ebook img

Geomorphology, Neotectonics and Process Studies in the Rappahannock River Basin, Virginia: Marshall to Oak Grove, Virginia, July 15-16, 1989 PDF

31 Pages·3.259 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Geomorphology, Neotectonics and Process Studies in the Rappahannock River Basin, Virginia: Marshall to Oak Grove, Virginia, July 15-16, 1989

Geomorphology, Neotectonics and Process Studies in the Rappahannock River Basin, Virginia Marshall to Oak Grove, Virginia July 15-16, 1989 Field Trip Guidebook T218 Leaders: Milan Pavich RobbJacobson wayne Newell American Geophysical Union, Washington, D.C. COVER Terrace sediments flanking the Rappahannock River record episodes of fluvial and estuarine deposition, and provide evidence for the interpretation of the tectonic and climatic. history of this basin. Leaders: Milan Pavich Robb Jacobson and Wayne Newell U.S. Geological Survey U.S. Geological Survey 928 National Center 926 National Center Reston, VA 22092 Reston, VA 22092 Published 1989 by American Geophysical Union 2000 Florida Ave., N.W., Washington, D.C. 20009 ISBN: 0-87590-594-3 Printed in the United States of America IGCFIELDTRIPTI1S: GEOMORPHOLOGY,NEOTECTONICS,ANDPROCESSSTUDIES INTHERAPPAHANNOCKRIVERBASIN,VIRGINIA MilanJ.Pavich,RobertB.Jacobson,andWayneL.Newell U.S.GeologicalSurvey,Reston,Virginia CONTENTS: and ofveryvaried character, that nearly everywhereforms the INTRODUCTION surfaceofthelandandoverliesorcoversmorecoherentbedrock. BLUERIDGEANDPIEDMONT (AGI,1972)]" Geology Apoorlyunderstoodrecordofepisodicdeposition,limitedto Geomorphology afewrecognizedterracesequences, existsontheerodingPied RegolithandSurficialStratigraphy mont(CostaandCleaves,1979;Pavich,1985;Sevonandothers, RAPPAHANNOCKESTUARY 1983). Atpresentwe cannotindependentlydate erosionaland Geology&Stratigraphy depositionalperiodsonthePiedmont,thuswecannotcorrelate Geomorphology erosionalanddepositionaleventsindifferentpartsofthesame Regolith& SurficialStratigraphy drainagesystem. Developmentofdatingmethodsandaprecise GEOMORPHICEVOLUTIONOFTHERAPPAHANNOCK chronostratigraphyarethelong-termgoalsofourresearch. To RIVERBASIN makeaccuratecorrelationsofeventsbetweenthepatchysurficial RegolithandEquilibriumonthePiedmont recordofthePiedmontanddepositionalepisodesontheCoastal EpisodicDepositionintheRappahannockEstuary Plain,we needto establishnewisotopicdatingmethodsand to Summary quantifythelonger-term rates ofweatheringand erosionproc TABLES essesoperatingonavarietyofrocktypes. REFERENCES The Rappahannock River Basin (fig. 1) is a good area for ROADLOG·DAY1:D.C.,InnerPiedmont, studyoftherelationsofsedimenttosourceareaandcomparison Culpeperbasin,OuterPiedmont,FallZone oferosionalanddepositionalepisodesbecause: ROADLOG•DAY2:CoastalPlain a)itssizeislimitedtoasingleclimaticzonesoclimaticepisodes probablyhavebeensynchronousoverallpartsofthebasin. b)itcontainsavarietyofrocktypesthatweatheranderodedif INTRODUCTION ferently. c) the estuarinepart oftheriverbasin servedas a depositional Geomorphologyandsurficialgeologyincreasinglyarebeing sinkforsedimenterodedfromtheupperbasin,thusallowingfor usedtoaddressquestionsaboutclimaticandtectonichistoriesof time-stratigraphiccomparisonsofsedimentsandsource. specificlandscapes. IntheAppalachianPiedmont, an eroding Weview the river basinas a unit ofintegratedgeomorphic landscapeindynamicequilibrium(Hack,1960),theadjustment evolution. Weassumethaterosionalresponseoftheupperbasin offormtoprocessmayoccurrapidlyenoughtoprecludeaccurate tomajorclimaticchange,base-levelchange,ortectonismwillbe identificationofclimaticortectoniceventsinlandformsorsurfi recordedinthesedimentsinthedownstreamdepositionalpartof cialstratigraphy.Incontrast,depositionalareasliketheAtlantic thebasin. Eventsalsomayoccurthataresosmallinmagnitude CoastalPlainaremorelikelytoretainastratigraphicandmor orextentthattheyarenotrecordedinthestratigraphicrecordof phologicrecordofeventsaffectingthecontributingdrainagebasins. thelowerbasin. Sucheventsmayberecordedinsteadinephem Thepurposesofthisfieldtriparetoexhibitthetypesofweathered eralsurficialdepositsorlandformsintheupperbasin. Wecan surficialmaterialsoccurringinthePiedmontand CoastalPlain not,atthistime,differentiatebetweenclimatic,tectonic,orbase partsoftheRappahannockRiverBasin,todiscussthesynthesis levelcausesofacceleratederosion. Duringthetripwewillfocus ofaCenozoicclimaticandtectonichistoryfromsurficialdeposits on the evidence for episodic acceleration and deceleration of andlandforms,andtodiscussproblemsofage-datingandmeas erosiononadeeplyweatheredterrane,andweleavetheanswers urementsofgeomorphicprocessesoveravarietyoftimescales. aboutcausalrelationstofutureinvestigations. TheAtlanticCoastalPlainoftheU.S.containsevidencefor Wewillstresstheprimarycontroloflandformsbydifferential multiple episodes of deposition and erosion during the Creta weatheringanderosion. Thiscanbeobservedonmanydifferent ceousandCenozoic(Owens,1970;Newell,1985). Thestratigra scales. Atthebroadestscale,thelithologicdifferencesbetween phicandmorphologicrecord oftheCoastalPlain couldreflect Precambrian,.Paleozoic, Mesozoic, and Cenozoicstratigraphic climaticallyortectonicallytriggerederosional/depositionalevents, unitsprovidefourdistinctphysiographicprovinceswithinthebasin. orsomecombinationofthe two. Interpretationisalso compli Withineachprovince,rockstructureandlithologystronglyinflu catedbytheadditionofstratarelatedtoeustaticsea-levelchanges; encelocalregolithdevelopmentandrelief. Wewillcontrastthese thesestratamaybeunrelated,oronlyindirectlyrelated,toproc primarycontrolswiththeeffectsofclimatechangeandneotec esses operating in upland drainage basins. Accurately under tonics. standing the underlying mechanisms causing depositional epi ThefirstdayofthetripwillbedevotedtoPiedmontgeology, sodesrequires refining techniques of mapping, analyzing, and geomorphologyandregolith. CoastalPlainstratigraphy,struc interpretingboththedepositsandthesource-arearegolith. [Regolith tureandsoils,willbeinvestigatedonthesecondday. Theguide is"...the mantle offragmental andloose,incoherent, oruncon bookcontainsseparatediscussionsofthePiedmontandCoastal solidatedrockmaterialofwhateverorigin(residualortransported) Plain, followed byroadlogsfor eachday. Dueto the ongoing T218: 1 Maryland BlueRidge InnerPiedmont CentralLowland Washington, D.C EasternUpland FallZone ~1-- 1---t0Pkm Virginia North Carolina FIGURE1 LocationoftheRappahannockRiverbasinandmajorPhysiographicprovinces researchandthelimitedspaceinthisvolume,theguidebookwill Geomorphology belargelydescriptive. More detailed arguments anddataper tainingtofieldtripstopswillbepresentedinhandouts. Manyof Physiographyofthe upperpartofthe RappahannockRiver thehandoutswillbefrom publishedjournalarticles,andothers basinisstronglyrelatedtotheNWtoSEchangesinmajorSWto areintheform ofU.S.G.S.BulletinsorOpen-filereports. NEstrikingrockunits. ThefIrstorderdistinctionisbetweenthe BlueRidgephysiographicprovinceandPiedmontphysiographic province. Thewesternhalfoftheupperbasinisdevelopedonthe BLUERIDGEANDPIEDMONT rocksoftheBlueRidgeAnticlinorium. Theridgesformingthe westerndrainagedivideofthebasin, andtheBlueRidge physi Geology ographicprovince,areunderlainbyerosionallyresistant,younger Precambrian, quartzite and metabasalt. The core ofthe Blue TheupstreamtributariesoftheRappahannockRiver(fig.1) Ridge Anticlinorium is designated the inner Piedmont and is drainanareaunderlainbyavarietyofPrecambrian-toMesozoic underlainbylessresistant,olderPrecambrian,metamorphicgranites agemetamorphic,igneousandsedimentaryrocks. Forsimplicity andgranodioritegneisses. TheouterPiedmonttotheeastcom thelithologiescanbesubdividedintogenerallyNE-SWstriking prisestwodistinctareas: acentrallowlanddevelopedonunmeta mapunitsasinfigure2. Lithologicunitsandphysiographicsub morphosedMesozoicsedimentsandbasalts,andaneasternup divisionsrelatedtothoseunitsaresummarizedonTable1andthe landdevelopedonavarietyofPaleozoicmetasedimentary,metaigne elevation contour map shown on figure 3. Rocks ofthe Blue ous,andmetavolcanicrocks. ThedivisionbetweentheMesozoic Ridge Anticlinorium underlie the Blue Ridge and Inner Pied rocksandthePaleozoicrockscoincideswiththeMarticLine(fig. montPhysiographicProWtccs,Mesozoicsedimentaryrocksunderlie 2;Stose,1939). thecentrallowlandoftheCulpeperBasin, andPaleozoicmeta ThephysiographicdistinctionbetweentheBlueRidgeprov morphic rocks underlie the eastern upland and theFall Zone. inceandtheinnerPiedmontprovincecanbeseenonfigure3.The Thefieldstopswillshowexamplesofthesephysiographic/lithol BlueRidgephysiographicprovinceistopographicallyhigherand ogicrelationsinthedifferentphysiographicprovinces. hasgreaterreliefthanthePiedmont.Itshigherorderstreamsare Table2describes theregolithandsoilcharacteristicsofthe orientedNW-SE,andthesestreamscommonlyflowbetweenNW physiographicunitsdefinedinTable1andonfigure3. Regolith SEorientedhighreliefridgesorspurs. ThegradientoftheRap canbesubdividedintotransportedsediment(alluviumandcollu pahannock River across the Piedmont is steeper than that of vium) and in situ weathering profiles on bedrock (residuum). otherrivers in Virginia, asshown byfigure 4 takenfrom Hack Solumcomprises thepedogenicA andBhorizonsdescribedby (1982). pedologists. Solaaredistinctfrom underlying,weatheredrego TheinnerPiedmonthasarollingtopographyofroundedhills lith by their structure, texture, mineralogy and chemistry and withmoderate relief. Numerous SW-NEelongated inselbergs contrastindensityandfabricwithisovolumetricweatheringproducts stand in higher relief (Kesel, 1974). Unlike NW-SE oriented suchassaprolitedevelopedfrom crystallinerocks. spursoftheBlueRidge,theSW-NEtrendinginselber~areoriented T218: 2 y ar Granodiorite Phyllite MetasedimentRocks,undiff. y CentralLowland ~Triassicintrusive~rocksIIfTr:lTriassicsedimentarLBJrocks Upland ......~.:~,,~~:~~ChopawamsicFmGrn"-;roo.r.., ~Plagiogranite lliillTrondjemite B~sinhannockRiver n I pa ter8 @eJ8 Rap s a I r E pe s on up Tertiarysediment FallsRunGneiss QuanticoFormati 30·kmI divisionsofthe Il~ c GE hi p a r g o si y h p d aI an y g o ol e g d e z ali r e n e G 2 E d R IN07830'+045'38 ueRidge CatoctinGreenstone PedlarFormation OldRagGranite rPiedmont CatoctinGreenstone MechumsRiverFm. LynchburgFm. LovingstonFm. RobertsonRiverFm.anMarshallMetagranite. FIGU BlIlepCcEa ~ Inne ICpeel ~ IIpC1yli I~I I~I ~f\.)~ex> w TABLE1 LithologicandPhysiographicSubdivisionsoftheRappahannockBasinshownon figures2and3. Lithologic Geologic Physiographic Unit Unit Lithologies Unit A OldRagGranite, Coarsegrainedgranodiorite, A -BlueRidge: steep,longslopes Pedlar Fm., shale,quartzite,pebble comingofftheBlueRidge CatoctinFm. conglomerate,metabasalt drainagedivide. Streamsincised (greenstone) drainagedivide. alongNW-SEstructures B RobertsonRiverFm., Granodioriteandgneiss B-InnerPiedmontrollingconvex LovingstonGraniteGneiss profiles,commonisolated MechumsRiverFm., inselbergsofMarshall CatoctinFm., Metagraniteatvariouselevations LynchburgFm., strikingSW-NE,variable-width MarshallMetagranite valleys C ManassasFm., Sandstone,siltstone,shale, C-CentralLowland,outer BullRun·Fm. diabase,andconglomerate Piedmont:flat drainagedivides andlong,low-angleslopes, rare,isolatedinselbergs,broad streamvalleys D FallsRunGraniteGneiss, Schist,gneiss,granite, D -EasternUpland,outer QuanticoFm., granodiorite,trondhjemite, Piedmont:flat drainagedivides ChopawamsicFm. plagiogranite,phyllite steepconvexslopes,narrow valleys withthe regionalstrikeofmajorstructures. Thesefeatures de localphysiographyiscloselyrelatedtothehydrologicresponseof velopfromseveralofthegranodioriteandgneissiclithologiesof therockunitstoprecipitation. Hydrologicresponseiscontrolled the inner Piedmont and theyshowa roughly constant ratio of primarilybytheroutingofrunoffbyrockstructure. Thephysi width/heightirrespectiveofparentrocktype. ographicunitsshownonfigure2andinTable2canbedifferen ThecentrallowlandofthePiedmontisdevelopedonMeso tiatedwithrespecttostructuraland,therefore,hydrologicprop zoicsandstones,shales, anddiabasesills. Topographicallyhigh erties. Theirhydrologicresponsesexercisefundamentalcontrol areas ofthebasin, orinselbergs, areformed onconglomerates overweatheringanderosionand,therefore,thedevelopmentof andmassivediabasestocks. Thestreamsinthebasinhavebroad regolithandthelandformsrelatedtoregolithdistribution. These floodplains and are not asdeeplyincised asthechannelsinthe groupingscanbesummarizedas: innerPiedmontoreasternupland. a)Structurallymassive,insolublerockssuchasorthoquartzites. Theeasternuplandisformedoncomplexlyfoldedmetasedi b)Structurallymassiverockscontainingsolubleminerals--low mentaryandmetaigneousunits. Streamsegmentsoftheeastern permeability,igneous andmetamorphicrockssuchas the Blue uplandarecloselycontrolledbyrockjointsandfoliation (Cran Ridgegranodiorite, metabasalt and the Mesozoic diabase that ford and others, 1982). Evenlow-order, perennialstreams are arevariablyjointedandfractured. deeplyincised. c)Foliatedrocks-withpredominantlyverticalorsteeplydipping Mapsofbedrock(fig.2),elevation(fig.3),andregoliththick structures ness(fig.5) showthat: Relativelysolublerocksthat dissolvecongruently(e.g.with a) Despitetheprimarycontrolofphysiographicprovincesbyli no solidresidue), suchaspure carbonates, donot occurinthis thology,atamoredetailedscalethephysiographyofthebasinis basin. complexandnotentirelyrelatedtoobviouslithologicvariations. ForexampIe,inselbergsontheInnerPiedmontform onlitholo RegolithandSurficialStratigraphy gies that also underlielower relief, lower elevationareas. The generallyflat"peneplain"oftheeasternuplandcutsacrossmajor Regolithproducedbytheweatheringorphysicaldisintegra lithologiccontactsbetweenrocksofvariedcompositio tionofrocksisthemostusefulmappingunitforinterpretingthe b) OntheinnerPiedmont, theregoliththicknessdistributionis geomorphichistoryofthevariousphysiographicsubdivisionsof not relatedto topographyas it isgenerallybeneaththeeastern theriverbasin.Regolithcharacteristicschangedramaticallybetween upland. physiographicsubdivisionsduetothegrosslithologicdifferences. To explainvariations ofregolith thickness and variations of Theregolithcharacteristicsarevariablebothinarealdistribution ratesofproduction,erosiontransport,andlossofregolithfrom and in vertical sequence at different landscape positions. For thebasin,detailedstudiesinsmallareasatamapscaleof1:24,000 comparisons,themajorregolithcharacteristicsaresummarized or larger are required. Some ofthe areas for whichthere are intable3. detailed data are listed ontable3. These studiesindicate that Wewillnothavetimetolookindetailatalltheregolithele- T218: 4 • D D • 0-200ft • 400-500ft > 1000ft .......... • 200-300ft 500-600ft 0 30km 300-400ft 600-1000ft approx. scale FIGURE3 Mapshowingcontoursofgeneralelevationintheupperbasin. mentsofthevariousphysiographicprovinces. Inallcases,how hasdeveloped.Saproliteexceeding15mthickilessalsodevelops ever,wecanuseasimplemodelofinsituweatheredregolithfor inplacesoflowreliefattheheadsofdrainagesontopoftheBlue comparisontomostoftheareastobevisited(fig.6;Pavich,1986). Ridge(DeKay,1972) Themodelhasaverticalsequenceofathinsoilatthesurface,a InnerPiedmont. OntheOldRagGranite,PedlarFormation, transitionalmassivezone,athicksaprolite,andweatheredrockat andMarshallMetagratiite,andsomeotherrockunitsintheinner thebase. Piedmont,thehilltopsarecommonlybarerockbalds. Hillsides Onasingleparentmaterial,thethicknessanddegreeofgeo typicallyarevegetatedandcoveredwithcolluviumand/orresid chemicalalterationofregolithvariesasafunctionofslopeposi uum. Figure7showstwoexamplesfrom Kesel(1974) from the tion. Thevariationofregoliththicknessonslopesis,alongwith Orleans7.5'quadrangleshowingthedistributionofregolithatthe reliefandvalleymorphology,akeyelementindifferentiatingthe footofarockbald. ObservationsintheOrleansandBrightwood landscapesoftheRappahannockRiverValley. quadrangles(Pavich,unpublisheddata)alongstreamvalleysin dicatethatsoilandsaprolitecanreach10+metersonhillsides, BlueRidge. Theoldestrocksinthe coreoftheBlueRidge andKesel(1974) foundareasexceeding30m ofweathering. Anticlinorium mappedbyEspenshade and Clarke (1976) typi The inselbergs on the inner Piedmont provide an excellent callydonotexhibitthickweatheringprofilesondrainagedivides opportunitytostudycontrolsonregolithdistribution. BigCob (Kesel, 1974). Exceptinsome cases ofintenselyfractured and bler Mountain and the adjacent surfaces are underlainby the jointedrock,uplandsunderlainbytheOldRagGraniteandthe Marshall Metagranite, a gray, coarse-grained to fine-grained MarshallMetagraniteareexposed,barerock.Inthecaseofthe hornblendegneiss (Kesel, 1974).Kesel (1974) related thebare OldRaggranite,theresistancetoweatheringisduetoitsmassive rocktocrystalsize: afmer-grainedgneissweathersmoreslowly structure as well as its high content ofpotassium feldspar and thana coarse-grainedgneissandthusisnotlowered asrapidly. . quartz. For the Pedlar Formation and MarshallMetagranite, Kesel (1974, p. 16)stated that: "...the slopes ofBigCobbler... massive, unfoliatedrockstructureisthe more likelyreasonfor composed ofmassive rocks, have numerous bedrock outcrops resistancetoweathering. ItissignificantthatwheretheOldRag andarecoveredbybouldersmanyfeetindiameter.Theregolith Graniteisintenselyfractured, a thicksaproliteexceeding15m ontheseslopesislimitedtoisolatedpockets..."and"theregolith T218: 5 TABLE2 PhysiographicUnits,RegolithCharacteristicsandSoilCharacteristics Physiographic andLithologicUnit Regolith Soil (fromtable1) A Thicktothin,discontinuoussaprolite, Thintopatchy,somefragicproperties overlainbygravellycolluviumordiamicton onsteepslopes(> 15degrees) B Thinsaproliteandrockbaldsonuplands. Thinonuplands,thickeronsideslopes Thicksaproliteonsideslopesandadjacent andoversaproliteinsomeareas toinselbergs c Thinsaproliteonflatlyingshalesandsandstones Thin,generallycolorofparentmaterial D Thicksaprolitebeneathuplanddivides, Thin,brownonsideslopes,thickerand thinnersaprolitebeneathsideslopes,colluvium reddertowarddrainagedivide onsteepersideslopes,angularvein-quartz laggravelcommononupland,gradesinto stonelinesonsteepsideslopes,several generationsofcolluviumexposedbeneathsome sideslopes Altitude, m ~~ 100 /FZRappahannockRiver 0 ~ JamesRiver 100 FZ 0 200 ~ AppomattoxRiver 100 ~FZ 0 200 RoanokeRiver 100 /FZ 0 0 200 400 600 800 Distancefromsource, km FIGURE4 Longitudinalproftlesofsomeriversdrainingthemid-AtlanticPiedmont(modifiedfromHack,1980). T218: 6 TABLE3 SITESTUDIES Site PhysiographicProvince InformationaboutRegolith (1) OldRagGranite BlueRidge mappinganddrilling (2) BigCobblerMtn. InnerPiedmont mapping,drilling,andseismicsurvey(Kesel,1974) Orleans7.5'quad (3) MountainRunFaultZone InnerPiedmont mapping,drilling,andmineralogy (4) Brightwoodquad InnerPiedmont mappinganddrilling (5)Triassicconglom~rate CentralLowland mapping,drilling,andmineralogy (6)SalemChurchquad EasternUpland mapping,drilling,geochemicalanalysisofregolith coveronPiedmontslopesdevelopedonfoliatedrocksisgenerally granitoidandgneissicrocksoftheinnerPiedmontaresimilarin deeperthanthatontheadjacentinselbergslopes."Thethickness thattheyaredominantlyquartzandfeldspar,andthattheresis ofPiedmontregolithadjacenttoinselbergsvariesasmuchas15 tanceoftheOldRagGranitecanbeattributedtoitspotassium mverticallyover35mhorizontaldistance,whereastheregolith feldspar content. Boththe resistant Pedlar Formationandthe onthe inner Piedmontgenerally averagesless than 5m inthe deeplyweathered, lowerelevationRobertsonRiverFormation samedistance. areplagioclase rich; their differenceinresistanceis due to the Kesel(1974,p.17)notedthatadjacenttoBigCobbler: "...the muchfmercrystalsizeoftheRobertsonRiverFormation. The bouldersarenotconfinedtotheside-slopes,butalsocanbefound rocksoftheinnerPiedmontarea1110winmuscoviteandgenerally asboulderfansontheadjacentpiedmontsurface." Weathering lowinbiotite. Without resistant micas forming afoliatedrock aswellaserosionisevidencedbythelackofplagioclasefeldspar structure,aporoussaproliteapparentlydoesnotdevelopasread inthecoarsesandfractionontheslopeadjacenttoBigCobbler, ilyintherocksoftheinnerPiedmontasitdoesinthemicaceous comparedwith33percentintheunweatheredrock(Kesel,1974). easternuplandrocks(Pavich,1986). Thequartzandmuscovitic Kesel's(1974)observationsonthesignificanceofrockstruc micainthefoliatedeasternuplandrocksformaresistant"skele tureindeterminingsusceptibilitytoweatheringcorroboratesother ton" allowing recharge ofpercolatingwater to the base ofthe evidencethatrockresistancetoweatheringisnotonlyduetorock saproliteafterplagioclasehasdissolved. mineralogy. Modal analyses from Allen (1963) show that the Thus, ingeneral, theinnerPiedmontregolithisthinnest on Reg 01ith thiekness ~ < 3mwithnarrowzonesofthick ~ reaolith (>15m) infracturezpnes, gellerall)lcoveredWithcollUVium variable-generally < 3mon massiverockswithzones15-30m thickonfoliated rocks < 3mthick,withoutgravel coverexceptforallUVium 3-20m,thickestbeneath uplanddrainagedivides, thinningdownvalleys o 30km ---------- appro x. sea Ie FIGURE5 MapshowingregoliththicknessinthephysiographicsubdivisionsoftheRappahannockRiverBasin. T218: 7 flects adynamicbalancebetweenerosionalprocesses androck c resistanceratherthanrandompreservationofremnantsofolder I erosion surfaces or of strictly tectonic control. An argument Soil x againsttheinfluenceofperiglacialprocessesoninselbergforma tionis that such features also exist much farther south onthe Piedmont(e.g. inner Piedmont ofGeorgia) where Pleistocene glacial-pluvialprocessesweremuchlesseffectiveinalteringthe landscape. CentralLowland. Theregolithofthecentrallowlandisgen Saprolite erallythin,commonlylessthan3monavarietyofrocktypes. On thewidelyexposedMesozoicsandstones,siltstonesandshales,a thin residual soil has developed with little or no recognizable saprolite or weathered rock zone. The igneous rocks that in trudedthesedimentsshowmorevariabilityinregolith. Themost YI massive and fmest grained diabase generallystands above the Rock surroundinglandscapeasrockbaldsorascobble-mantledslopes. Where the diabase is intenselyjointed, the weathered regolith exceeds 10m in depth. These areas are not common, and the FIGURE 6 Regolith development model for the Piedmont. Thegroundsurface,X,lowersassaproliteiscondensedintosoil, generaldepthofweatheringofdiabaseaveragesabout3m. Hornfels zonesaregenerallyquitemassiveandstandupasresistantbare c,andsoiliserodedfromthesurface. Thicknessofsaproliteisa functionoftherateofloweringofthemassivezoneatb,andrate rockareas. Ofparticularinterestindeterminingthephysiographicevolu ofloweringoftherock-saprolitecontact,aty. tion ofthe lowland basin are a few isolatedinselbergs formed from conglomeratic rocks. These rocks were originally high hilltopbaldsor inselbergs andthicker towardthevalleys. This energysedimentsdepositedneartheborderfaultsactiveduring distributionisprobablydeterminedbytheorientationandspac theMesozoic.Thereisnodoubtfromtheirdegreeofinduration ingofsheetjoints, andtherouting ofgroundwaterflowbythe thattheywereburiedbeneathyoungerMesozoicsediments,and joints. Itislikelythatwaterfallingonthebaldsdoesnotinfiltrate theyhavesincebeenexhumed. Onesuchinselbergnowsitswell intothemassiverockstructure,andthatitmoveslaterallyalong abovethesurroundinglandscapeprovidingevidenceoftherela therocksurfaceuntilitencountersanopenjoint. Solution-mineral tiveerodibilityofthefmergrainedsandstoneandshale. reactions are thenpossible asthewatermoves throughjointed OtherevidenceoftherelativelyhigherosionrateoftheMeso rockadjacenttomoremassivebalds. zoicsedimentsincludesthehighsuspendedsedimentcontentof Kesel(1974)hypothesizedthatformationofinnerPiedmont high magnitude flash floods that are common during summer inselbergswascontrolledbyactivetectonicsorrelatedtoperiods storms.Apparentlythelowinfiltrationcapacityofthethinsoils ofstreamdowncutting. Weputemphasisontherockstructureas createsconditions conduciveto overlandflowand higher peak adeterminant ofthe locus ofweatheringand,therefore, ofthe dischargesfromsmall drainagebasinsrelative tothe samesize resultinglandforms. Inselbergsdisplayasimplerelationbetween basinsdrainingtheeasternupland. averagewidthandheight. Thissuggeststhatinselbergform re- Eastern Upland. The regolith distribution ofthe eastern uplandofthe outer Piedmont is not as easily seen. In drilling transects,weobserve a correspondence ofthe thickestregolith BigCobblerMt.,Virginia withflatteneddrainagedivides,withthinnerregolithbeneathsteep slopesandinvalleybottoms(fig.8). Pavich(1986)explainedthe flattened divides as the result ofweathering ofsteeplydipping foliatedrockstosaprolite,alterationofsaprolitetosoilwithvol umeloss,andcontinualremovaloffme particlesfrom theclay richsoilsurface.Structuralcontrolbynearlyverticalskeletalrock BuckMt.,Virginia fabriconthedirectionofwatermovementfacilitatesdeepweath eringbeneaththeflat divides. TerraceDeposits andDebris Fans on thePiedmont. Al though regolith relations suggest that the dominant landforms T Piedmontangle resultfromadjustmenttorocktype,surficialdepositsandland 0, 100 200 m formsofmuchsmallerextentexistasevidencethatepisodicproc , , esses have operated on the Piedmont. In the Rappahannock --Regolith-bedrockcontact vertical exaggeration2x basin,alluvialterraceshavebeendescribedbyDunford-Jackson (1978) and colluvialdepositshavebeendescribedbyWhittecar FIGURE 7 Cross sections from the Orleans 7.5' quadrangle (1985)andKesel(1974).Extensiveslopedebrisandalluvialter showing the distribution of regolith beneath uplands and racedepositshavebeenmappedbytheUSGSintheMountain hillslopes of Big Cobbler and Buck Mountains (from Kesel, Runvalleyinanongoingstudyofneotectonicsandgeomorphol 1974). ogy. In the Mountain Run valley, a sequence offive distinct T218: 8

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.