ebook img

Geophysical Journal International PDF

12 Pages·2014·1.23 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Geophysical Journal International

Geophysical Journal International Geophys.J.Int.(2015)200,390–401 doi:10.1093/gji/ggu398 GJISeismology Focusing of elastic waves for microseismic imaging Johannes Douma and Roel Snieder CenterforWavePhenomena,ColoradoSchoolofMines,Golden,CO80401,USA.E-mail:[email protected] Accepted2014October13.Received2014October10;inoriginalform2013December18 SUMMARY Microseismiceventsgeneratecompressivewavesandshearwaves,whichcanberecordedat receivers.WepresentatheorythatshowshowelasticPandSwavesseparatelybackpropagate totheoriginalsourcelocation.TheserefocusedPandSwavefieldsarefreeofsingularities.We D o alsodemonstrateatechniquethatenhancestheabilitytoimagethespatialfocusforeachwave w n typeusingelasticwaves.Theimprovedspatialfocusobtainedisachievedinavelocitymodel loa d forwhich theinterfaceboundaries areapproximate butwherethe mean slownessiscorrect. ed Deconvolutiondesignsasignaltoberebroadcastedfromthereceivers,usingonlythewaves fro m recordedateachreceiver,suchthatthewavefieldhasanoptimaltemporalfocusatthesource h location. We demonstrate theoretically and numerically that improved temporal focusing of ttp://g elasticwavesleadstoimprovedspatialfocusingforeachwavetype.Thisproposedtechnique ji.o onlyinvolvesasimplepre-processingsteptotherecordeddataanditscostishencenegligible x fo comparedtothetotalcostofmicroseismicimaging. rd jo u Keywords: Imageprocessing;Fourieranalysis;Earthquakesourceobservations;Computa- rn a tionalseismology;Fracturesandfaults. ls.o rg a/ t C o lo ra d the wavefield is sampled at only a limited number of locations, o INTRODUCTION S thenitisnotobviousthattimereversalistheoptimalwaytofocus ch o Duetohydraulicfracturingbecomingacommonpracticeforuncon- energyontheoriginalsource.Muchresearchhasbeencarriedout o l o ventionalgasandoilfields,therehasbeenanincreasedinterestinto on focusing sparsely sampled wavefields (Parvulescu 1961; Fink f M thestudyofmicroseismicevents.Clustersofmicroseismicevents 1997; Roux & Fink 2000; Tanter et al. 2000, 2001; Aubry et al. in e delineate faults and the formation of fractures, and can indicate 2001; Bertaix et al. 2004; Jonsson et al. 2004; Montaldo et al. s o neworreactivatingregionsoffailure.Thesemicroseismicevents 2004;Vignonetal.2006;Larmatetal.2010;Gallotetal.2011). n N can be generated naturally or as a result of hydraulic stimulation Inthispaper,weexploreasimpleextensiontotimereversal,based o v e (Duncan2005;Kendalletal.2011).Therefore,thepetroleumin- ondeconvolution,aspreviouslyderivedbyAndersonetal.(2014). m b dustrydesirestodevelopmoreaccuratewaysoflocating,andmoni- Wehaveshownearlierthatdeconvolutionimprovesthelocatingof er 2 toringmicroseismiceventstopotentiallyimprovetheirrelationship microseismiceventsinanacousticmedium(Doumaetal.2013).We 4 toproductionandcompletiondata(Foulger&Julian2012). nowdemonstratedeconvolution’sabilitytoimprovetheimagingof , 20 1 Acommonprocessingmethodtolocatemicroseismiceventsor amicroseismiceventinanelasticmedium.Thismethodisarobust, 4 earthquakes is based on picking arrival times of the acoustic and thoughsimplified,versionoftheinversefilter(Tanteretal.2000, shearwaves.Thisprocess,however,isdifficulttodoaccuratelywhen 2001; Gallot et al. 2011). It calculates a signal to be rebroadcast significantnoiseispresentinthedata(Boseetal.2009;Bancroft fromthereceiversuchthattheoutputatthefocallocationbecomes etal.2010;Kummerow2010;Songetal.2010;Haylesetal.2011). anapproximatedeltafunctionδ(t)andusesonlytherecordedsignals An alternative approach, which requires less user interaction and ateachreceiver. allowsformoreaccuracy,isusingtimereversaltoimagethefocus Aswithallimagingmethods,reversetimeimagingisunableto of the microseismic events or earthquakes at the source location locatethemicroseismiceventtoapointlocationwhenthevelocity (Larmatetal.2006,2010;Lu2008;Steineretal.2008;Lu&Willis modelusedforthebackpropagationdiffersfromthetruevelocity 2008;Artmanetal.2010).Inthisimagingapproach,oneusestime model,orwhentheapertureislimited;itcausesthespatialimageto reversaltofocustherecordedsignalatthesourcelocationinboth defocus.Inthenumericalexampleusedforthispaper,theaperture timeandspace.Theadvantageoftimereversalisthatitdoesnot usedisnotperfect,thus,thewavefieldisnotknownateverypoint require picking of arrival times which is important when dealing in both time and space. Additionally, we complicate our model withnoisydata. by adding noise and backpropagating our wavefields not through Ifonewouldtimereversethewavesateverypointinspace,the thecorrectvelocitymodelbutthroughasmoothedversionofthe wavefieldwillfocusontotheoriginalsourcelocation.If,however, velocitymodel. 390 (cid:2)C TheAuthors2014.PublishedbyOxfordUniversityPressonbehalfofTheRoyalAstronomicalSociety. Elasticwavesformicroseismicimaging 391 Inthispaper,wefirstderivearelationshipbetweenthetemporal where c is the appropriate wave velocity (α or β depending on focusandtheincomingwaveforanelasticmedium.Thetheoryis thewavetype).Itisunderstoodthatthetotalwavefieldfollowsby used to show that improved temporal focusing leads to improved multiplyingwiththeappropriatevectorsphericalharmonicasgiven spatial focusing for each wave type due to different sources (ex- inexpressions(2)–(4).Theradialdependenceofthewavefieldin plosive,pointforceanddoublecouple).Wethenshowanumerical thefrequencydomain,therefore,isgivenby exampleinwhichahorizontalpointforceexciteselasticwaves. U(r,ω)= A(ω)j(kr), (8) l l l THEORY whUerseinAgl(tωhe)FisoaurFieorucrioenrvceonetfifioncife(nt)t.=(cid:8)F(ω)e−iωtdω,thewavefield In this section, we show that improved temporal focusing leads inthetimedomainisgivenby (cid:9) to improved spatial focusing for both P and S waves. Just as in the theory for the excitation of elastic waves (Aki & Richards u(r,t)= A(ω)j(kr)e−iωtdω. (9) l l l 2002), we treat the medium as locally homogeneous near the fo- cus.Thecomplexityofthewavefieldduetoheterogeneityiscap- Thewavesimpingingonthefocusaredeterminedbytheincoming tured in the wave that is incident on the focus. We thus consider waves.Forlargeradiusr,theincomingwavescanbewrittenas a locally homogeneous elastic medium where either P, SV or SH f(t+r/c) wavesareincidentonafocalpoint.Accordingtoexpression(8.13) uinc(r,t)= l as r →∞. (10) l r D of Aki & Richards (2002), the elastic wavefield can locally be o w expressedas We show in the Appendix that the total wavefield is given for all n (cid:2)(cid:3) valuesofrby, loa d u(r,θ,ϕ)= lm Ul(r)Rlm(θ,(cid:4)ϕ)+Vl(r)Slm(θ,ϕ) ul(r,t)=(−i)l 2c (cid:9) (−iω)Fl(ω)jl(kr)e−iωtdω, (11) ed from +W(r)Tm(θ,ϕ) . (1) h TRhlme(θv,ecϕt)o=rspYhlme(riθlc,aϕl)hrˆalrm(Ponwicasviens)e,q.(1)aregivenby (2) iwnhtBeegreercaaFtuilo(snωes),oiwusrethdeemeFrpiovluoartyiioetrhnetriafnonvlsolfolovwremisngorefnpofelt(aatt)te.iodn:differentiations and ttp://gji.oxfo Slm(θ,ϕ)= (cid:5)l(l1+1)(cid:6)∂Ylm∂(θθ,ϕ)θˆ+ sin1θ ∂Ylm∂(ϕθ,ϕ)ϕˆ(cid:7) fl(n)(t)≡ dndftln(t). (12) rdjourna (cid:6) (SV waves)(cid:7), (3) tFiomrens.egInattihveefvreaqluueesncoyfdno,mthaiisn,ntohteatnioontatiimonpl(i1e2s)intrtaengsrlaattiensginflt(ot) n als.org/ Tlm(θ,ϕ)= (cid:5)l(l1+1) sin1θ ∂Ylm∂(ϕθ,ϕ)θˆ− ∂Ylm∂(θθ,ϕ)ϕˆ Fl(n)(ω)≡(−iω)nFl(ω). (13) t Colora Next,werelatethetotalwavefieldu(r,t)tothesphericalBessel d (SH waves), (4) functionoforder0whichmakesitposlsibletoevaluatetheFourier o Sc h whereY (θ,ϕ)denotethesphericalharmonics.Theradialfunctions integral in eq. (11) analytically. This derivation, found in the oo UHla(nrk),elVfllmu(rnc)tiaonndsWwlh(ri)charseatsispfhyeeriqc.a(l8B.6e)sosfelAfkuin&ctiRonicshaorrdssp(h2e0r0ic2a)l. Appendix,give(cid:6)s1: d (cid:7)l(cid:10) f(−l)(t+r/c)− f(−l)(t−r/c)(cid:11) l of Min Westressthatthevectorsphericalharmonicsofexpressions(2)–(4) u(r,t)=clrl l l . es l r dr r o donotdenotethenormalmodesofafinitesystem,insteadtheyare n N representationsofthewavefieldinalocallyhomogeneousmedium. (14) o v Weconsiderthecaseofanincomingwavethat,atalargedistance em fromthefocalpointr=0,isgivenbyf(t+r/c)/r.Westudythe This expression shows an explicit relationship between the be properties of this incoming wave at thel focus for every angular total wavefield ul(r, t) for all values of r, and the incident wave, r 24 degree l separately. For a perfect aperture, the angular degree l fl(t+r/c)/ratadistance.Notethatusingthenotationofeqs(12) , 20 describesanexplosivesourcewhenl=0,apointforcewhenl=1 and (13), the incoming wave is integrated l times in the factor 14 andadouble-couplesourcewhenl=2.Sincethereisnosourceat fl(−l)(t±r/c),andthatthedifferentialoperator(1/r)(d/dr)actsl thelocationr=0,thesolutionisfiniteandisthereforegivenby times as well. The term fl(−l)(t+r/c) is the wave that converges sphericalHankelfunctionsj: on the focal point, while f(−l)(t−r/c) gives the outgoing wave l l thatradiatesfromthefocusaftertheincomingwaveshavepassed Ul(r)∝ jl(kr) where k =ω/α, (5) throughthatpoint.Theincidentwavef(t+r/c)andtheoutgoing l withαrepresentingtheP-wavevelocity,and wavefl(t−r/c)haveoppositesignbecausethefocusisacausticin twoangulardirections,hencetheMaslowindexincreasesbytwo, Vl(r) and Wl(r)∝ jl(kr) with k =ω/β, (6) which corresponds to a sign change (Chapman 2004). Note that where β is the S-wave velocity. Thus, the radial variation of the apointsourceis,bydefinition,locatedatacausticoftheexcited orbackpropagatedwavefield.Thetheorypresentedtakesthisfully wavefield is proportional to j(kr), with k the wavenumber of l intoaccount. the wave type under consideration. In the following, we study We now demonstrate how we can use the expression for the wavefieldswithradialdependencej(kr)anddenotethewavenum- l wavefieldnearthefocalpointtodemonstratethatimprovedtemporal beras focusingleadstoimprovedspatialfocusing.ThespatialfocusR(r) l k =ω/c, (7) isdefinedasthewavefieldattimet=0.Itfollowsfromexpression 392 J.DoumaandR.Snieder (14)thatthespatialfocusisgivenby: range of time values −t < t < t, where t is the half width of f f f (cid:6) (cid:7)(cid:10) (cid:11) thetemporalfocus.Expression(19)impliesthatthespatialfocus Rl(r)≡ul(r,t =0)=clrl r1ddr l fl(−l)(r/c)−rfl(−l)(−r/c) . d(riaffdeirussaipsparlewciaaybslypofrsoitmivez)e.roAfogroovadluteemsopforratlhfaotcsuastis(fsym0al≤l tr)<thcutsf f impliesagoodspatialfocus. (15) Thespatialandtemporalfocus,andtheirrelationshipdefinedby This expression gives the spatial focus in terms of the incoming eqs (15), (17) and (19) all depend on the order l. In this section, wave. weshowtheexplicitformsoftheseexpressionsforthecasel=0, Onemightbetemptedtodefinethetemporalfocusasu(r=0, l=1andl =2.Thesecasesarerelevantforanexplosivesource l t).Thisfield,accordingtoexpression(9),isproportionaltoj(kr) (l=0),pointforce(l=1)anddouble-couplesource(l=2)ifthe l inthefrequencydomain.Thezeroth-orderBesselfunctionj (kr)is aperturewouldbeperfect.Forl=0,eqs(15),(17)and(19)become, 0 non-zeroforr=0,butj(kr=0)=0forl ≥1(Arfken&Weber respectively, l 2001).Thismeansthatforl≥1,thewavefieldvanishesatthefocal (cid:6) (cid:7) f (r/c)− f (−r/c) point.Physically,thisisduetothefactthatforl≥1,thefocalpoint R (r)= 0 0 , (20) (r=0)islocatedattheintersectionofnodallines.SinceU(r=0,t) 0 r l vanishesatr=0forl≥1,thisquantityisnotausefuldiagnostic 2 ofthetemporalfocus.Toremedythis,wedefinethetemporalfocus T0(t)= c f0(1)(t) and (21) insteadas D (cid:10) (cid:11) o dl c T(−1)(r/c)−T(−1)(−r/c) wn T(t)≡ u(r =0,t). (16) R (r)= 0 0 . (22) lo l drl l 0 2 r ad e d nAosns-hzoerwonfoinrrth=e0A.pWpeenddeirxiv,ethinetlh-tehAdpeprievnadtiivxethoeffjol(lklro)wiisnfignreitleatainodn Eqs(20)–(22)arethesameasshowninthepreviousderivationof from Andersonetal.(2014),whichdealtwithanexplosivesourceinan h betweenthetemporalfocusandtheincomingwaves: acousticmediumwherethetemporalfocusisthetimederivativeof ttp Tl(t)= c2lb+l1 fl(l+1)(t), (17) theWineconmowingcownativneu.e the derivation for R(r) due to a point force ://gji.ox (l=1)anddouble-couple(l=2).Forl=1,eqs(15),(17)and(19) fo whereblisgivenby become,respectively, rdjo u b = 2l(l!)2 . (18) 1 rna l (2l+1)! R1(r)= r (f1((cid:12)r/c)+ f1(−r/c)) (cid:13) ls.org Sbpe=cifi1,callyb, =1/3, b =2/15. −rc2 f1(−1)(r/c)− f1(−1)(−r/c) , (23) at Co/ 0 1 2 lo ra Accordingtoeq.(17),thetemporalfocusthusisproportionaltothe 3 d (l+1)-thtimederivativeoftheincomingwave.Ofthese(l+1) T1(t)= 2c2 f1(2)(t) and (24) o Sc h derivatives,givenbyeq.(17),lareduetothederivativesindefinition o ra(cli→1nom6dm0).tbfaliOk(ntinan+tegiotrtnihm/e(cfe)ll(i−dtrme+irtfilvrr(/at→ct−i)v−e0r/,ifscgl()idtvu=−eesrrlti→/omc0t)h)2/e(rr.f/aUccr)stifntl(cid:8)h(gat)ta(T=1a4y2c)locfrlo(cid:8)e(ntxt)ap.iannssitohne IRt1m(ra)y=ap−2p3ce22a3rcr13th(cid:12)r1aT2t1((cid:12)e−Tq2).1((−(r23/)3c(r))/+isc)sT−i1n(−gT2u)1((l−a−3r)r(a/−tcrr)(cid:13)/=c)(cid:13)0..Eventhoughe(a2c5h) ol of Mines on Nove m Thisexplainsanadditionaltimederivativeinexpression(17). ofthetwotermsinthisexpressiondivergeasr→0,thesingular- b e Iitniteesgcraatnincegl.thTishiosnccaengibveesvefr1(i−fi1e)(dr/bcy)w=riati0n(rg/fc1)(r+/cO)(=r2)a.0In+seOrt(inr)g. r 24, 20 thisintoeq.(23)gives 1 4 SPATIAL AND TEMPORAL FOCUS FOR 1 c (cid:3) (cid:4) EACH ANGULAR COMPONENT R1(r)= r (2a0+O(r))−r2 2a0(r/c)+O(r2) . (26) Thespatialandtemporalfocusdefinedbyexpressions(15)and(17) Thetermsproportionaltoa ,whichcausedeachoftheindividual 0 bothrelatetotheincomingwavesandcanbecombinedtoexplicitly termsinexpression(23)tobesingular,cancelout.Theremainder relatethespatialandtemporalfocus: ofeq.(26)isfiniteasr→0. c2l+1 (cid:6)1 d (cid:7)l(cid:10)T(−2l−1)(r/c)−T(−2l−1)(−r/c)(cid:11) Forl=2,eqs(15),(17)and(19)become,respectively, R(r)= rl l l . (cid:12) (cid:13) l 2bl r dr r R (r)=1(f (r/c)− f (−r/c))−3c f(−1)(r/c)+ f(−1)(−r/c) 2 r 2 2 r2 2 2 (19) (cid:12) (cid:13) Eq.(19)isthemainresultofthetheory.Althoughtherelation(19) +3c2 f(−2)(r/c)− f(−2)(−r/c) , (27) r3 2 2 betweenthespatialandtemporalfocusiscomplicated,itdoesshow that good temporal focusing implies good spatial focusing. Good temporalfocusingimpliesthatTl(t)isstronglypeakedneart=0, T (t)= 4 f(3)(t) and (28) that is, that T(t) only differs appreciably from zero for a small 2 15c3 2 l Elasticwavesformicroseismicimaging 393 R2(r)= 154c3r1(cid:12)T2(−3)(r/c)−T2(−3)(−r/c)(cid:13) oonntehaechanwgalevseatnydpeo.nTshpearceefoarned,etiamche.wavehasitsowndependence If one were to use one component of the motion, such as the −454c4r12 (cid:12)Tl(−4)(r/c)+Tl(−4)(−r/c)(cid:13) xa-rceosmuppeornpeonste,dthoenseoaucrhceothperor.pSeirnticeesffoorrathfiexeddifsfoeurerncet wmaevcehatnyipsems the radiation pattern of P and S waves are different, the focused +454c5r13 (cid:12)Tl(−5)(r/c)−Tl(−5)(−r/c)(cid:13). (29) wanaivsemfi.eIlndosrddoerntootapvrooivdidmeicxlienagroinffPo-rmanadtiSo-nraadbioatuetdthweasvoeus,rcoenemmecuhs-t decomposethewavefieldusingthedivergenceandcurlinorderto Thewavefieldscomputedarefiniteatthefocalpointr=0when investigatethefocusofeachwavetype(PandS)separately. onerefocuseseitherPorSwaves.Incontrast,whenPandSwaves Ifonedoesnothaveaperfectaperture,ablurredfocuswilloccur, areexcitedbyapointforce,theP-wavecomponentandtheS-wave andthefocuscannotbecharacterizedbyoneangulardegreelbut componentbehaveas1/r3asr→0,hencethePwaveandSwave bythesuperpositionofdifferentangulardegreesl.Thisappliesto separately have a non-integrable singularity at r = 0, while their thespatialfocusachievedinournumericalmodelling. sum has an 1/r singularity Wu (1985), which is integrable. The refocused wavefields do not display this behaviour because these fieldsaresource-freeatr=0,andthereforethewavefieldisfinite. NUMERICAL EXAMPLE Therefore,thePandSwavescanberefocusedseparatelywithout D o causingsingularities,andthetreatmentgivenhereisapplicableto Weillustratethetheorywithanumericalexample.Weusetheve- w n P,SVandSHwavesseparately. locitymodelshowninthetoppanelofFig.1topropagatethesource lo a d Theexpressionsabovemustbemultipliedwiththeappropriate wavefieldtothereceivers.Themodelconsistsofhorizontallycon- e d vectorsphericalharmonic(2)–(4)toobtainthefullfocusedwave- tinuouslayerswhoseP-wavevelocitiesrangefromapproximately fro field.Foreachwavetype,adifferentsphericalharmonicmustbe 4.7kms−1to5.9kms−1andS-wavevelocitiesrangefromapproxi- m multipliedtocharacterizethewavefield.Additionally,ineqs(2)–(4), mately2.3kms−1to2.9kms−1.Inpractice,onedoesnotknowthe http thevectorsphericalharmonicsaresummedovertheangularorder truevelocitymodel.Forthisreason,weusedthesmoothedvelocity ://g landdegreemwhichcapturestheimprintofthesourceproperties model,showninthebottompanelofFig.1,forthebackpropagation. ji.o x fo rd jo u rn a ls .o rg a/ t C o lo ra d o S c h o o l o f M in e s o n N o v e m b e r 2 4 , 2 0 1 4 Figure1. P-wavevelocitymodelsofthenumericalexperimentwithunitsofkms−1.Toppanelindicatesthecorrectvelocitymodelandrepresentsthevelocity modelusedtopropagatethesourcewavefieldthroughthemedium.Bottompanelindicatesthesmoothedvelocitymodelwithcorrectmeanslowness.This modelisusedforbackpropagationofthetime-reversedsignalandoptimizedinversesignal.Theplussymbolsrepresentthereceivers,thecirculardotrepresents thesource.TheS-wavevelocitywasthesamebuthadvelocitiesvaluesequaltohalfoftheP-wavevelocity. 394 J.DoumaandR.Snieder P S D o w n lo a d e d fro m h ttp P, TR S, TR ://g ji.o x fo rd jo u rn a ls .o rg a/ t C o lo ra d o S c h o o l o P, DC S, DC f M in e s o Figure2. DecomposedPwavefieldattimeoffocusduetohorizontalpoint Figure3. DecomposedSwavefieldattimeoffocusduetohorizontalpoint n N force.ToppanelisPwavejustafterthehorizontalpointforceisemitted. force.ToppanelisSwavejustafterthehorizontalpointforceisemitted. o v Middlepanelindicatestheresultofinjectingthetimereversedsignalback Middlepanelindicatestheresultofinjectingthetime-reversedsignalback em intothesmoothedvelocitymodelfromthereceiverlocations.Bottompanel intothesmoothedvelocitymodelfromthereceiverlocations.Bottompanel be showsresultofinjectingtheinversesignalcalculatedusingdeconvolution showsresultofinjectingtheinversesignalcalculatedusingdeconvolution r 2 4 backintothesmoothedvelocitymodelfromthereceiverlocations. backintothesmoothedvelocitymodelfromthereceiverlocations. , 2 0 1 4 Thevelocitymodelissmoothedbyusinga2-Dtrianglesmoothing calculated the energy ratio of the signal to noise, defined as the of the slowness with a smoothing radius of .185 km in the x and ratio of the sum of the signal and noise squared, to be equal to z directions(Fomel2007).Thissmoothedvelocitymodelhasthe 0.89. samemeanslownessasthecorrectvelocitymodel. It is important to note that all the numerical work is done in- Wefirstuseahorizontalpointforcelocatedat(x,z)=(0.51km, plane. The source wavefield propagates through our model. The 2.68km).ThesourceischaracterizedbyRickerwaveletwithdom- vertical and horizontal displacement, which are recorded at the inantfrequencyof100Hz.Thereare56receiversdistributedover receiverlocations,areorientedin-plane.WhenwesolvefortheS twoverticalboreholesinourmodel.Thex-locationsofthereceiver componentbycalculatingthecurlofthewavefieldusingthevertical boreholes are 0.74 km and 0.88 km, respectively. The receivers and horizontal displacement, we imply that we are investigating rangefromadepthof2.36kmto2.86kmwithaspacingof18.5m. the SV component. Therefore, we do not model the out of plane In order to make the numerical simulation more realistic, we SH component. In this numerical example, sensors are deployed addedbandpasslimitednoisetoourrecordeddataatthereceivers in two vertical boreholes. The theory presented here is, however, beforeapplyingtimereversalordeconvolution.Theadditivenoise equallyvalidfora2-Dsensornetworkplacedon,ornear,theEarth’s only contains frequencies within the bandwidth of the data. We surface. Elasticwavesformicroseismicimaging 395 P, TR P, DC D o w n lo a d e d fro m h S, TR S, DC ttp://g ji.o x fo rd jo u Figure4. Temporalfocusedimagesduetoahorizontalpointforceproducedbybackpropagatingthecalculatedtime-reversedsignalsusingtimereversaland rn a deconvolutionforverticalboreholearray.Parts(a)and(b)aretemporalfocusofthePwaveduetotimereversalanddeconvolution,respectively.Parts(c)and ls .o (d)aretemporalfocusoftheSwaveduetotimereversalanddeconvolution,respectively. rg a/ Horizontalpointforce Thederivationandexplanationofthesetwomethodsarediscussed t Co Thissectiondescribesthenumericalmodellingthatdemonstrates inmoredetailbyDoumaetal.(2013). lora Afterbackpropagation,thewavefieldisdecomposedintoPand do thatimprovedtemporalfocusingleadstoimprovedspatialfocusing S Scomponentsforacrucialreason.Wedemonstratedinthe‘The- c foreachwavetype.Wefirstmodelthewavefieldduetoahorizontal h ory’ section that improved temporal focusing leads to improved oo pveorintitcaflordciespelaxcceitmateionntsaotftthheeswoauvrceefiellodcaatrieonth.eTnhreechoorrdizeodnatatleaancdh spatialfocusingforeachwavetype.Wedonotconsiderthefocus l of M fortheverticalorhorizontaldisplacements.Rather,weusethedis- receiver. Afterwards, we apply either time reversal or deconvolu- in tion to the recorded signals to generate the wavefields, which are placement components to calculate the P and S wavefields using es o divergenceandcurl,respectively.ThisallowsustoretrievetheP n backpropagated. N andSwavesthathavebackpropagatedfromthesources.Foreach o Weusethetime-reversedordeconvolvedsignalstoexcitewaves v wavetype,ourtheorypredictsthatanimprovedtemporalfocusing em thatbackpropagatethroughthesmoothedvelocitymodel,usingthe leadstoimprovedspatialfocusing. be followingforcesactingateachofthereceiverlocations: Wefirstmodelthewavefieldduetoahorizontalpointforceex- r 24 F(cid:10)TimeReverse=(Ux(−t),Uz(−t)), (30) citationatthesourcelocation.ThetoppanelofFigs2and3show , 201 the P and S wavefields’ radiation pattern just after the horizontal 4 (cid:3) (cid:4) pointforceisemittedandrepresentapureangulardegreel=1.In F(cid:10) = UInverse(t),Uinverse(t) . (31) perfectsourceimaging,wewouldreconstructtheseradiationpat- Deconv x z terns.However,ouraperatureisnotperfectandwebackpropagate (cid:10) (cid:10) Here, FTimeReverse and FDeconv arethesourcefunctionsfortimere- throughasmootherversionofthevelocitymodel.Thus,wedonot versalanddeconvolution,respectively,andUx(t)andUz(t)arethe expecttobeabletoreconstructtheseradiationpatternsperfectly. recordedsignals.Theinversesignalofatime-seriesg(t)isdefined Inordertoshowthatdeconvolutiongeneratesanimprovedspatial as focus,wefirstdemonstratethatdeconvolutionenhancesthetempo- ralfocus.Thus,wecalculatethetemporalfocusingforthePand ginverse(t)(cid:9)g(t)=δ(t), (32) Scomponentasaresultofdeconvolution(eq.31)comparedwith where (cid:9) denotes convolution. In order to solve for ginverse(t) and timereversal(eq.30).Wedefinedthetemporalfocusingineq.(16) avoidinstabilityforginverse(ω)wheng(ω)=0,wehavetoapplya asthel-thderivativeoftheincomingwavefield.Thisisnecessary waterlevelregularization.Thus, because the wavefield is zero at our source location due of nodal lines.Inordertodemonstrateimprovedtemporalfocusingforahor- 1 g∗(ω) ginverse(ω)= ⇒ . (33) izontalpointforce,wetakethederivativeofthePwavefieldinthe g(ω) |g∗(ω)|2+(cid:10) x-directionandthederivativeoftheSwavefieldinthez-direction 396 J.DoumaandR.Snieder P, TR P, DC D o w n lo a d e d fro m h ttp S, TR S, DC ://g ji.o x fo rd jo u rn Figure5. Spatialfocusedimagesduetoahorizontalpointforceproducedbybackpropagatingthecalculatedtime-reversedsignalsusingtimereversaland als deconvolution.Parts(a)and(b)are1-DslicesofFig.2throughdepth2.68km.Parts(c)and(d)are1-DslicesofFig.3throughxlocation0.51km.Notethe .o rg differentscalesusedforthecross-sectioninthexandzdirection. a/ t C o because these derivatives are the radial derivatives perpendicular timereversal(middlepanel)anddeconvolution(bottompanel)for lora tothenodallinesforeachwavetype.Wechangethedirectionof theScomponent.Thiswasexpectedduetodeconvolutionandtime do S thederivativebecausetheradiationpatternofthePwaveduetoa reversalproducingsimilartemporalfocusesfortheSwave. c h horizontalpointforceisadipoleinthex-directionwhiletheS-wave Theaperture,overwhichwerecordthedatathatwebackprop- oo radiation has a dipole pattern oriented in the z-direction (Aki & agate,isnotperfect.Thiscausesthespatialfocuses,createdusing l of M Richards 2002). This is visible in the top panel of Figs 2 and 3, timereversalanddeconvolutionshowninFigs2and3,tonotbe in which show the radiation patterns of the P and S wavefields just confined to one angular degree l because the spatial focuses are es o afterthesourcehasacted.Wecalculatethederivativesasdefined blurredinthez-direction.Aperfectspatialfocuswouldconsistof n earlier to show the temporal focus for the P and S wave at the onlythel=1component.Figs5(a,b)and(c,d)showcross-sections No v sourcelocation.ComparingFigs4(a)to(b),onecanclearlynote ofthebackpropagatedwavefieldsinFigs2and3inthex-andz- em thatdeconvolutionhassignificantlyimprovedthetemporalfocus- directions,respectively,sothatitiseasiertoassestheimprovements be ingcomparedtotimereversalforthePwave.Incontrast,Figs4(c) andcomparisonsbetweenthetwomethods.Notethatthescalesof r 24 and(d)showthatbothtimereversalanddeconvolutionproducea thehorizontalaxisforFigs5(a)and(b)aredifferentfromFigs5(c) , 2 0 1 similartemporalfocusfortheSwave.Becauseimprovedtemporal and(d).Fig.5(a)demonstratesthattimereversalisnotabletocreate 4 focusing implies better spatial focusing, see eq. (26), one would awell-defineddipolefocusinthex-direction,whichrepresentsthe expecttoseeanimprovedspatialfocusforthePwaveusingdecon- radiationpatternofaPwaveduetoahorizontalpointforce.Fig.5(b) volutioncomparedtousingtimereversal.Additionally,wedonot showsthatdeconvolutionisabletoreconstructthedipoleradiation expecttheSwave’sspatialfocustoimproveusingdeconvolution patternofthePwaveduetoahorizontalpointforce.Figs5(c)and becausethetemporalfocusdidnotimprove. (d)demonstratethatinthisexamplethereseemstobenosignifi- Afterhavingdemonstratedthatdeconvolutionimprovedthetem- cantdifferencebetweentimereversal(c)anddeconvolution(d)to poralfocusingforthePwave,wecomparethespatialfocusgen- reconstructtheSwave’sfocus. eratedbydeconvolutionandtimereversalforeachwavetype.The Ournumericalresultshaveshownthatdeconvolutionwasableto backpropagatedwavefieldsatt=0forthetwomethodsareshown improvethetemporalfocusforthePwave,whichledtoanimproved inthemiddleandbottompanelsofFigs2and3.Themiddlepanel reconstructionofthePwavefield’sradiationpattern.However,de- ofFig.2representsthespatialfocusofthePwaveusingtimere- convolution was not able to improve the temporal focus for the versal whereas the bottom panel shows the spatial focus of the P S-wave, due to a horizontal point force, which led to it also not wave using time-reversal. Fig. 2 shows that deconvolution drasti- improvingthereconstructionoftheSwavefield’sradiationpattern. callyimprovesthespatialfocuscomparedtodeconvolution.Fig.3 ThiscanbeattributedtothefactthatanodallinefortheSwave- does not show a clear improvement of spatial focusing between field’sradiationpatternintersectsthereceiverarray.Deconvolution Elasticwavesformicroseismicimaging 397 P S D o w n lo a d e d fro m h ttp P, TR S, TR ://g ji.o x fo rd jo u rn a ls .o rg a/ t C o lo ra d o S c h o o l o P, DC S, DC f M in e s o Figure6. DecomposedPwavefieldattimeoffocusduetoverticalpoint Figure7. DecomposedSwavefieldattimeoffocusduetoverticalpoint n N force. Top panel is P wave just after the vertical point force is emitted. force. Top panel is S wave just after the vertical point force is emitted. o v Middlepanelindicatestheresultofinjectingthetime-reversedsignalback Middlepanelindicatestheresultofinjectingthetimereversedsignalback em intothesmoothedvelocitymodelfromthereceiverlocations.Bottompanel intothesmoothedvelocitymodelfromthereceiverlocations.Bottompanel be showsresultofinjectingtheinversesignalcalculatedusingdeconvolution showsresultofinjectingtheinversesignalcalculatedusingdeconvolution r 2 4 backintothesmoothedvelocitymodelfromthereceiverlocations. backintothesmoothedvelocitymodelfromthereceiverlocations. , 2 0 1 4 assignsalargerweighttothereceiversnearthenodallineinorder viouslystated,thesourcewaveletwasfirstinjectedintothecorrect toincreaseaweakrecordedsignal.Thisisunphysicalbecausethere velocitymodelatthesourcelocation.Thehorizontalandvertical isnoinformationtobegainedintheseweakrecordedwaveforms displacementswerethenrecordedatthereceivers.Oncethesesig- near the nodal lines. These receivers are supposed to record no nalswererecorded,timereversalanddeconvolutionmethodswere informationaboutthesourceandshould,therefore,notpropagate applied in order to calculate our backpropagating signals. These anyinformationback.However,itsimultaneouslydemonstratesthe signalscalculatedusingthetwomethodswouldthenbepropagate robustnatureofdeconvolution.Fortheradiationpatternwhichhas backintothesmoothedvelocitymodelfromthereceiverpositions. anodallineintersectingthereceiverarray,deconvolutiondoesnot WethendecomposedthewavefieldintothePandScomponentat generateaninaccuratebutratheracomparablereconstructionofthe thetimeoffocusbytakingthedivergenceandcurl,respectively,of radiationpatternastimereversal. thedisplacements. ThetoppanelsofFigs6and7showthePandSwavefield’sradi- ationpatternsaftertheverticalpointforceisemittedandrepresents Verticalpointforce thepureangulardegreel=1.Asstatedpreviously,onewouldbe Weappliedthesameanalysistowardsaverticalpointforceusing abletoreconstructtheradiationpatternsinperfectsourceimaging. thesamenumericalmodelasforthehorizontalpointforce.Aspre- However, weusethesamenumericalmodelasusedforthehori- 398 J.DoumaandR.Snieder S, TR S, DC D o w n lo a d e d fro m h P, TR P, DC ttp://g ji.o x fo rd jo u Figure8. Temporalfocusedimagesduetoaverticalpointforceproducedbybackpropagatingthecalculatedtime-reversedsignalsusingtimereversaland rna deconvolutionforverticalboreholearray.Parts(a)and(b)aretemporalfocusoftheSwaveduetotimereversalanddeconvolution,respectively.Parts(c)and ls.o (d)aretemporalfocusofthePwaveduetotimereversalanddeconvolution,respectively. rg a/ t C o lo zontalpointforce.Thus,wedonotexpecttobeabletoreconstruct at t = 0 using either time reversal (middle panel) or deconvolu- ra d theradiationpatternsperfectly. tion(bottompanel)forthePandScomponent,respectively.Fig.7 o S c Wefirstcalculatedthetemporalfocusesachievesusingtimere- shows that deconvolution significantly improves the spatial focus h o rvaedrsiaatlioonrdpeacttoenrnvoslouftiothnefvoerrtthiceaPl paonidntSfocrocmepaorenernottsa.teBdec9a0u◦sefrothme aacchhiieevveeddffoorrtthheePSwwaavveea;rFeicgo.m6pdaermabolnesutrsaintegsetihthaterthdeecsopnavtioallutfioocni ol of M thehorizontalpointforce’s,wetakethederivativeofthePwave- ortimereversal.Theseresultswereasexpectedbecausedeconvo- in e fieldinthez-directionandthederivativeoftheSwavefieldinthe lutionimprovedthetemporalfocusfortheSwavewhilegenerating s o n x-directioninordertotaketheradialderivativesperpendicularto acomparabletemporalfocusforthePwave. N the nodal lines for each wave type. Comparing Figs 8(a) to (b), Inordertovisualizethedipolefociachievedusingeithermethod, ov e onecanclearlynotethatdeconvolutionhassignificantlyimproved we generate 1-D slices through Figs 6 and 7. Figs 9(a) and (b) m b the temporal focusing compared to time reversal for the S wave; and(c)and(d)showscross-sectionsofthebackpropagatedwave- er 2 whereas,inFigs8(c)and(d),timereversalanddeconvolutionpro- fieldsinFigs2and3inthex-andz-directions.Fig.8(a)illustrates 4, 2 duceasimilartemporalfocusforthePwave.Therefore,theresults that time reversal is not able to create a well-defined dipole fo- 0 1 4 fortheverticalpointforcearethereverseofthatforthehorizontal cusinthex-direction,whichrepresentstheradiationpatternofan pointforce.Thisisexpectedastheradiationpatternsarerotatedby S-wave due to a vertical point force. Fig. 9(b) shows that decon- 90◦,whichcausethenodallinestorotate.Wehaveseentheimpact volution is able to reconstruct the dipole radiation pattern of the ofthesenodallinesuponthefocusweareabletoachieve.Asstated S wave due to a vertical point force. Figs 9(c) and (d) demon- previously,becauseimprovedtemporalfocusingimpliesbetterspa- stratethatthereseemstobenosignificantdifferencebetweentime tial focusing, see eq. (26), one would expect to see an improved reversal(c)anddeconvolution(d)toreconstructthePwave’sfo- spatialfocusnowfortheSwaveusingdeconvolutioncomparedto cus.Theseresultsareadifferentwaytoillustratewhatwasshown usingtimereversal.However,wedonotexpecttoseeanyimprove- inFigs6and7. mentinspatialfocusingforthePcomponentbecausedeconvolu- Ournumericalresultsfortheverticalpointforcereiteratewhatwe tionandtimereversalgeneratedcomparabletemporalfociforthe haveseeninthehorizontalpointforceresults.Weconcludethat,for Pcomponent. anelasticmediawithoutaperfectapertureandtruevelocitymodel, Onceshownthatdeconvolutionimprovesthetemporalfocusfor improved temporal focusing leads to improved spatial focusing. theSwaveduetoaverticalpointforce,wecomparethespatialfoci We have shown this both theoretically and numerically to be the achieved using deconvolution or time reversal for both the P and case.Becausedeconvolutionhastheabilitytoimprovethetemporal S components. Figs 6 and 7 show the backpropagated wavefields focusing,onecanimprovethespatialfocusing. Elasticwavesformicroseismicimaging 399 S, TR S, DC D o w n lo a d e d fro m h ttp P, TR P, DC ://g ji.o x fo rd jo u rn Figure9. Spatialfocusedimagesduetoaverticalpointforceproducedbybackpropagatingthecalculatedtime-reversedsignalsusingtimereversaland als deconvolution.Parts(a)and(b)are1-DslicesofFig.2throughdepth2.68km.Parts(c)and(d)are1-DslicesofFig.3throughxlocation0.51km.Notethe .o rg differentscalesusedforthecross-sectioninthex-andz-direction. a/ t C o lo ra d o CONCLUSION Artman,B., Podladtchikov,I.&Witten,B., 2010.Sourcelocationusing S c time-reverseimaging,Geophys.Prospect.,58,861–873. ho We have introduced deconvolution which improves the temporal o focusing of microseismic events. The workflow for this approach Autbimrya,lJf.o-Fc.u,sTinagntebry,sMpa.,tiGo-etrebmerp,oJr.a,lTfihlotemr.aIsI,.JE.-xLp.e&rimFeinntks,.MAp.,p2li0c0a1ti.onOpto- l of M is similar to imaging with time-reversed signals. The only differ- focusingthroughabsorbingandreverberatingmedia,J.acoust.Soc.Am., in enceisthatinsteadofsendingthetime-reversedrecordedsignals 110,48–58. es o into the medium, we send the inverse signal, as obtained by de- Bancroft, J.C., Wong, J. & Han, L., 2010. Sensitivity measurements for n N convolution, into the medium. The key result of this work is that locatingmicroseismicevents,CSEGRecorder(February),28–37. o v we demonstrate theoretically and numerically that this improved Bertaix,V.,Garson,J.,Quieffin,N.,Catheline,S.,Derosny,J.&Fink,M., em temporalfocusingleadstoimprovedspatialfocusingforeachwave 2004.Time-reversalbreakingofacousticwavesinacavity,Am.J.Phys., be typeinanelasticmedium.Thisimprovedspatialfocusingisben- 72(10),1308–1311. r 24 eficialforenhancingthefocusoftheelasticwaves.Thesimplicity Bose, S., Valero, H., Liu, Q., Shenoy, R.G. & Ounadjela, A., 2009. , 20 An automatic procedure to detect microseismic events embedded in 1 androbustnatureofthismethodallowsforasimpleincorporation 4 high noise, SEG Technical Program Expanded Abstracts, pp. 1537– intoexistingreverse-timeimagingmethods.Additionally,thecost 1541. ofdeconvolutionisminimalcomparedtorunningthefinitediffer- Chapman, C., 2004. Fundamentals of Seismic Wave Propagation, Cam- encemodelling.Therefore,itcanbeaddedasapre-processingstep bridgeUniv.Press. withoutsignificantadditivecost. Douma,J.,Snieder,R.,Fish,A.&Sava,P.,2013.Locatingamicroseismic eventusingdeconvolution,SEGTechnicalProgramExpandedAbstracts, pp.2206–2211. Duncan,P.M.,2005.Isthereafutureforpassiveseismic,FirstBreak,23, 111–115. REFERENCES Fink,M.,1997.Timereversedacoustics,Phys.Today,50(3),34–40. Aki, K. & Richards, P., 2002. Quantitative Seismology, 2nd edn, Univ. Fomel,S.,2007.Shapingregularizationingeophysical-estimationproblems, ScienceBooks. Geophysics,72(2),R29–R36. Anderson,B,Douma,J.,Ulrich,T.&Snieder,R.,2014.Improvingspatio- Foulger,G.R.&Julian,B.R.,2012.Earthquakesanderrors:methodsfor temporalfocusingandsourcereconstructionthroughdeconvolution,Wave industrialapplications,Geophysics,76(6),WC5–WC15. Motion,doi:10.1016/j.wavemotio.2014.10.001. Gallot, T., Catheline, S., Roux, P. & Campillo, M., 2011. A passive in- Arfken,G.&Weber,H.,2001.MathematicalMethodsforPhysicists,5th verse filter for Green’s function retrieval, J. acoust. Soc. Am., 131, edn,Harcourt. EL21–EL27.

Description:
the location r = 0, the solution is finite and is therefore given by spherical Hankel multiplying with the appropriate vector spherical harmonic as given . non-zero for r = 0, but jl(kr = 0) = 0 for l ≥ 1 (Arfken & Weber. 2001). Middle panel indicates the result of injecting the time reversed si
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.