ebook img

Geostatistics for Engineers and Earth Scientists PDF

309 Pages·1999·16.95 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Geostatistics for Engineers and Earth Scientists

GEOSTATISTICS FOR ENGINEERS AND EARTH SCIENTISTS GEOSTATISTICS FOR ENGINEERS AND EARTH SCI ENTISTS by Ricardo A. Olea Kansas Geological Survey The University of Kansas Lawrence, Kansas USA ~. Springer-Science+Business Media, LLC Library of Congress Cataloging-ln-Publieatlon Data Olea, R. A. (Ricardo A.) Geostatistlscs for engineers and earth scientists / by Ricardo A. Olea. p. cm. Includes bibliographical references and index. ISBN 978-1-4613-7271-4 ISBN 978-1-4615-5001-3 (eBook) DOI 10.1007/978-1-4615-5001-3 1. Geology--Statistical methods. 2. Kriging. I. Title. QE33.2.S82054 1999 55O'.72-dc21 99-24689 CIP CopyrIaht C 1999 by Springer Science+Business Media New York. Third Printing 2003. Originally published by K1uwer Academic Publishers in 1999 Softcover reprint ofthe hardcover 1st edition 1999 All rights reserved. No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means, mechanical, photo copying, recording, or otherwise, without the prior written permission of the publisher, Springer Science+Business Media, LLC. Printed on acid-free paper. To lucila CONTENTS Listof Mathematical Definitions x List ofTheorems xii List ofCorollaries xiii List ofLemmas xiv Preface xvii Chapter 1: Introduction 1 Chapter2: Simple Kriging 7 Properties ofLinear Combinations ofVariates 8 Assumptions and Definitions 11 The Estimation Variance 11 Normal Equations 14 Minimum Mean Square Error 15 Algorithm 16 EXERCISE2.1 ••••.•••••••.•.•.••.••.••.•.•••.•••...•.••••••..•..•••.••. 18 Properties 20 EXERCISE2.2 ••.••.•••.•••••.••.•..•..••.•.••.•••..•...•••" ••••••." .. 27 Chapter 3: Normalization 31 Comparing Two Distributions 31 EXERCISE3.1 •••.••.••••••••••••.•..•.•.•••••••.•••.•••..•..•••••••••.. 32 Normal Score Transformation 33 Simple Kriging ofNormal Scores 35 EXERCISE 3.2 ••••.••.•••..•..•••••.••.•..••....•...••..•..••.•.••..••.. 35 Chapter 4: Ordinary Kriging 39 Assumptions 39 Important Relationships 40 The Estimator 43 The Estimation Variance 43 The Optimization Problem 44 Minimum Mean Square Error 46 Algorithm for Intrinsic Random Functions 47 viii Ceostatistics for Engineers&Earth Scientists Second Order Stationary Ordinary Kriging 48 EXERCISE4.1 ••••••.•.•.•.....•..•..•.•.....••..•.•••........•.••.••••• 52 Properties 53 Relating Simple and Ordinary Kriging 59 Search Neighborhood 62 Quasi-Stationary Estimator 63 Chapter 5: The Semlvarlogram 67 The Semivariogram ofthe Random Function 68 The Experimental Semivariogram 70 EXERCISE 5.1 ••.•.••••.••••.••.•.•.••.••....••....•••••.•.•••••..•.•.•• 74 Anisotropy and Drift 75 Semivariogram Models 76 Additivity 80 Parameter Estimation by Trial and Error 81 Automatic Parameter Fitting 83 EXERCISE 5.2 •••.•••••••..••••••.••••..••.•...••••••••••••••••••••.•••• 86 Support 89 Direct Applications 89 Chapter 6: Universal Kriging 91 The Estimator 91 Assumptions 92 Unbiasedness 94 Estimation Variance 96 Optimization 98 Minimum Mean SquareError 100 Algorithm for Intrinsically Stationary Residuals 102 Second Order Stationary Universal Kriging 103 Practice " , , 107 EXERCISE6.1 •••.•.•.••.•••••••.•.•.•.•••.•..•.•.••.•..••••...••.•..• 108 Chapter 7: Crossvalldatlon 115 Alternative Evaluation Method 115 EXERCISE 7.1 •••.••••....•••...•.•••...•.••.•.•.•.•....•..•.•.•.•.•.• 117 Diagnostic Statistics 119 EXERCISE7.2 ••.•••.•....••....•.•••••.•••••.•.••••.•.•.•••••••.••••• 121 Chapter 8: Drift and Residuals 129 Assumptions 129 Unbiasedness 130 Estimation Variance 132 Optimal Estimator 133 Minimum Estimation Variance 135 Algorithmic Summary 136 Residuals 137 EXERCISE8.1 ••••.•.••.•.•......•••••.•••..••••.•.•.••.••.•....•...•• 137 Contents ix Chapter 9: Stochastic Simulation 141 Sequential Gaussian Simulation 143 EXERCISE9.1 ••.•.•••.••.•.•........•.....•.......•...•..•.........•. 147 Simulated Annealing 147 EXERCISE9.2 ...•....•••.•.......•.•.•••..•.•.•..•.•..•..••.........• 152 Advantages and Disadvantages ofSimulated Annealing 154 Lower-Upper (LU) Decomposition 155 The Turning Bands Method 158 Chapter 10:Reliability 163 Kriging Under Normality ofErrors 164 EXERCISE 10.1 •••.•.•.....•.••.•...•.••...•.•.....•..........•..•.••. 165 Indicator Kriging " 167 EXERCISE 10.2 ..••.•...••........•....••••..••.....•.•...•....•.•.•.. 171 Stochastic Simulation 173 EXERCISE 10.3 •••.•••••••••.••••.••••...•.•.•.•....••.....•.••..•.•.• 175 Comparisons 177 Chapter 11: Cumulative Distribution Estimators 179 Simulation E-type Estimator 179 EXERCISE 11.1 •••••..••••...•..••......•....•.•......•.........•..... 180 Indicator E-type Estimator 182 Loss Functions 184 Chapter 12: Block Kriging 187 The Estimator 188 Assumptions 188 Estimation Error 191 Normal Equations 193 Covariance Modeling 197 EXERCISE 12.J •••.•..•.•.......•....••..•.•...••....•...•..•....•.... 198 EXERCISE J2.2 •••••••••..•....•••.•..•.•••.••.••.....•.....•.•....... 202 Remarks 204 EXERCISE 12.3 .•.•.....••....•.•..•.•..........••••.....••.•..•...... 206 Chapter 13: Ordinary Cokriglng 209 The Estimator 209 Assumptions 210 Unbiasedness 212 Estimation Error 213 Optimization 217 Minimum Mean Square Error 219 Algorithm 220 Structural Analysis 221 EXERCISE 13.1 •..•...•.•..•....•.............•••.•.....•......•...... 226 Regionalized Compositions 234 Ceostatlstlcs for Engineers &Earth Scientists Chapter 14: Regionalized Classification 237 Typification 238 Ward's Method 239 Discriminant Analysis 243 Allocation by Extension 247 EXERCISE 14.1 ••••••.•••.•.••••..•...••...•••.••.•.•...•••••.••••••.• 248 References 261 Appendix A: West Lyons Field Sampling 267 Appendix B: High Plains Aquifer Sampling 269 Appendix C: UNCF Sampling 279 Appendix 0: Dakota Aquifer Sampling 281 Author Index 289 Subject Index 291 List of Mathematical Definitions 1.1-Random function 3 2.1-Simple kriging estimator 11 2.2-R.esidual 12 2.3-Positive definite function 14 2.4-Simple kriging covariance matrix 16 2.5-Vector ofunknowns in simple kriging 16 2.6-Simple kriging covariance vector 17 2.7-Vector ofresiduals in simple kriging 17 401-0rdinary kriging estimator for the intrinsic and second order stationary case 0.0.0 0.0 0.. 0 0..0.0.43 402-Negative definite function. 000 000 00000 044 403-Lagrangian function for ordinary kriging .000 0 0 000 044 4.4-Semivariogram matrix in ordinary kriging 0 47 4.5-Vector ofunknowns for intrinsic ordinary kriging 0 0 47 406-Semivariogram vector in ordinary kriging 00.00 0.00.0 047 4.7-0rdinary kriging sampling vector 48 4.8-Covariance matrix in ordinary kriging 0 0.0.50 4.9-Vector ofunknowns for second order stationary ordinary kriging 51 4.10-Covariance vector in ordinary kriging 0 0 0.0 51 4.11-Ordinary kriging estimator for the quasi-intrinsic and quasi-stationarycase 0 0 63 5.1-Semivariogram estimator 0 0 70 So2-Spherical semivariogram model 76 5.3-Exponential semivariogram model 0 78 MathematicalDefinitions, Theorems, Corollaries, andLemmas xi 5.4-Gaussian semivariogram model 78 5.5-Power semivariogram model 79 5.6-Cubic semivariogram model 79 5.7-Pentaspherical semivariogram model 79 5.8-Sine holeeffect semivariogram model 79 5.9-Pure nugget effect semivariogram model 80 6.1-Universal krigingestimator 91 6.2-Drift 92 6.3-Polynomial drift model 93 6.4-Lagrange function for universal kriging 98 6.5-Semivariogram matrix in universal kriging 102 6.6-Vector ofunknowns for intrinsic universal kriging 102 6.7-Semivariogramvector in universal kriging 102 6.8-Universal kriging covariance matrix 105 6.9-Vector ofunknowns for stationary universal kriging 106 6.10-Universal kriging covariance vector 106 6.11-Samplingvector in universal kriging 106 8.1-Drift estimator 129 8.2-Lagrangian function 133 8.3-Drift vectorofmonomials 136 8.4-R.esidual estimator 137 9.1-LU decomposition ofcovariance matrix 156 10.1-Indicator 167 12.1-Blockaverage 187 12.2-Block krigingestimator 188 12.3-Point-to-block covariance 189 12.4-Block-to-blockcovariance 189 12.5-Lagrangian function for block kriging 193 12.6-Point-to-point covariance matrix 196 12.7-Blockkriging vector ofunknowns 196 12.8-Point-to-block covariancevector 196 12.9-Block krigingsampling vector '" 196 13.1-Vectorial random function 210 13.2-Cokrigingweight matrix 210 13.3-0rdinarycokriging estimator 210 13.4-Cokrigingvector ofmeans 210 13.5-Covarianceofa vectorial random function in ordinary cokriging 210 13.6-0rdinarycokriging estimation variance 213 13.7-Traceofa square matrix 213 13.8-Lagrangian function for ordinary cokriging 217 13.9-Covariance matrix in ordinary cokriging 220 13.10-Ordinarycokriging covariancevector 220 13.11-Ordinary cokrigingvector ofunknowns 220 13.12-Positivesemidefinite matrix 222 xii Ceostatistics for Engineers& Earth Scientists 13.13-Cross-semivariogram 222 13.14-Linear coregionalization model 222 13.15-Additive log-ratio transformation 234 13.16-Additive generalized logistic back transformation 234 14.1-Error sum ofsquares in cluster analysis 240 14.2-Within-group error sum ofsquares in cluster analysis 240 14.3-Mahalanobis'distance 244 List of Theorems 2.1-Estimation variance for simple kriging 13 2.2-Normal equations and nonnegative estimation variance for simple kriging " 14 2.3-Minimum mean square error for simple kriging 16 2.4-Unbiased simple kriging estimator 20 2.5-Simple kriging exact interpolation 21 2.6-Orthogonality ofestimates and errors 22 4.1-Estimation variance for ordinary kriging " 43 4.2-Normal equations and nonnegative estimation variance for intrinsic ordinary kriging 45 4.3-Minimum mean square error for intrinsic ordinary kriging 46 4.4-Normal equations for second order stationary ordinary kriging 49 4.5-Minimum mean square error for second order stationary ordinary kriging 50 4.6-Difference between simple and ordinary kriging weights 60 4.7-Difference between simple and ordinary kriging estimation variance 61 5.1-Estimation variance for assigning one variate to another 68 6.1-Unbiasedness conditions for the universal kriging estimator 95 6.2-Estimation variance for universal kriging 97 6.3-Normal equations and nonnegative estimation variance for intrinsic universal kriging 98 6.4-Minimum mean square error for intrinsic universal kriging 101 6.5-Normal equations for second order stationary universal kriging 103 6.6-Minimum mean square error for second order stationary universal kriging 105 8.1-Unbiasedness conditions for drift estimator 131 8.2-Estimation variance for drift estimator 133 8.3-Normal equations for drift estimation 134 8.4-Minimum mean square error in drift estimation 136 9.1-Drawing from multivariate distributions 143 9.2-Normal distribution oferrors 143

Description:
Engineers and earth scientists are increasingly interested in quantitative methods for the analysis, interpretation, and modeling of data that imperfectly describe natural processes or attributes measured at geographical locations. Inference from imperfect knowledge is the realm of classical statist
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.