured 0 0.2 insampleAat T from0.5 Kto2.0 K,asmarked. Dashedcurves arefitstothedata,ρ(B)/ρ = 1−βB2,at|B| ≤ 0.5kG.(b,c)β 0 0.0 versusT. Solidlinesarefitstothedata(seetext)anddashedlines 1 5 10 15 20 areβsmcalculatedusingEq.(3). i 1/cos(cid:84) FIG.3.(Coloronline)(a)ρ(B)ofsampleCatT =0.3Katdifferent tivemagnetoresistance,seeEq.(1),withβ givenby tiltanglesθ(asmarked).(b)ρ /ρ versus1/cosθ(circles).Solid min 0 curveisaguidetoaneye. e2 τ 1/2 β = L , 0<τ−1 τ−1. (2) andthenexamineβ asafunctionoftemperature. InFig.4(a) d 2πn p2 (cid:18)2τ (cid:19) L ≪ S S F S weplotnormalizedmagnetoresistivity,ρ(B)/ρ0,measuredin sample A atT from0.5 K to 2.0 K, in a step of 0.5K.45 To Here,τ−1andτ−1arelong-andshort-rangedisordermomen- extractβwefitthedatausingEq.(1)overtherange B 0.5 L S | |≤ tumrelaxationrates,τ−1 =τ−1+τ−1,47n isthearealden- kG(cf.dashedlines)andobservethatthecurvatureofthelow L S S sityofshort-rangescatterers,andp istheFermimomentum. fieldresistivityβ decreaseswithincreasingtemperature. F Equation(2)isvalidforβ B2 1andathigherB theresis- iedA,fwteer rperpeeseantitngextthreacfitetdtinβg ipnroFciegd.u4r(eb)foarnadllFoigth.e4r(cT) usstuindg- tivityisexpectedtosaturatdeatρ≪min ≃ρ0·(τS/τL)≪ρ0.46,48 log-log and log-linear scale, respectively. First, we notice Whilethedisordermodelcan,inprinciple,leadtoGNMR, that at T . 1 K, β shows a sign of saturation and can be it clearlyfails to explainourexperimentalfindings. First, as well described by β 1.45 T2/T02, T0 1.7 K [cf. shown above, β exhibits strong dependence on temperature solid curve in Fig.4(b≈)]. At h−igher T the da≈ta can be de- whichdoesnotenterEq.(2). Second,webelievethattheas- scribed by either β T−2.6, T & 2.5 K [cf. solid line in sumptionof τ−1 τ−1 is notsatisfied in our samples. In- F1[c.i0fg..Ks4o(lb.i)d]Tloinr.ebsy3in.β5FKi∝g∝.a4en(xdcp)T(]2.−I≈Tti/s1Tc.91l,e2Ka)r,ftwohraht3et.rh5eeKTte1m.≈pTe1ra..0tu6Kre.0dfoeK-r ndinaelesladym,ntpholeteicaAen4at9hlyLassutigswg≪ohefislHetsSaRollepffip.eo1ls3dit-ceinordneuclalcuteidodenrd,eτsthLi−sat1tan≃thcee5MτoSs−Rc1i.lilnWattiehoefinis-r pendenceofβisrathercomplexwhichislikelyaresultofone samplescanbeconsistentlydescribedbyEq.(2),50neitherthe orseveralcrossoversbetweendifferentregimes. Inwhatfol- temperaturedependencenorthevalidityofτ−1 τ−1 con- L ≪ S lowsweexamineβ(T)intermsofexistingtheoreticalmodels ditionhasbeenexamined. andcomparetheresultsofouranalysistootherexperimental Electon-electron interaction model,32,51,52 on the other studies.13,33 hand,predictsatemperature-dependentmagnetoresistance.In Quasiclassicaldisordermodel,46predictsaparabolicnega- theballisticregime,~/τ k T,andforsmoothdisorderpo- B ≪ 4 tentialthismodelalsoleadstoEq.(1),withβ givenby52 In summary, a giant negative magnetoresistance effect in high-mobility GaAs/AlGaAs heterostructures and quantum βsm =µ2 ρ0 c0 ~/τ 1/2, τ−1 =0. (3) wells is marked by a pronounced minimum of the longitu- i R π (cid:18)k T(cid:19) S dinal resistivity appearing at B 1 kG. The temperature K B ≃ dependence clearly reveals a crossover between two distinct Here, RK = h/e2 is the von Klitzing constant and c0 = regimes. In the high temperature regime, the zero-field re- 3ζ(3/2)/16√π 0.276. However, Eq.(3) also fails to de- sistivityandtheminimumresistivitybothexhibitlineartem- scribe our findin≃gs. Indeed, takingT = 1 K as an example, perature dependence, due to scattering on thermal acoustic ourexperimentgivesβ 1.1kG−2 whichis nearlytwo or- phonons. Inthelowtemperatureregime,however,zero-field ders of magnitude larger≈than βsm 0.014 kG−2 obtained resistivityquicklysaturatesbuttheminimumresistivity con- fromEq.(3). Comparisonofβsmi ob≈tainedusingEq.(3)[cf. tinuestodecreaseatanevenfaster rateeventuallybecoming i dashed line in Figs. 4(b) and 4(c)] with our data shows that asmallfractionofthezero-fieldresitivity. Unexpectedly,we thediscrepancyremainssignificantoverthewholerangeofT also find that the GNMR is destroyed not only by tempera- studied.Moreover,itthisclearthattheinteractionmodelfails ture but also by very modest (a few kG) in-plane magnetic toexplainourdataevenonaqualitativelevel. Wealsonotice fields. Finally, ouranalysisof the low-fieldmagnetoresistiv- thatsignificantdisagreementwithEq.(3)wasfoundinRef.33 itydemonstratesthattheGNMReffectcannotbeunderstood reportinglow-temperatureβwhichisroughly30(n 2 1011 byexistingtheoreticalmodelsconsideringeitherinteraction- cm−2)to150(n 3 1011cm−2)timeslargerthan≈βsm·.53 inducedordisorder-inducedcorrections,evenonaqualitative We next cons≈ider· several scenarios for the obiserved level. Takentogether,these findingsprovideimportantclues discrepancy. First, in a realistic high-mobility 2DEG, foremergingtheoriesandshouldhelptoelucidatetheorigin sharp disorder, which is not present in Eq.(3), plays a oftheGNMRinveryhighmobility2DES. crucial role in many of the low-field magnetotransport WethankM.Dyakonov,R.Houg,M.Khodas,D.Polyakov, phenomena.3,9–11,22–24,35,46,48,54–58 For the case of mixed dis- M.Raikh,andB.ShklovskiifordiscussionsandG.Jones,T. orderpotentialEq.(3)isgeneralizedto52 Murphy,andD.Smirnovfortechnicalassistance.Aportionof thisworkwasperformedattheNHMFL,whichissupported 3τ τ βmix = 4 Lβsm. (4) by NSF CooperativeAgreementNo. DMR-0654118,by the i (cid:18) − τL(cid:19)r τ i State of Florida, and by the DOE and at the Center for Inte- grated Nanotechnologies, a U.S. Department of Energy, Of- oI4fu(τrτLL−s/a1τm)p≪1l/e2Aτ≫S−,1a,s1tmwheehrniectihoanpleepadedaasrbstooavβep,imaτrix−am1≫etrβi5cisaτml−l.y1Hlfaroorwgmeevwfeahrc,itcoihnr fifeorcgreyI,onOfteBfgfiarcasetiecodEfNBneaarnsgiocyteEScnchieneronglcyoegSsiceuises,enracefUasc.uSils.ietyrDfeaapncadilritatmyt.ethTnetheCofwenEotrnekr- L ≃ S weestimate(4 3τ/τ ) τ /τ 1.5. Suchasmallfactor at Minnesota was supported by the NSF Grant No. DMR- L L − ≈ isclearlynotsufficienttopexplainthediscrepancy. 0548014(measurementsat Minnesota on SamplesA and B) Anotherpossiblecause forlargeβ isthedisorder-induced andbytheDOEGrantNo. DE-SC002567(tilt-fieldmeasure- T-independent correction, similar to that given by Eq.(2). ments at NHMFL on sample C). The work at Princeton was Assuming that the contributions are additive, one has β = partiallyfundedbytheGordonandBetty MooreFoundation β +β , where β (β ) T0(T−1/2). It is clear, however, and the NSF MRSEC Program through the Princeton Cen- d i d i ∝ thattheexperimentallyobtainedβ(T)cannotbedescribedby ter for Complex Materials (DMR-0819860)and the work at suchdependence.59 SandiawassupportedbytheSandiaCorporationunderCon- Finally, theory should consider a possibility that the low- tract No. DE-AC04-94AL85000. Sandia National Labora- temperaturemagnetoresistanceoriginatesprimarily from the tories is a multi-program laboratory managed and operated quasiclassicaldisordermechanismwhich,however,issignif- by Sandia Corporation, a wholly owned subsidiary of Lock- icantly altered by the electron-electron interactions with in- heedMartinCorporation,fortheU.S.DepartmentofEnergy’s creasing temperature.60 However, such a theory remains a NationalNuclearSecurityAdministrationundercontractDE- subjectoffuturework. AC04-94AL85000. ∗ Correspondingauthor:[email protected] Lett.90,046807(2003). 1 M.A.Zudov,R.R.Du,J.A.Simmons,andJ.L.Reno,Phys.Rev. 6 C.L.Yang,M.A.Zudov,T.A.Knuuttila,R.R.Du,L.N.Pfeiffer, B64,201311(R)(2001). etal.,Phys.Rev.Lett.91,096803(2003). 2 M.A.Zudov,I.V.Ponomarev,A.L.Efros,R.R.Du,J.A.Sim- 7 I. V. Kukushkin, M. Y. Akimov, J. H. Smet, S. A. Mikhailov, mons,etal.,Phys.Rev.Lett.86,3614(2001). K.vonKlitzing,etal.,Phys.Rev.Lett.92,236803(2004). 3 C.L.Yang,J.Zhang, R.R.Du,J.A.Simmons,andJ.L.Reno, 8 A.A.Bykov,J.-Q.Zhang,S.Vitkalov,A.K.Kalagin,andA.K. Phys.Rev.Lett.89,076801(2002). Bakarov,Phys.Rev.Lett.99,116801(2007). 4 R.G.Mani,J.H.Smet,K.vonKlitzing,V.Narayanamurti,W.B. 9 W. Zhang, M. A. Zudov, L. N. Pfeiffer, and K. W. West, Phys. Johnson,etal.,Nature(London)420,646(2002). Rev.Lett.98,106804(2007). 5 M.A.Zudov,R.R.Du,L.N.Pfeiffer,andK.W.West,Phys.Rev. 10 A.T.Hatke,H.-S.Chiang,M.A.Zudov,L.N.Pfeiffer,andK.W. 5 West,Phys.Rev.Lett.101,246811(2008). whenbothtypesofdisorderarepresent,theresistivityshouldre- 11 M.Khodas,H.S.Chiang,A.T.Hatke,M.A.Zudov,M.G.Vav- mainfinite46andcanevendivergeathighB.48Closeexamination ilov,etal.,Phys.Rev.Lett.104,206801(2010). ofFig.2(a-b)showsasignofsaturationofρ atlowtempera- min 12 A.T.Hatke,H.-S.Chiang,M.A.Zudov,L.N.Pfeiffer,andK.W. tures. West,Phys.Rev.B82,041304(R)(2010). 42 C.L.Yang,R.R.Du,L.N.Pfeiffer,andK.W.West,Phys.Rev. 13 Y.Dai,R.R.Du,L.N.Pfeiffer,andK.W.West,Phys.Rev.Lett. B74,045315(2006). 105,246802(2010). 43 A.T.Hatke,M.A.Zudov,L.N.Pfeiffer,andK.W.West,Phys. 14 A.T.Hatke,M.A.Zudov,L.N.Pfeiffer,andK.W.West,Phys. Rev.B83,081301(R)(2011). Rev.B83,121301(R)(2011). 44 X.Zhou,B.A.Piot,M.Bonin,L.W.Engel,S.DasSarma,etal., 15 V.I.Ryzhii,Sov.Phys.SolidState11,2078(1970). Phys.Rev.Lett.104,216801(2010). 16 A.C.Durst, S.Sachdev, N.Read, andS.M. Girvin, Phys.Rev. 45 Inorder toimprove thefittingprocedure, aslight asymmetry of Lett.91,086803(2003). therawdatainFig.1(a)waseliminatedbysubtractingalinearin 17 X.L.LeiandS.Y.Liu,Phys.Rev.Lett.91,226805(2003). Bcomponenttoensureρ(B )=ρ(−B ). 0 0 18 I.A.Dmitriev,A.D.Mirlin,andD.G.Polyakov,Phys.Rev.Lett. 46 A.D.Mirlin,D.G.Polyakov,F.Evers,andP.Wo¨lfle,Phys.Rev. 91,226802(2003). Lett.87,126805(2001). 19 M.G.VavilovandI.L.Aleiner,Phys.Rev.B69,035303(2004). 47 The limiting cases of τ−1 = 0, known as Lorentz gas, and of 20 I. A. Dmitriev, M. G. Vavilov, I. L. Aleiner, A. D. Mirlin, and τ−1 = 0 have been stuLdied in Refs.64,65,66 and Refs.67,68, S D.G.Polyakov,Phys.Rev.B71,115316(2005). respectively. 21 I.A.Dmitriev,A.D.Mirlin,andD.G.Polyakov,Phys.Rev.B75, 48 D.G.Polyakov,F.Evers,A.D.Mirlin,andP.Wo¨lfle,Phys.Rev. 245320(2007). B64,205306(2001). 22 M.G.Vavilov,I.L.Aleiner,andL.I.Glazman,Phys.Rev.B76, 49 TheapproachofRef.57yieldsτ /τ ≈6,whereτ−1istheelec- π π 115331(2007). tron backscattering rateoff short-range disorder. Withτ ≃ τ S π 23 M.KhodasandM.G.Vavilov,Phys.Rev.B78,245319(2008). oneobtainsτ−1 ≈ (1/6)τ−1 andτ−1 ≈ (5/6)τ−1.Thisanal- S L 24 I. A. Dmitriev, M. Khodas, A. D. Mirlin, D. G. Polyakov, and ysisassumed isotropic scatteringoff short-range disorder which M.G.Vavilov,Phys.Rev.B80,165327(2009). mightnotbeexactlythecase. 25 O.E.Raichev,Phys.Rev.B80,075318(2009). 50 Ref.13assumedτ /τ ≃ ρ /ρ andusingEq.(2)foundthat S L min 0 26 I. Dmitriev, S. Dorozhkin, and A. Mirlin, Physica E 42, 1159 intheirsamples(withµrangingfrom0.9·107cm2/Vsto3.0·107 (2010). cm2/Vs)n variesbetween(2.6µm)−2 and(8.0µm)−2.These S 27 A.T.Hatke,M.Khodas,M.A.Zudov,L.N.Pfeiffer,andK.W. values correspond ton(3D) ∼ n /a ∼ 1013 cm−3 and 1012 West,Phys.Rev.B84,241302(R)(2011). cm−3 (a ≃ 10 nm isSa Bohr raSdiuBs in GaAs). The same pro- B 28 A.T.Hatke,M.A.Zudov,L.N.Pfeiffer,andK.W.West,Phys. cedureappliedtothedatafromsampleAatT = 0.5Kleadsto Rev.B83,201301(R)(2011). n ≃(1.6µm)−2. S 29 Significant low-field negative magnetoresistance has been ob- 51 I.V.GornyiandA.D.Mirlin,Phys.Rev.Lett.90,076801(2003). servedinseveralearlyexperiments.2,3,61. 52 I.V.GornyiandA.D.Mirlin,Phys.Rev.B69,045313(2004). 30 A.M.Paalanen,D.C.Tsui,andJ.C.M.Hwang,Phys.Rev.Lett. 53 Thedisagreement withEq.(3)isnotonlyinthemagnitudeofβ 51,2226(1983). butalsoinitsmuchstrongerdependenceondensity. 31 K. K. Choi, D. C. Tsui, and S. C. Palmateer, Phys. Rev. B 33, 54 W.Zhang,H.-S.Chiang,M.A.Zudov,L.N.Pfeiffer,andK.W. 8216(1986). West,Phys.Rev.B75,041304(R)(2007). 32 L.Li,Y.Y.Proskuryakov, A.K.Savchenko, E.H.Linfield,and 55 A.T.Hatke,H.-S.Chiang,M.A.Zudov,L.N.Pfeiffer,andK.W. D.A.Ritchie,Phys.Rev.Lett.90,076802(2003). West,Phys.Rev.B77,201304(R)(2008). 33 L.Bockhorn,P.Barthhold,D.Schuh,W.Wegscheider,andR.J. 56 A.T.Hatke,M.A.Zudov,L.N.Pfeiffer,andK.W.West,Phys. Haug,Phys.Rev.B83,113301(2011). Rev.Lett.102,066804(2009). 34 The corresponding mobility variation was from µ ≃ 0.9·107 57 A.T.Hatke,M.A.Zudov,L.N.Pfeiffer,andK.W.West,Phys. cm2/Vstoµ≃1.1·107cm2/Vs. Rev.B79,161308(R)(2009). 35 W. Zhang, M. A. Zudov, L. N. Pfeiffer, and K. W. West, Phys. 58 A.Hatke,M.Zudov,L.Pfeiffer,andK.West,PhysicaE42,1081 Rev.Lett.100,036805(2008). (2010). 36 A.T.Hatke,M.A.Zudov,L.N.Pfeiffer,andK.W.West,Phys. 59 Fittingthedatawithβ =β +b·T−1/2leadstoβ < 0atany 0 0 Rev.Lett.102,086808(2009). temperature. 37 A.T.Hatke,M.A.Zudov,L.N.Pfeiffer,andK.W.West,Phys. 60 D.G.Polyakov,privatecommunication. Rev.B84,121301(2011). 61 V.Umansky, R.dePicciotto,andM.Heiblum,Appl.Phys.Lett. 38 Themaximaoftheseoscillationsoccurclosetointegervaluesof 71,683(1997). theratio, 2kFs/ωc (Ref.2), wheres ≃ 3.4km/sisthevelocity 62 A.GoldandV.T.Dolgopolov,Phys.Rev.B33,1076(1986). of the transverse acoustic mode in GaAs. In sample A, we find 63 A.Gold,Phys.Rev.B41,8537(1990). 2~kFs/kB ≈2.6K. 64 E.M.Baskin,L.N.Magarill,andM.V.Entin,Sov.Phys.JETP 39 H. L. Stormer, L. N. Pfeiffer, K. W. Baldwin, and K. W. West, 48,365(1978). Phys.Rev.B41,1278(1990). 65 A.V. Bobylev, F.A.Maaø, A.Hansen, and E.H. Hauge, Phys. 40 Effectsoftemperature-dependentscreening(see,e.g.Refs.62,63) Rev.Lett.75,197(1995). onthelow-temperatureelectronmobilityinoursamplesareneg- 66 A. Dmitriev, M. Dyakonov, and R. Jullien, Phys. Rev. B 64, ligible. 233321(2001). 41 Itmightappearthatρmin(T) → 0asT → 0,abehaviorwhich 67 M.M.Fogler,A.Y.Dobin,V.I.Perel,andB.I.Shklovskii,Phys. wouldsignalaB-inducedmetal-insulatortransitionpredictedin Rev.B56,6823(1997). 2DESwithonlysharp64–66oronlysmooth67,68disorder.However, 68 A.D.Mirlin, J.Wilke, F.Evers, D.G.Polyakov, andP.Wo¨lfle, Phys.Rev.Lett.83,2801(1999).

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.