ebook img

Get PDF (487 KB) PDF

14 Pages·2009·0.48 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Get PDF (487 KB)

Discontinuous Galerkin time-domain computations of metallic nanostructures KaiStannigel1,2,3,MichaelKo¨nig1,2,JensNiegemann1,2,andKurt Busch1,2 1Institutfu¨rTheoretischeFestko¨rperphysik,Universita¨tKarlsruhe(TH),76128Karlsruhe, Germany 2DFG-CenterforFunctionalNanostructures(CFN),Universita¨tKarlsruhe(TH),76128 Karlsruhe,Germany 3InstituteforTheoreticalPhysics,UniversityofInnsbruckandInstituteforQuantumOptics andQuantumInformation,AustrianAcademyofSciences,Technikerstraße25,6020 Innsbruck,Austria [email protected] Abstract: We apply the three-dimensional Discontinuous-Galerkin Time-Domain method to the investigation of the optical properties of bar- and V-shaped metallic nanostructures on dielectric substrates. A flexible finite element-like mesh together with an expansion into high-order basis functions allows for an accurate resolution of complex geometries and strong field gradients. In turn, this provides accurate results on the optical response of realistic structures. We study in detail the influence of particle size and shape on resonance frequencies as well as on scattering and absorption efficiencies. Beyond a critical size which determines the onset of the quasi-static limit we find significant deviations from the quasi-static theory. Furthermore, we investigate the influence of the excitation by comparing normal illumination and attenuated total internal reflection setups. Finally, we examine the possibility of coherently controlling the localfieldenhancementofV-structuresviachirpedpulses. © 2009 OpticalSocietyofAmerica OCIScodes: (000.3860)Mathematicalmethodsinphysics;(000.4430)Numericalapproxima- tionandanalysis;(240.6680)Opticsatsurfaces:Surfaceplasmons(260.3910)Physicaloptics :Metaloptics;(290.5850)Scattering:Scattering,particles;(310.6628)Thinfilms:Subwave- lengthstructures,nanostructures Referencesandlinks 1. T.Soller,M.Ringler,M.Wunderlich,T.A.Klar,J.Feldmann,H.-P.Josel,Y.Markert,A.Nichl,andK.Ku¨rzinger, “Radiativeandnonradiativeratesofphosphorsattachedtogoldnanoparticles,”NanoLett.7,1941–1946(2008). 2. J.SteidtnerandB.Pettinger,“Tip-enhancedRamanspectroscopyandmicroscopyonsingledyemoleculeswith 15nmresolution,”Phys.Rev.Lett.100,236101-1–4(2008). 3. S.Kim,J.Jin.,Y.-J.Kim,I.-Y.Park,Y.Kim,andS.-W.Kim, “High-harmonicgenerationbyresonantplasmon fieldenhancement,”Nature453,757–760(2008). 4. D.J.BergmanandM.I.Stockman, “Surfaceplasmonamplificationbystimulatedemissionofradiation:Quan- tumgenerationofcoherentsurfaceplasmonsinnanosystems,”Phys.Rev.Lett.90,027402-1–4(2003). 5. N.I.Zheludev,S.I.Prosvirnin,N.Papasimakis,andV.A.Fedotov,“Lasingspaser,”NaturePhoton.2,351–354 (2008). 6. M.Righini,A.S.Zelenina,C.Girard,andR.Quidant, “Parallelandselectivetrappinginapatternedplasmonic landscape,”NaturePhys.3,477–480(2008). #110638 - $15.00 USD Received 27 Apr 2009; revised 12 Jun 2009; accepted 26 Jun 2009; published 7 Aug 2009 (C) 2009 OSA 17 August 2009 / Vol. 17, No. 17 / OPTICS EXPRESS 14934 7. M.Righini,V.Giovani,C.Girard,D.Petrov,andR.Quidant,“Surfaceplasmonopticaltweezers:Tunableoptical manipulationinthefemtonewtonrange,”Phys.Rev.Lett.100,186804-1–4(2008). 8. A. N. Grigorenko, N. W. Roberts, M. R. Dickinson, andY. Zhang, “Nanometric optical tweezers based on nanostructuredsubstrates,”NaturePhoton.2,365–370(2008). 9. M.Aeschlimann,M.Bauer,D.Bayer,T.Brixner,F.J.GarciadeAbajo,W.Pfeiffer,M.Rohmer,C.Spindler,and F.Steeb,“Adaptivesubwavelengthcontrolofnano-opticalfields,”Nature446,301–304(2007). 10. P.B.JohnsonandR.W.Christy,“Opticalconstantsofthenoblemetals,”Phys.Rev.B6,4370–4379(1972). 11. C.M.Aikens,S.Li,andG.C.Schatz, “Fromdiscreteelectronicstatestoplasmons:TDDFTopticalabsorption propertiesofAgn(n=10,20,35,56,84,120)tetrahedralclusters,”J.Phys.Chem.C112,11272–11279(2008). 12. M. I.Stockman,S. V.Faleev, andD. J.Bergman, “Coherentcontroloffemtosecondenergylocalization in nanosystems,”Phys.Rev.Lett.88,067402-1–4(2002). 13. M.I.Stockman,D.J.Bergmann,andT.Kobayashi, “Coherentcontrolofnanoscalelocalizationofultrafast opticalexcitationinnanosystems,”Phys.Rev.B69,054202–054211(2004). 14. X. Li and M. I. Stockman, “Highly efficient spatiotemporal control in nanoplasmonics on a nanometer- femtosecondscalebytimereversal,”Phys.Rev.B77,195109(2008). 15. V.Myroshnychenko,J.Rodriguez-Fernandez,I.Pastoriza-Santos,A.M.Funston,C.Novo,P.Mulvaney,L.M. Liz-Martin,andF.J.GarciadeAbajo,“Modellingtheopticalresponseofgoldnanoparticles,”Chem.Soc.Rev. 37,1792–1805(2008). 16. J.Jin, ComputationalElectrodynamics:TheFiniteElementMethodinElectromagnetics (2ndedition,John Wiley&Sons,NewYork,2002). 17. C.Hafner,Post-modernElectromagnetics(JohnWiley&Sons,NewYork,1999). 18. N. Calander and M. Willander, “Theory of surface-plasmon resonance optical-field enhancement at prolate spheroids,”J.Appl.Phys.92,4878–4884,(2002). 19. R.Kappeler,D.Erni,C.Xudong,andL.Novotny, “Fieldcomputationsofopticalantennas,” J.Comput.Theor. Nanosci.4,686–691(2007). 20. X.Cui,W.Zhang,B.-S.Yeo,R.Zenobi,Ch.Hafner,andD.Erni,“TuningtheresonancefrequencyofAg-coated dielectrictips,”Opt.Express15,8309–8316(2007). 21. H.FischerandO.J.F.Martin,“Engineeringtheopticalresponseofplasmonicnanoantennas,”Opt.Express16, 9144–9154(2008). 22. M.I.Stockman,“Ultrafastnanoplasmonicsundercoherentcontrol,”NewJ.Phys.10,025031(2008). 23. A.TafloveandS.C.Hagness,Computationalelectrodynamics(3rdedition,ArtechHouse,Boston,2005). 24. J.Niegemann,M.Ko¨nig,K.Stannigel,andK.Busch, “Higher-ordertime-domainmethodsfortheanalysisof nano-photonicsystems,”Photon.Nanostruct.Fundam.Appl.7,2–11(2008). 25. J.S.HesthavenandT.Warburton, “Nodalhigh-ordermethodsonunstructuredgrids-I.Time-domainsolution ofMaxwell’sequations,”J.Comput.Phys.181,186–221(2002). 26. T.Lu,P.Zhang,andW.Cai,“DiscontinuousGalerkinmethodsfordispersiveandlossyMaxwell’sequationsand PMLboundaryconditions,”J.Comput.Phys.200,549–580(2004). 27. M. H. Carpenter and C. A. Kennedy, “Fourth-Order 2N-Storage Runge-Kutta Schemes,” Technical Report NASA-TM-109112,NASALangleyResearchCenter,VA(1994). 28. K.Busch,J.Niegemann,M.Pototschnig,andL.Tkeshelashvili,“AKrylov-subspacebasedsolverforthelinear andnonlinearMaxwellequations,”phys.stat.sol.(b)244,3479–2496(2007). 29. H.C.vandeHulst,Lightscatteringbysmallparticles(DoverPubl.,NewYork,1981). 30. M.Liu,P.Guyot-Sionnest,T.-W.Lee,andS.K.Gray, “Opticalpropertiesofrodlikeandbipyramidalgold nanoparticlesfromthree-dimensionalcomputations,”Phys.Rev.B76,235428(2007). 31. E.HaoandG.C.Schatz, “Electromagneticfieldsaroundsilvernanoparticlesanddimers,” J.Chem.Phys.120, 357–366(2004). 32. H.Kuwata,H.Tamaru,K.Esumi,andK.Miyano,“Resonantlightscatteringfrommetalnanoparticles:Practical analysisbeyondRayleighapproximation,”Appl.Phys.Lett.83,4625–4627(2003). 33. C.F.BohrenandD.R.Huffman,Absorptionandscatteringoflightbysmallparticles(JohnWiley&Sons,New York,1983). 34. C.Sonnichsen,S.Geier,N.E.Hecker,G.vonPlessen,J.Feldmann,H.Ditlbacher,B.Lamprecht,J.R.Krenn, F.R.Aussenegg,V.Z-H.Chan,J.P.Spatz,andM.Moller,“Spectroscopyofsinglemetallicnanoparticlesusing totalinternalreflectionmicroscopy,”Appl.Phys.Lett.77,2949–2951(2000). 35. A.Arbouet,D.Christofilos,N.DelFatti,F.Valle´e,J.R.Huntzinger,L.Arnaud,P.Billaud,andM.Broyer,“Direct MeasurementoftheSingle-Metal-ClusterOpticalAbsorption,”Phys.Rev.Lett.93,127401-1–4(2004). 36. M.Husnik,M.W.Klein,N.Feth,M.Ko¨nig,J.Niegemann,K.Busch,S.Linden,andM.Wegener, “Absolute extinctioncross-sectionofindividualmagneticsplit-ringresonators,”NaturePhoton.2,614–617(2008). #110638 - $15.00 USD Received 27 Apr 2009; revised 12 Jun 2009; accepted 26 Jun 2009; published 7 Aug 2009 (C) 2009 OSA 17 August 2009 / Vol. 17, No. 17 / OPTICS EXPRESS 14935 1. Introduction Therelevantpropertyofmetalswithrespecttotheiropticalresponseisthelargedensityoffree electrons.Underappropriateexcitationconditions,theseelectronsundergocoherentcollective oscillationsrelativetoaratherimmobilebackgroundofpositivelychargedions.Theconfined geometry provided by metallic nanostructures allows for the resonant enhancement of a dis- cretesetofso-calledparticleplasmonresonances.Theseleadtolargeelectricfieldsandstrong field gradients which may be exploited for numerous applications. In an optical context, the excitationmayberealized,forinstance,viaanexternallightsource.Theresultingstronglylo- calizedfieldsleadtoenhancedfluorescencefrommolecules[1],facilitatetip-enhancedRaman- scatteringspectroscopytechniques[2]andon-chipgenerationofhighharmonics[3].Theyeven allow for coherently amplified radiation based on novel principles such as the spaser [4] and thelasingspaser[5].Similarly,thestrongfieldgradientsassociatedwithplasmonicnanostruc- tures start to find applications in novel types of optical tweezers [6–8]. Furthermore, it has recently been demonstrated experimentally that the utility of metallic nanostructures may be considerablyenhancedthroughcontrolledexcitationwithshapedbeams[9].Infact,thecurrent state-of-the-art in realizing beams with prescribed temporal profile in phase, amplitude, and polarizationwillallowafar-reachingcontroloverthespatio-temporallocalizationofradiation fortheapplicationsdiscussedabove. This clearly demonstrates an elevated need for quantitative theoretical understanding on various levels of sophistication. In fact, a large forest of theoretical and computational meth- ods has been brought to bear on this problem. These include the choice of material models and approaches to improve the accuracy of representing the nanostructures’ geometries and associated electromagnetic fields. For instance, on the linear optical level, metals may be de- scribedasdispersiveand,hence,absorptivedielectricmaterialswithspatiallylocalresponses. InmanyrelevantcasesthisamountstoemployingthecelebratedDrudeorDrude-Lorentzmod- els [10]. On the other hand, if non-radiative processes such as the charge-transfer between molecules and metallic nanostructures in surface- or tip-enhanced Raman scattering become relevant,fullyquantummechanicalcalculations,e.g.,viaTime-DependentDensity-Functional Theory (TDDFT) can be employed [11]. Clearly, more complex material models quickly re- quirerathersignificantcomputationalresourcessothattypicallyonlyverysmallmetalclusters canbetreatedviaTDDFT. Even within a linear material model, there exists a large variety of approaches that range fromthequasi-staticapproximationforsufficientlysmallparticles[12–14]allthewaytofull Maxwellsolvers(forarecentreview,see[15]).Broadlyspeaking,thelattermaybedividedfur- therintofrequency-domainandtime-domainmethods.Mostfrequency-domainmethodssuch asBoundaryElementMethods[16],MultipleMultipoleMethods[17],andtheFiniteElement Methods[16]lendthemselvestohighlyaccuraterepresentationsofcomplexgeometries.Many different systems have been studied—mostly driven by what can be realized experimentally and often guided by antenna design principles [7,15,18–21]. However, certain applications, for instance those that employ shaped beams [9] and/or coherent control principles [14,22], are more naturally treated within a time-domain framework. Surprisingly and in contrast to the numerous frequency-domain methods, the choice of time-domain methods for the treat- mentofnano-photonicproblemsisratherlimited,theFinite-DifferenceTime-Domainmethod undoubtedlybeingthemostpopularone[23]. Inthispaper,wepresentouranalysisoftheopticalpropertiesofexperimentallyfeasiblebar- andV-shapedmetallicnanostructuresusingourimplementation[24]oftherecentlydeveloped three-dimensionalDiscontinuous-GalerkinTime-Domain(DGTD)method[25].Inessence,the DGTDapproachcombinesafinite-element-likerepresentationofcomplexgeometrieswithan explicit time-stepping capability: An adaptive high-order spatial discretization allows for the #110638 - $15.00 USD Received 27 Apr 2009; revised 12 Jun 2009; accepted 26 Jun 2009; published 7 Aug 2009 (C) 2009 OSA 17 August 2009 / Vol. 17, No. 17 / OPTICS EXPRESS 14936 useofacorrespondinghigh-ordertime-integrationschemesothattheresultingsolverisvery wellsuitedforthequantitativeanalysisofcomplexnano-photonicsystems. Theremainderofthispaperisstructuredasfollows:Insection2,wepresentabriefintro- ductiontotheDGTDmethod,whileavalidationofourimplementationisprovidedinsection3, wherewecomparenumericalresultsformetallicsphereswithanalyticMietheory.Insections 4and 5,we analyze, respectively, nanoscopic silverbarsand V-shaped structureswithregard totheirsize-dependentpropertiessuchasresonancefrequenciesandattainablefieldenhance- mentsundervariousexcitationconditions. 2. ThediscontinuousGalerkintime-domainmethod Inthissection,weprovideabriefoutlineofthebasicideasunderlyingtheDGTDmethod.For moredetailsandtherelevantformulas,wereferthereadertoRefs.[24–26]. The key feature of the DGTD method is that it allows to use an explicit time-stepping schemeincombinationwithafinite-elementdiscretization.Thestartingpointofeachcalcula- tionisthusthetessellationofthecomputationaldomainbyfiniteelements,whichinourcase are straight-sided tetrahedra. Then, on each element the components of the electromagnetic fieldareexpandedintopolynomialsofadjustableorder p.Incontrasttotheclassicalfiniteele- mentmethod[16],thisexpansionispurelylocalandthefieldsareallowedtobediscontinuous across element boundaries. In order to facilitate the coupling between neighboring elements, oneintroducesanadditionalpenaltyterm,whichweaklyenforcesthephysicalboundarycon- ditions. As a consequence of this procedure, we obtain a large system of coupled ordinary differ- entialequations(ODEs)fortheexpansioncoefficientsoftheelectromagneticfield.Sincethis systemconsistsofsmallindependentblocksrelatedtotheindividualelements,itcanberead- ily integrated using an explicit time-stepping scheme. For the calculations presented in this work, we employed a standard 4th-order low-storage Runge-Kutta algorithm as described in Ref.[27].However,sincewithinDGTDthetime-steppingisessentiallydisentangledfromthe spatialdiscretization(asopposedtothesituationinFDTD),moresophisticatedmethodssuch as Krylov-subspace based operator exponential techniques [28] could provide an even more efficientsolver. Forpracticalcomputations,thebasicalgorithmsketchedaboveneedstobecomplemented by various extensions. For instance, Lu et al. [26] have shown how to implement dispersive materialsandperfectlymatchedlayer(PML)absorbingboundaryconditionsviaauxiliarydif- ferentialequations.TheperformanceofthePMLshasbeenoptimizedinRef.[24].Finally,the well-knowntotal-field/scattered-fieldapproach[23]fortheinjectionofpulsesintoascattering configurationcandirectlybeusedinDGTD. 3. Scatteringbyametallicsphere In order to validate our implementation and as a benchmark problem we calculate the total scattering and absorption cross sections of a metallic sphere. The dispersion of the metal is modeledasastandardDruderesponsegivenby ω2 ε(ω)=1− d , ω(ω−iγ) d wheretheplasmafrequencyω =1.39·1016s−1 andthecollisionrateγ =3.23·1013s−1 cor- d d respondtothevaluesgivenbyJohnsonandChristy[10]forsilver.However,itshouldbenoted thatthesevaluesunderestimatethelossesintheultravioletregime.Wetakethespheretohave aradiusof50nmandtobeembeddedinvacuum. #110638 - $15.00 USD Received 27 Apr 2009; revised 12 Jun 2009; accepted 26 Jun 2009; published 7 Aug 2009 (C) 2009 OSA 17 August 2009 / Vol. 17, No. 17 / OPTICS EXPRESS 14937 a) b) 0.08 0.014 2μScattering cross section [m] 000...000246 MDGieT tDheory 2μAbsorption cross section [m] 000000.....00000.000001124682 MDGieT tDheory 0 0 100 200 300 400 500 100 200 300 400 500 Wavelength [nm] Wavelength [nm] Fig.1.(a)Scatteringand(b)absorptioncrosssectionsofasilverspherewithradius50nm embeddedinvacuum.Thecomputationsinvolve2750tetrahedraforthesphereitsselfand havebeenperformedwithinterpolationpolynomialsoforderp=3.Theresultsagreewell withanalyticMietheory.Seethetextforfurtherdetails. A sketch of the computational setup is shown in Fig.2(a): In order to simulate an open system,thecomputationaldomainisterminatedbyuniaxialperfectlymatchedlayers(PMLs) [24].Furthermore,itisdividedintoatotal-fieldandascattered-field(TF/SF)region,whereat theinterfacebetweentheseregionsabroadbandpulseisinjectedintotheTFregion[23].At the same interface we record the Fourier components of the Poynting vector both inside and outside the TF region. An integration and subsequent normalization to the incident spectrum thenyieldsscatteringandabsorptioncrosssections,respectively. When carrying out such computations one has considerable freedom in choosing various parameters.Wehaveperformedourcomputationswithvaryingordersofthespatialdiscretiza- tion(p=3,4),differentnumbersoftetrahedraforthesphere(infivestepsfrom160to2750) and different sizes of the PML region (either one or two cells). Although we find that the in- terpolation order and the size of the PML do have a slight influence on the accuracy of the result,theerrorisstronglydominatedbythetetrahedrizationofthesphere.Thisresulthasbeen anticipated, since we are using straight-sided elements which essentially lead to a polygonal approximationofthesphere’sshape.InFig.1,wedisplaytheresultsforthescatteringandab- sorptioncrosssectionsforacomputationwhenthesphereismeshedwith2750tetrahedraand whereathird-orderspatialdiscretizationisused.AcomparisonwithanalyticMietheory[29] showsthattherelativepointwiseerrorofthespectrumisbelow2%exceptintheregionofthe highestresonance,wheretheerrorissignificant(upto10%)evenforthefinestdiscretization. Thisindicatesthatforthereproductionoftheexactpositionandstrengthofhigh-Qresonances, oneshouldresorttocurvedelementsormuchfinerdiscretizations.Forlower-Qresonancesas wellasforthegeneralstructureofthespectrumthepresentedcalculationsyieldwell-converged results. 4. Opticalpropertiesofsilvernano-bars Asamorepracticalexamplewestudysilvernano-barsthatarepositionedonaglasssubstrate. Such structures may serve as optical antennas for concentrating light on the sub-wavelength scaleand,thus,areofconsiderableinterestforapplicationsthatincludenonlinearspectroscopy oropticaltweezing. InFig.2(b)wedisplaythebar’sgeometricmodelwhichfeaturesarealisticroundingwith radius r =w/2 at the endings of the bar. In this context, we would like to point out that end thefinite-elementdiscretizationallowsustomodeltheroundingwithoutstaircasingaswould be the case within standard FDTD. While this might be of limited relevance in the case of a #110638 - $15.00 USD Received 27 Apr 2009; revised 12 Jun 2009; accepted 26 Jun 2009; published 7 Aug 2009 (C) 2009 OSA 17 August 2009 / Vol. 17, No. 17 / OPTICS EXPRESS 14938 a) b) Fig.2.(a)Sketchofthegeneralcomputationalsetupforcomputingtheopticalpropertiesof metallicnanostructures.(b)Dimensionsofanano-barthatispositionedonaglasssubstrate. ThetwopointsAandBmarktherecordingsitesfortheelectricfieldenhancements(notto scale). bar-shapedobject,itcertainlyisofhighrelevanceforaV-shapedobjectasdiscussedinsection 5. For this setup, we compute the field enhancement factors upon plane wave excitation and alsoinvestigatethequestionoftheonsetofthequasi-staticlimit,i.e.,wedeterminethemax- imumsizeforwhichthepropertiesofthebararewelldescribedbyapurelyelectrostaticcal- culation.Infact,localfieldenhancementsnearrod-shapedorspheroidalmetallicnanoparticles havebeenconsideredbeforebyotherauthors(seee.g.Refs.[18,19,30,31]).However,ourcom- putationstakeintoaccountthatinmostexperimentalrealizationsnano-particlesaredeposited onto a dielectric substrate. Furthermore, we determine the dependence of the achievable en- hancementonparticlesizewhichservesasareferencefortheV-structurethatweconsiderin section5. 4.1. Localfieldenhancement For the computation of the field enhancement just before the tips of a nano-bar we proceed as follows: We determine the (lowest) resonance frequency f of the structure by recording res thescatteringandabsorptioncrosssectionsasdescribedinsection3.Then,inasecondcom- putation, we irradiate the structure by a monochromatic plane wave with the very resonance frequency,wheretheamplitudeisslowlyrampedupfromzerotoitsfinalvalue.Thistime,we recordthevaluesofthefieldsinfrontofthetip.Thesimulationisstoppedwhentheenhance- menthassaturated.Forthesystemsdescribedbelow,thistakesapproximately30opticalcycles (cf. Fig.3(a)). We have carried out these computations for bars of fixed widths and heights, w=h=20nm, and whose lengths range between l =100–200nm. Figure3(b) shows the ex- tractedenhancements10nmabovethesubstrateatsitesAandBthatarelocated1nmand5nm awayfromthetip,respectively(c.f.Fig.2(b)).Tocheckwhetherourresultsareconverged,we have performed all calculations with interpolation orders p=2 and p=3. Finally, for com- pleteness we provide in Table 1 the wavelengths λ corresponding to the lowest resonance res frequenciesaswellastherespectivequalityfactorsQfordifferentbars. 4.2. Quasi-staticlimit Inspired by the popularity of quasi-static calculations of the optical properties of metallic nanostructures and the numerous exciting predictions that have been made for such systems [12–14,32], we seek to find the maximum size of a nano-bar for which such a description is still adequate. We will present the discussion in terms of the experimentally accessible scat- tering and absorption efficiencies, which we obtain by normalizing the corresponding cross #110638 - $15.00 USD Received 27 Apr 2009; revised 12 Jun 2009; accepted 26 Jun 2009; published 7 Aug 2009 (C) 2009 OSA 17 August 2009 / Vol. 17, No. 17 / OPTICS EXPRESS 14939 a) b) 100 90 Point A 80 Point B E(t)/E at point Ayy,inc −55000 Field enhancement567000 40 −100 30 0 10 20 30 40 100 125 150 175 200 Time [1/fres] Length l [nm] Fig.3.Localfieldenhancementsforsilvernano-barsonglasssubstrates:Panel(a)displays thesaturationoftherecordedtimesignalforthey-componentoftheelectricfieldatpoint A(barlengthl=150nm).Panel(b)showstheextractedvaluesofthefieldenhancementat pointsAandBforbarsofdifferentlengthsl(seeFig.2forfurtherdetailsofthesystem). Table1.Lowestfrequencyresonancewavelengthsλres andcorrespondingqualityfactors Qfornano-barswithdifferentlengthslandfixedwidthandheight,w=h=20nm. l[nm] 100 125 150 175 200 λ [nm] 750 880 1008 1136 1260 res Q 22.2 20.6 19.4 18.7 18.1 sectionstothegeometriccrosssectionoftheobjectnormaltotheincidentbeam. Beforeanalyzingthenano-bars,itisinstructivetofirstconsiderthecaseofametallicsphere withpermittivityε(ω)andunitpermeabilityforwhichtheefficienciesinthequasi-staticlimit canbedeterminedanalyticallyas[33] (cid:2) (cid:2) (cid:3) (cid:4) Qsca= 38x4(cid:2)(cid:2)(cid:2)εε((ωω))−+12(cid:2)(cid:2)(cid:2)2, Qabs=2xIm εε((ωω))−+12 forx=ka(cid:2)1. Here,kisthewavevectoroftheincidentlightandatheradius,i.e.,thecharacteristiclength,of theparticle.Theaboveexpressionsinformusthatthespectralprofileoftheefficiencies—andin particularthepositionoftheresonance—isindependentoftheparticlesize,butratherdepends ontheparticleshape.Thesizemerelyinfluencesthemagnitudesoftheefficiencies.Infact,this statementistrueforscatterersofarbitraryshape.Thus,thequasi-staticlimitisreachedifthe resonancefrequencyoftheparticleissizeindependentandtheefficienciesscaleasQ ∝a4 sca and Q ∝a with the particle’s characteristic length a. Note that we are not considering the abs crosssectionswhichwouldscalewithanadditionalfactorofa2each. In order to address the question whether the nano-bars are in the quasi-static limit, we perform a scaling analysis and check for the above criteria: We start with a specific structure andcomputeitsspectralresponseneartheresonancefrequency.Then,wescalealldimensions by a common factor s<1, and repeat the computations. The behavior of the efficiencies as a function of the scaling factor s can be used to detect the onset of the quasi-static limit. For simplicity, we reduce the shape of the nano-bar to a rectangular box with sharp corners. This reducesthecomputationaleffortsincesmalltetrahedraintheroundedendingsofthebarslimit the simulation time-step. At the same time, while details of the individual structures slightly differ,thescalingbehaviorforroundedbarsandbarswithsharpcornerscanbeassumedtobe thesame. #110638 - $15.00 USD Received 27 Apr 2009; revised 12 Jun 2009; accepted 26 Jun 2009; published 7 Aug 2009 (C) 2009 OSA 17 August 2009 / Vol. 17, No. 17 / OPTICS EXPRESS 14940 a) b) Scattering efficiency [a.u.]111000−−042 Absorption efficiency [a.u.]12345 100000000 ........(75432110l=5 5 5((((( 1lllll=====(((0lll===54321070000105n5nnnn5nnmnmmmmnmm)mm)))))))) 10−6 0 500 550 600 650 500 550 600 650 Wavelength [nm] Wavelength [nm] c) Peak scattering efficiency [a.u.]1111100000−−−01321 ∝ s4 FSiitmteudla etixopnosnent = 3.97 d) Peak absorption efficiency [a.u.]0.12485 ∝ sFSiitmteudla etixopnosnent = 0.98 0.05 0.1 0.150.2 0.3 0.40.5 0.75 1 0.05 0.1 0.150.2 0.3 0.40.5 0.75 1 Scale factor s Scale factor s Fig.4.Scalinganalysisforanano-barwithreferencegeometryparametersl=100nmand w=h=25nm (see Fig.2). The graphs show the behavior of (a) the scattering and (b) theabsorptionefficienciesuponscalingofthisreferencegeometrybyacommonfactors, whichisgivenforbothpanelsinthelegendof(b).Panels(c)and(d)showthepeakvalues of the respective efficiencies as a function of the scaling factor on a double-logarithmic scale.Alinearfittothethreedatapointsthatcorrespondtothesmalleststructuresisused todeterminetheexponentofthepower-lawdependence.Theunitsfortheefficienciesare thesameinallgraphs. Onthetechnicalside,weproceedasintheprevioussectiontodeterminethecrosssections. When scaling the system down, we rescale only the bar itsself, while we keep the computa- tionaldomainunchangedinsize.ThisensuresthatthePMLsdonotbecomedrasticallysmaller than the resonant wavelength and, therefore, our procedure avoids spurious reflections. Fur- thermore, we design the mesh in such a way that bars with different scaling factors s consist of approximately the same number of tetrahedra so that we do not loose any accuracy. As a result, the simulation timestep (which is proportional to the size of the smallest tetrahedron) isproportionaltothescalingfactorand,thus,therequiredCPU-timeisinverselyproportional tothescalingfactor.Inordertosavecomputationalresources,thetwosymmetryplanesofthe problemwereexploitedtoreducethenumberofelementsbyafactorof1/4. InFig.4,wedisplaytheresultsforthescalingofabarwithareferencegeometryof100× 25×25nm3 down to 5% of its original size. For simplicity, we omit the dielectric substrate in these calculations. From the overview plots Fig.4(a) and Fig.4(b), we observe the well- knownfactthatabsorptioninsmallparticlesdominatesoverscattering.Withregardtothefirst criterion formulated above, we notice that the position of the resonance saturates for scaling factorss≤s ≈0.15.Regardingthesecondcriterion,wededucethepowerlawdependence crit ofthecrosssectionsfrompanels(c)and(d).Consistentwiththefirstcriterion,wefindthesame criticalscalingfactors ≈0.15.Therefore,weconcludethatforthesetupconsistingofsilver crit nano-barsinvacuum,thequasi-staticlimitinthesensedefinedabovesetsinforstructureswith spatialextensionsassmallasl(cid:2)15nm. #110638 - $15.00 USD Received 27 Apr 2009; revised 12 Jun 2009; accepted 26 Jun 2009; published 7 Aug 2009 (C) 2009 OSA 17 August 2009 / Vol. 17, No. 17 / OPTICS EXPRESS 14941 a) b) 60 A (1nm in front of tip) 55 B (5nm in front of tip) nt me50 e nc45 a h en40 d Fiel35 30 25 100 125 150 175 200 Arm length [nm] Fig.5.(a)SketchofthesetupusedfortheV-structurecomputations.Theradiiofthetips andthearmedgesaretakentobehalfofthearmwidthwunlessotherwisenoted.Forthe calculationofthefieldenhancementsthestructureisplacedonaglasssubstrateandthe fieldsarerecordedatpointsAandB.Again,A(B)islocatedhalftheheightofthemetal filmabovethesubstrateand1nm(5nm)awayfromthetip.(b)Summaryoftheextracted enhancementsatthetwositesAandBforV-structuresofdifferentlengthsl,fixedwidth andheight,w=h=20nm,andfixedapexangleα=30◦. 5. OpticalpropertiesofsilverV-shapednanostructures Asasecondexample,weconsiderV-shapedstructures,whichhavebeenextensivelyanalyzed by Stockman et. al. [12,13] using a quasi-static approach. In fact, these authors have found that such systems lend themselves to realizing strong local-field enhancements at their tips. Inviewofourscalinganalysisforthenano-barsandtheresultingexperimentalchallengesin fabricating high-quality structures of corresponding size, we perform our analysis for the full Maxwell equations. This allows us to understand how the results of the quasi-static analysis manifestthemselvesinexperimentallymoreaccessiblesystems. InFig.5(a)wedepictthesetupthatweusefortheV-structurecomputationsthroughoutthis section.Exceptforthenanostructurethecomputationalsetupincludingthematerialparameters is the same as in the previous section. We regard this setup as quite realistic since it includes smoothedgeswhichinevitablyarisewhensuchstructuresarefabricatedviafocussedionbeam facilities or using electron beam lithography. Again, we want to point out that the adaptive finite-elementdiscretizationallowsustomodelthestructurewithoutintroducingunphysically sharpedges.Incontrasttothebar-geometry,theroundededgesatthetipsoftheVsdo,however, makeasignificantdifferencewhencomparedtothecorrespondingcaseswithinfinitelysharp tips. 5.1. Localfieldenhancement In analogy with the analysis of the nano-bar structures, we first determine the local field en- hancements at positions A and B that are, respectively, located 1nm and 5nm in front of the tip and h/2 above the glass substrate. We list the resonance wavelengths and correspond- ing Q-factors for the lowest frequency resonance of V-structures with different lengths, fixed w=h=20nm,andfixedapexangleα=30◦onaglasssubstrateinTable2. InFig.5(b),wedisplaythecorrespondingresultsforthefieldenhancementsatpositionsA andB.Itisobviousthatthegeneraltendencyisthesameasinthecaseofthenano-bars,namely thattheenhancementincreasesnotablywithparticlesize.Remarkably,thelocalfieldenhance- ments attainable for V-structures under plane wave illumination are slightly below those of nano-barsofsamelengthsandtipradii(c.f.Fig.3(b)). For the V-structure, the tip radius can be varied independently of the arm width. We have #110638 - $15.00 USD Received 27 Apr 2009; revised 12 Jun 2009; accepted 26 Jun 2009; published 7 Aug 2009 (C) 2009 OSA 17 August 2009 / Vol. 17, No. 17 / OPTICS EXPRESS 14942 Table2.Resonancewavelengthsλres andqualityfactorsQforthelowestfrequencyreso- nanceofV-structuresofdifferentlengthsonaglasssubstrate.Forallstructures,wehave fixedparametersw=h=20nmandα=30◦. l[nm] 100 125 150 175 200 λ [nm] 662 772 884 994 1106 res Q 14.6 13.1 12.3 11.7 11.4 exemplarily computed the field enhancement for V-structures with fixed w=h=20nm and l=150nmandtipradiiofr =8nmandr =12nm.Asexpected,theenhancementincreases tip tip with decreasing radius and the resulting field enhancements deviate from those with r = tip w/2=10nmbyapproximately±5-8%. InadditiontothefieldenhancementsatpointsAandBinfrontofthetipwealsoextracted thecompletefielddistributionsonresonance.InFig.6,wedisplaytwocorrespondingintensity maps:Panel(a)depictstheintensitydistribution|E(x,y)|2 inthecenterplaneofthestructure, i.e.,10nmabovethesubstrate,andpanel(b)depictstheintensitydistributioninaplane30nm abovethesubstrate.Thesecomputationsrevealatotalofthreehotspots,twoattheendsofthe armsandoneattheendofthetipofthenano-V. Apartfromtheenhancementsdeterminedwithacontinuouswaveexcitation,wehavealso performed computations with an ultrafast excitation via a narrow-band Gaussian pulse. The temporal envelope of these pulses was exp(−t2/2σ) and their spectra were centered at the resonance frequencies of the respective structures. The temporal widths σwere chosen to be threeopticalcycles.However,accordingtothediscussionofsection4,thisdoesnotsufficefor the enhancement to saturate. As a result, the recorded peak enhancements have been about a factorof2/3smallerthanthoseobtainedwiththemonochromaticexcitation. 5.2. ATIR-vs.NIT-spectroscopy Fromtheexperimentalside,thereexisttwospectroscopicapproachesforanalyzingindividual nanostructuresthatarepositionedonasubstrate.Themoretraditionalapproachiscommonly referredtoasattenuatedtotalinternalreflection(ATIR)spectroscopyandexploitsthefactthat the presence of a nano-particle at the substrate-air interface leads to scattering of radiation a) b) Fig. 6. Intensity distributions |E(x,y)|2 normalized to unit illumination for a monochro- maticon-resonanceexcitationofasilverVwithequalwidthandheightw=h=20nmand armlengthl=150nm.Panels(a)and(b),respectively,depicttheintensity10nmand30nm abovethesubstrate.Notethattheintensityisdisplayedonalogarithmicscale. #110638 - $15.00 USD Received 27 Apr 2009; revised 12 Jun 2009; accepted 26 Jun 2009; published 7 Aug 2009 (C) 2009 OSA 17 August 2009 / Vol. 17, No. 17 / OPTICS EXPRESS 14943

Description:
Time-Domain method to the investigation of the optical properties of bar- . and S. C. Hagness, Computational electrodynamics (3rd edition, Artech House, Boston, 2005). 24. analysis beyond Rayleigh approximation,” Appl. Phys. multiple resonances closely packed in a certain frequency range. 6.
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.