ebook img

Geomorphology and forest management in New Zealand's erodible steeplands PDF

15 Pages·2017·4.57 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Geomorphology and forest management in New Zealand's erodible steeplands

GEOMOR-06094;NoofPages15 Geomorphologyxxx(2017)xxx–xxx ContentslistsavailableatScienceDirect Geomorphology journal homepage: www.elsevier.com/locate/geomorph Geomorphology and forest management in New Zealand's erodible steeplands: An overview ChrisPhillipsa,⁎,MichaelMardenb,LesR.Basherc aLandcareResearch,P.O.Box69040,Lincoln7640,NewZealand bLandcareResearch,P.O.Box445,Gisborne4040,NewZealand cLandcareResearch,Nelson7042,NewZealand a r t i c l e i n f o a b s t r a c t Articlehistory: InthispaperweoutlinehowgeomorphologicalunderstandinghasunderpinnedforestmanagementinNew Received5April2017 Zealand'serodiblesteeplands,whereitcontributestocurrentforestmanagement,andsuggestwhereitwillbe Receivedinrevisedform31July2017 ofvalueinthefuture.Wefocusonthehighlyerodiblesoft-rockhillcountryoftheEastCoastregionofNorthIs- Accepted31July2017 land,butcoverotherpartsofNewZealandwhereappropriate.Weconcludethatforestrywillcontinuetomakea Availableonlinexxxx significantcontributiontoNewZealand'seconomy,butseveralissuesneedtobeaddressed.Themostpressing concernsaretheincidenceofpost-harvest,storm-initiatedlandslidesanddebrisflowsarisingfromsteeplandfor- Keywords: estsfollowingtimberharvesting.Therearethreeareaswheregeomorphologicalinformationandunderstanding EastCoast Erosionprocesses arerequiredtosupporttheforestindustry—developmentofanimprovednationalerosionsusceptibilityclassi- Forestmanagement ficationtosupportanewnationalstandardforplantationforestry;terrainanalysistosupportimprovedhazard Landslides andriskassessmentatdetailedoperationalscales;andunderstandingofpost-harvestshallowlandslide-debris Terrainzoning flows,includingtheirpredictionandmanagement. ©2017ElsevierB.V.Allrightsreserved. 1.Introductionandbackground (Pinusradiata).Thesecondplantingboomoccurredinthe1960swith muchofthisonlandthathadbeenidentifiedaserosion-proneandgen- ErosionratesinNewZealandareveryhighbyworldstandardsbe- erallyinsteeperhillcountry.Thethirdplantingboom(1992–1997)oc- causeofnaturalandanthropogenicfactors.Ahigh-energygeomorphic curredmainlyintheEastCoastregion(Fig.1)followingCycloneBola environmentisaconsequenceoflocationonanactiveplateboundary (MardenandRowan,1993).Nativeforestnowcoversabout25%of in the mid-latitude zone of strong westerly winds (Basher, 2013) NewZealand,withmostinreservesornationalparks,manyofwhich resultinginadominanceofsteepslopes,highratesoftectonicactivity, areinthesteepmountainlandsandeffectivelynolongerusedfortimber generallyhighrainfallandcommonhighintensityrainstorms(Soons production.Currentlyexoticforestcovers1.7Mha(about8%oftheland andSelby,1992;Hicksetal.,2011).Erosionrateswereintensifieddur- area;(NewZealandForestOwnersAssociation,2016). ingEuropeancolonisationinthelatenineteenthandearlytwentieth AwidevarietyoferosionprocessesoccurinNewZealand,andthe centurieswhenlarge-scaledeforestationoccurredovermuchofthe types and activity of erosion show strong regional patterns first country,followedbytheintroductionoflargenumbersofgrazingani- recognisedbyCumberland(1943,1944)thatrelatetogeologicalset- malsandintensivelanduseinsomelocations(Mosley,1978;Pageet ting,climate,andlanduse.Massmovementsareregardedasthedomi- al.,2000;Glade,2003).Inthatperiod,mostofthelowlandnaturalfor- nanterosionprocessinsteeplands(Basher,2013). estswereclearedandloggingprogressedintothehillier,steeperparts Theuseofforestsforcontrollingerosionorreducingnaturalhazards ofthecountry.Whilesustainedyieldmanagementofnativeforests iswellestablishedinNewZealandasitisinmanyotherpartsofthe waspracticed,itbecameapparentthatinordertoprovideacontinuing world(O'Loughlin,1991).NewZealandforestryhasbenefitedsignifi- supplyoftimbertomeettheneedsofagrowingcountry,forestsneeded cantlyfromexperiencesgainedfromthemountainlandsofEuropeto tobeplanted.ThisledultimatelytotheestablishmentoftheStateForest thosefromthePacificNorthwestoftheUSAandCanada.However, Servicein1921(Roche,1990;TeAra,2017).Whatfollowedwerea NewZealandhasalsocontributedtoglobalunderstandingofthisrela- numberofplantingbooms,initiallyinthecentralNorthIsland,but tionship,owinginnosmallparttoitsrecentcolonialhistoryandthe laterspreadingelsewhere.Themainspeciesplantedwasradiatapine naturally high rates of geomorphic processes (O'Loughlin, 1995, 2005a,2005b;Basher,2013). ⁎ Correspondingauthor. Globally,considerablescientificendeavourhasfocusedonunder- E-mailaddress:[email protected](C.Phillips). standingrelationshipsbetweenforestsandgeomorphology,including http://dx.doi.org/10.1016/j.geomorph.2017.07.031 0169-555X/©2017ElsevierB.V.Allrightsreserved. Pleasecitethisarticleas:Phillips,C.,etal.,GeomorphologyandforestmanagementinNewZealand'serodiblesteeplands:Anoverview,Geomor- phology(2017),http://dx.doi.org/10.1016/j.geomorph.2017.07.031 2 C.Phillipsetal./Geomorphologyxxx(2017)xxx–xxx Fig.1.MapofNewZealandincludinginsetofEastCoastregionofNorthIsland. landscapesandforestcomposition(e.g.,Turner,1989),steeplandforest hydrological),andforestmanagement(estatemanagement,roading, management including harvesting (Swanson and Swanston, 1977; planning)withanemphasisonplantedforests. Grantetal.,1984;Sidleetal.,1985;Swanson,1998;Wempleetal., 2001; Sidle, 2005); and the value of forests and trees to provide a 2.Historicalcontext widevarietyofecosystemservices,includingwatershedprotection anderosioncontrol(O'Loughlin,1994;Roche,1997;Marden,2012; GeomorphologicalunderstandingofNewZealand'ssteeplandshas Basher,2013;Phillipsetal.,2013). playedasignificantroleinthemanagementofindigenousforestsand Inthispaperweprovideaselectiveoverviewandhistoricalaccount mountainlandsandinthedevelopmentoftheforestindustrybasedei- ofhowgeomorphologicalunderstandinghasunderpinnedforestman- theronindigenousforestsorintroducedspecies.Forexample,therela- agementinNewZealand'serodiblesteeplands,outlinethecurrentfor- tionshipsbetweenforestremoval,introducedanimals,anderosionhave estry situation in New Zealand, and then suggest where an beenwelldocumented(Cumberland,1943,1944;Wallis,1966;James, understandingofgeomorphologywillbeofvalueinthefuture.Inpar- 1969;McCaskill,1973;Jane,1979;Holloway,1982;McSaveneyand ticularwefocusonthehighlyerodiblesoft-rockhillcountryofthe Whitehouse,1989;McKelvey,1992).IntheearlydaysofNewZealand's EastCoastregionofNorthIsland(Fig.1),thoughincludeothergeologi- colonisationanddevelopment,vasttractsofsteeperodiblehillcountry calterrainswhereappropriate.Ourapproachisfocusedonthreemain forestswerecutandburnttomakewayforpastoralfarming,inmuch areas: terrain assessment, process understanding (erosion and thesamewayasoccurredinothercountriesexceptthatNewZealand's Pleasecitethisarticleas:Phillips,C.,etal.,GeomorphologyandforestmanagementinNewZealand'serodiblesteeplands:Anoverview,Geomor- phology(2017),http://dx.doi.org/10.1016/j.geomorph.2017.07.031 C.Phillipsetal./Geomorphologyxxx(2017)xxx–xxx 3 colonisationwasrelativelyrecent(withinthelast150years)andthere- processesandreducingsedimentyield—theveryreasonforwhich sponsetoforestremovalislikelystillimpactingslopeandchannelpro- theywereestablishedalsoneededtobeunderstood. cesses(Mardenetal.,2014b).Inmanyplaces,thenaturallandscape respondedbysignificantlyincreasingerosion,sedimentload,andag- 3.1.Terrainassessment gradationinriverchannelsandresultinginconsequentdownstream floodingissues. Geologicalandgeomorphologicalinformationhasbeenusedindif- SomeofthemostdramaticresponsesoccurredintheEastCoastof ferentpartsofNewZealandtoinformforestmanagementandplanning. NorthIsland(e.g.,Allsop,1973).Here,acombinationoffactorsinclud- Inthebroadestsense,landuseorforestestateplanningiswheresetsof ingtectonic(e.g.,earthquakes,upliftrates,faulting),lithologic(rock constraintsandoptionsareconsideredandthenmappedtoproduce type),adynamicclimateinfluencedbytropicalcyclones,andtherecent someoptimumpatternoflanduseorspeciesplantingpattern.Thesec- clearanceofvegetationfromsteepslopespredisposesthisregiontoero- ondaspect,operationalplanning(Pearce,1981),isconcernedwithde- sion.Dramaticincreasesinsoilerosionundergrasslandultimatelyledto cisionsratherthanoptions—examplesincludefollowingaparticular the establishment of a major government-led reforestation project roadalignmentorchoosingthetypeofmachinerytologaforestcom- largelywithexoticconifersintheWaipaoaRivercatchmentinthe partment.Loggingorharvestplanninginwhichharddecisions,short 1950s and 1960s (Phillips and Marden, 2005). Reforestation was timescales,andfinespatialresolutionarerequiredcreatethepullfor regarded as the most economical way of controlling erosion geomorphologicalinformation;butappropriatedatathatcanbequickly (CommitteeofEnquiry,1970),andwhiletheseforestswereprincipally interpretedorusedatthescaleneededisnotoftenavailable.Somespa- for‘protection’itwasacknowledgedthatapartfromcreatingemploy- tialmappingapproachesareusefulforbroad-scaleplanningbutarenot ment,partsofthoseforestswouldbeabletobeusedfortimberproduc- suitableforoperationalplanning,whichwouldnormallyrequireinfor- tion.Subsequentpolicyenabledreforestationtobeextendedtoother mationatscalestypicallybetween1:10,000and1:5000. catchmentsintheregion.Chronologiesoftheattemptstocontrolwide- Earlyterrainzoningapproacheswereusedinplanningfornative spreadsoilerosionintheEastCoastofNorthIslandhavepreviously forestharvestingaspartoftheWestCoastBeechUtilisationProposals, beendocumented(Phillipsetal.,2013;PhillipsandMarden,2005).For- whichwerelocatedinareasonSouthIslandwithrecognisedhighero- estremovalandreforestationisnotuniquetoNewZealand(McKelvey, sionhazardsonerodiblerocktypesandlowerhazardsonsimilarterrain 1992;PhillipsandMarden,2005;Phillipsetal.,2013)buthasalsobeen underlain by other rock types (Fitzsimons and O'Loughlin, 1984; experienced elsewhere (e.g., European Alps, Japan, United States, Fitzsimons et al., 1985; Eggers, 1987; O'Loughlin and Gage, 1975; France)andiswelldocumented(Kittredge,1948;Matheretal.,1999; O'Loughlin and Pearce, 1976). A three-class system of zoning was Piégayetal.,2004;Liebaultetal.,2005). foundusefulasanoperationalplanningtoolforthesebeechforests, In1987theNewZealandForestService(NZFS)wasdisestablishedas andzoningmapsofthreeclasseswerepresentedon1:10,000scaleto- partofgovernmentreforms(Roche,1990)withstate-ownedexoticfor- pographicmaps.Thethreeclasseswere:noerosionorwaterandsoil estsinitiallygoingtoagovernmentbusinessentity(ForestryCorpora- conservationconstraintsonclearfelling,ifthatwasdesirable;wherese- tion),butwithin3yearsittoowasdisbandedandtheforestcrops lectionloggingwouldbeacceptable,butwhereclearfellingwaslikelyto (butnottheland)soldtomany,mostlyoverseas-ownedcompanies. causeerosionproblems;andaprotectionzoneclasswherelogging Withthischange,aphilosophicalshiftoccurredfromforeststhathad shouldnotbepermitted.Theapplicationofthisinformationinanoper- previously been considered as ‘protection forests' to one of much ationalsensewasnotfullytestedasthebeechschemewasdiscontinued moreutilitarian‘productionforests'(Poole,1960),inpartbecausethe asaresultofpublicpressuretostopharvestingindigenousforests(Te forestsplantedonerosion-pronelandhadgrownmuchbetterthanan- Ara,2017). ticipatedwhenfirstplanted.Today,manyoftheseforestshavebeen OneareainneedofterrainassessmentwasintheEastCoastofNorth ‘returned’totheindigenouspeopleofNewZealand(Māori)aspartof Island,particularlyintheupperreachesoftheregion'smajorriver theTreatyofWaitangisettlements(e.g.,NgātiPorou,2010)andin catchments(Fig.1).Inordertosupportthenewreforestationpolicies somecasesonsoldtoprivateinterests.Othersstillremainunderforeign onformerpastoralland,questionsbegantoberaisedaboutthefuture managementandallarenowmanagedforwoodproduction.Inrecent oftheseprotectionforestsforproducingtimber.Whiletheoriginalob- yearsastheseforestshavebeenharvestedmanyofthegeomorphicfac- jectiveswereprimarilyremedialandprotective,prospectsthatatleast torsthatcontributedtotheirestablishmenthavebeguntomanifest partsoftheseforestswouldeventuallybesuitableforproductionforest- themselvesinwaysforeseenbysomebutlargelyforgottenbyothers rylookedgood.Tosomedegree,thiswouldcompensateforthelossof duringthetransitiontocommercialplantationforestry(Pearce,1977; agriculturalproductivityfromlandtakenoutofpastoralfarming.How- Phillipsetal.,2012). ever,thechoiceofwhichareastoleaveasprotectionandwhichareas weresuitableforproductionrequiredanassessmentofthelandscape intermsofitssusceptibilitytoerosionfromvariousprocesses(Gage 3.Researchandinformationneeds andBlack,1979;O'Loughlin,2005a). Inthe1970s,TerrainStabilityZoningwasdevelopedincorporating SeekingtounderstandNewZealand'sforestedenvironmentsand theunderlyinggeologyandgeomorphologicalfactorstoaccountfordif- howmanaffectedthesehasbeenanintegralpartofresearchwithin ferencesinslopestabilityanderosionalbehaviourwithinforests(Gage theNZFSandothergovernmentagenciesfornearlyacentury.Fascina- andBlack,1979).Terrainstabilityzoning,an8-classterrainclassifica- tionwiththemountainandsteeplandenvironmentsinparticularand tionintermsofslopestabilityanderosional(ordepositional)behav- theirerosionalhistoryledtoarangeofresearchandtheestablishment iour,wasinitiallydevelopedatMangatuForestandlaterappliedto ofdedicatedagenciestoconductthatresearch(e.g.,TussockGrasslands other East Coast exotic forests (Pearce, 1977; Phillips and Pearce, andMountainLandsInstitute;ForestandRangeExperimentalStation; 1984a,1984b).WhileextensiveareasofStateForestintheEastCoastre- NationalWaterandSoilConservationOrganisation).Allthesededicated gionwereassessedandreportsandmapsproduced,inclusionofthis researchagencieshavesubsequentlybeendisestablishedasaresultof knowledgeintoforestmanagementwasmostlyignoredbecausethe governmentpolicyandfundingchanges. timingofpublicationcoincidedwithaperiodofmajorchangeinthefor- Theearlyerosioncontrolreforestationprogrammesestablishedby estindustry:thedisestablishmentoftheNZFSandtheselling-offofthe theNZFSinplacesliketheEastCoastalsotriggeredspecificresearch forestestate(outlinedabove).However,inrecenttimes,thisinforma- needs.Apartfromobviousquestionsaboutspeciesselection,establish- tionhasbeenusedbysomeforestmanagers,particularlyinrelationto mentandmanagement,andtheirsubsequentperformanceandwood harvestplanning,whereitprovidedanindicationofareasthatmightre- quality, how these new forests performed in modifying erosion quireadditionalanalysisofslopestability(Phillipsetal.,2012;Marden Pleasecitethisarticleas:Phillips,C.,etal.,GeomorphologyandforestmanagementinNewZealand'serodiblesteeplands:Anoverview,Geomor- phology(2017),http://dx.doi.org/10.1016/j.geomorph.2017.07.031 4 C.Phillipsetal./Geomorphologyxxx(2017)xxx–xxx etal.,2015).Callstomakesuchapproachesmandatoryastheyarein Canada and the USA (Fannin et al., 2007; Schwab and Geertsma, 2010)havealsobeenmade(Mardenetal.,2015). 3.2.Erosionprocessunderstanding Alongsidethedevelopmentoftoolstoassessterrain,questionswere alsobeingaskedabouthowindigenousdeforestationandexoticrefor- estationaffectratesoferosionandhydrologicalprocessesandabout theoverallvalueofsuchforestsforprovidingarangeofservicesto thewidercommunity(NWASCO,1970;SwaffieldandFairweather, 2000).ThissparkedseveraldecadesofexperimentalworkacrossNew Zealand,muchofwhichwasundertakenintheWaipaoacatchment andmorespecificallyinplaceslikeMangatuForest(Fig.1).Here,re- searchersbegantoexaminetheon-siteeffectivenessofreforestation inmitigatingerosion(earthflow,slump,gully)processes(DeRoseet al.,1998;Zhangetal.,1991a,1991b,1993;Mardenetal.,2005,2008a, Fig.2.CycloneBola(1988)damagetoyoungplantationslessthanabout6yearsold,inland 2008b,2011,2012,2014b;Herzigetal.,2011),itsinfluenceonhydro- TolagaBay,EastCoast,NorthIsland,NewZealand.Photo:NoelTrustrum. logical processes studies (Pearce et al., 1987), and the role of tree rootsinsoilreinforcementofsoilsandtheircontributiontoslopestabil- theCoromandelregionofNewZealandthatwasaffectedbyasevere ity(Ekanayakeetal.,1997;EkanayakeandPhillips,1999,2002;Phillips storminMarch1995withfewslopefailuresoccurringwithinclosed- etal.,2011).Promptedbyconcernsoftheoff-siteeffectsofsediment canopyexoticforest(MardenandRowan,2015).Theseresultssuggest anditstransportationandsupplytothePovertyBayfloodplain(an thattheleveloflandslidedamagelikelytooccurwithinaforeststand areausedintensivelyforhorticulture)andtotheocean(Hicksetal., isdependantatleastinpartontheage,density,andmaturityofthe 2000,2004;HicksandShankar,2003),furtherstudieswereundertaken treesatthetimeofamajorstorm.Duringsuchanevent,themagnitude bynationalandinternationalresearcherstocomparemodern-daypro- ofinterceptionlossacrossdifferentclosed-canopyvegetationcommu- cessratesinthecontextofthelonger-term(last~15,000years)geo- nitiesasapercentageofrainfallissmall(Roweetal.,1999).Several morphologicalhistoryofthisarea(Berrymanetal.,2010;Marsagliaet otherstudiesconfirmedthatarelationshipexistsbetweenlandslide al.,2010;Mardenetal.,2011,2014a).Understandingmechanismsof densityandvegetationtype,whereshallowsoilsexistonsteepslopes sedimentgeneration,storage,andfluxtotheoceanwasakeygoalof subjected to intense rainstorms (Selby, 1976; Salter et al., 1983; the MARGINS Source-to-Sink Programme, which focused on the Harmsworthetal.,1987;HancoxandWright,2005). Waipaoacatchment(Marutanietal.,2001). Thegeneralunderstandingofhowreforestationhascontributedto effectiveerosioncontrolintheEastCoastregionisnowrelativelywell advanced.Whatfollowsisabriefsummaryofthatunderstanding: 3.2.1.Shallowlandslides Vegetation,andtreesinparticular,improveslopestabilityandre- duce erosion (e.g., Greenway, 1987; Marden and Rowan, 1993; PhillipsandMarden,2005).Ingeneralterms,thebelow-groundcompo- nents(roots)providemechanicalreinforcement(Watsonetal.,1999) andarethemeansbywhichtreesextractsoilmoisturefromthesoil toreduceporewaterpressures(Ekanayakeetal.,1997),whilethe above-groundcomponentsofvegetation(canopy)reducetheability ofrainfalltocauseshallowlandslidingthroughtheprocessesofinter- ception(Kelliheretal.,1992)andtranspiration(Pearceetal.,1987).An- nualevaporationfromaclosed-canopyforestinthisregionaccountsfor 85%ofrainfallwithinterceptionat35%(Pearceetal.,1987)andtree- transpirationat50%(WhiteheadandKelliher,1991),significantlyre- ducingtheriskoflandslideinitiation.Combined,theseprocessesbe- come most effective when full root occupancy (lateral roots of adjacent treesoverlap) andcanopy closure(canopies of individual treestouch)firstoccurs,andtheyimprovewithincreasingtreeage and/orplantingdensity(Kelliheretal.,1992).Thiswasaptlydemon- stratedbyMardenandRowan(1993)whonotedthatwherehillslopes plantedinpinesN8yearsoldandhadattainedcanopyclosurebefore CycloneBola,wereconsiderablylesspronetorainfall-inducedland- slides than were either pastured hillsides or young stands of pine wherecanopyclosurehadyettooccur(Figs.2and3).Onfurtherinves- tigation,theyfoundthatyoungforeststandsb6yearsoldandpastured hillslopesatthetimeofCycloneBolasustainedsimilarlevelsofland- slidedamageandupto16-timesgreaterthanforeitherexoticplantings orindigenousforestwherethecanopywasfullyclosed.Thisrelation- shipwasparticularlystrongforhillcountryunderlainbyTertiary-age sedimentarybedrockwherelandslidesaretypicallyshallowandtrans- Fig.3.Storm-initiatedlandslidesonpasturecontrastingwithclosedcanopyforests, lational(Mardenetal.,1991).Asimilarresultwasfoundinanareaof northernHawke'sBay.Photo:PFOlsens. Pleasecitethisarticleas:Phillips,C.,etal.,GeomorphologyandforestmanagementinNewZealand'serodiblesteeplands:Anoverview,Geomor- phology(2017),http://dx.doi.org/10.1016/j.geomorph.2017.07.031 C.Phillipsetal./Geomorphologyxxx(2017)xxx–xxx 5 3.2.2.Earthflowmovementstudies Landslideswererelativelysmallscale,generating~≤5%oftheannual Researchonearthflowsshowedthatforestedearthflowshadsurface sedimentbudget(Tayloretal.,2012,thisissue).Phasesofgullyexpan- movementratesthatwere2–3ordersofmagnitudelessthanthoseon sionareinvariablyfollowedbyperiodsofinactivity,andfurthermore, grassedearthflows,onsimilarterrain(Zhangetal.,1993,Fig.4).Subsur- theresponsetimerequiredtostabiliseagullyfollowingreforestation facedeformationofforestedearthflowsaccountedforb25%oftotalsur- ishighlyvariable.Thesignificanceofgulliesinsedimentproductionin facemovementandresultslargelyfromcompressionflowcomparedto these environments arises because sediment supplied from gullies extension flow on grassed earthflows (Zhang et al., 1991a, 1991b, tendstobepersistentandactivatedbysmall,frequentrainfallevents 1993).Araftingmechanisminwhichblocksofrootsfromindividual (Trustrumetal.,1999),andgullyerosionasawholeisthedominant treesinteractwiththoseofneighbouringtreestoretardsurfacemove- processofsedimentdeliverytotheserivers(Trustrumetal.,1999; ment(i.e.,creatinganetworkofraftblocksconnectedbylateralroots) Gomezetal.,2003;Mardenetal.,2005;Pageetal.,2007).Fortherefor- wassuggestedtoexplainobserveddeformationprofilesofforested estationperiodspanning1957to1997gullysourcesgeneratedthe earthflows.Once‘stabilised’,forestedearthflowscouldbereactivated equivalentof43%,49%,and54%oftheaverageannualsuspendedsedi- byanynumberoffactors(Mardenetal.,2008b)—thoughclimate, mentyieldoftheWaipaoa,Waiapu,andUawacatchmentsrespectively treeremoval,andotherforestmanagementfactorssuchasroadcon- (Mardenetal.,2008c). structionweresuggestedasbeingthemostimportant.Inonestudy, Theeffectivenessofreforestationinstabilisinggulliesisbasedon norelationshipwasfoundbetweentheinitiationofearthflowactivity modelsdevelopedtoestablishthetime(yearsafterplanting)required andtheharvestingofforestssurroundingtheearthflow(Mardenet before a wide range (0.07–60.5 ha) of gully sizes ‘closed-down’ al.,2008b),anditwasconsideredunlikelythepracticeofharvestingin (Mardenetal.,2005,2008c,2011).Theconceptofgullystabilisationis itselfwouldinitiateneworrenewedactivityonstableflows.However, basedonthemeasuredchangein‘active’gullyareabetweenmeasure- duringthepost-harvestperiodanduntilevapotranspirationrecovers mentperiodsasafunctionofincreasingtreecanopysize(resultingin sufficientlytoinfluencesoilmoisturelevels(about2years),elevated areductioningullysize),orconversely,gullyreactivation(resultingin soilmoisturewilllikelyresultinincreasedmovementratesofalready anincreaseingullysize)overthelengthofarotationofexoticpines. mobilisedearthflowsandwillprolongtheiractivityintoperiodstradi- Thesemodelsshowedthatthetimerequiredto‘stabilise’gullieswas tionallyassociatedwithsoilmoisturedeficit. stronglyassociatedwithgullysizeandtheduration(years)sinceplant- ing,andforgulliesofequivalentsize,thedurationsinceplantingissim- 3.2.3.Gullies ilarinbothgeologicalterrains.Also,lineargulliesarelikelytostabilise BettsandDeRose(1999)definedgulliesasareasofactivelyeroding earlierthantheiramphitheatre-shapedcounterparts.Usingtheresults baregroundthatarecontiguouswiththechannelsthatdrainthem. oftheseformerstudies,Herzigetal.(2011)developedamodeltoretro- Gullies form through the complex interaction of fluvial and mass spectivelyassesstheeffectivenessofpreviousgovernment-fundedre- movementprocesses(Hicksetal.,2000;Poesenetal.,2003).Thus,an forestationschemes(1957–1997)inreducinggully-derivedsediment increaseingullydepth(orgullyarea)isrelatedtogreaterrunoffrates massandappliedittoevaluatetheeffectivenessofdifferentreforesta- following deforestation, and the converse is true when land tionscenariosinreducingthesedimentmassgeneratedfromremaining surrounding a gully is reforested (Parkner et al., 2007). Based on untreatedgullieslocatedwithingully-pronehillcountryprioritisedfor shape,twotypeswereidentified:linear(lengthexceedswidth)and futurereforestation.Theoverallsuccessofreforestationinameliorating amphitheatre-shaped (width exceeds length). Linear gullies often gullyerosion(Fig.5)canalsobeattributedtotheselectionoffast-grow- beginasaseriesofcoalescinglandslidesinareasofconvergentdrainage ingtreespecies(whichareharvestableca.24–27yearsafterplanting), whereverticalincisionislargelyconfinedwithinexistingdrainagelines. idealgrowingconditions,andtheplantingstrategyadopted.Thatis, Lineargulliesaremainly,butnotexclusively,locatedwithintheTertiary gullystabilisationisachievedfirstbyplantingasmuchofthegullywa- terrainwherestructuralandbedrockcontrolsdeterminetherateand tershedareaasphysicallypossibleandsecondbydelayingwithin-gully modeofgullyexpansion,whichispredominantlybyfluvialprocesses. plantingsuntilanoticeablereductioninrunoffandsedimentsupplyto Giventherightcombinationofpredisposingsiteconditions,juxtaposed thechannelisobserved.Whileregionwidereforestationeffortshavere- lineargulliesoftenenlargeintooneamphitheatre-shapedgully.Once sultedina~42%netreductionincompositegullyarea,theinitiationof initiated,thesegulliesrapidlybecomeentrenchedintotheweakbed- newgulliesandexpansionofnumerousgulliesthatremaineduntreated rock resulting in repeated rotational collapse of gully sideslopes throughout the measurement period (1957–1997), collectively destroyingallformsofvegetationcover(Bettsetal.,2003)andwhere accountedforanoverall~27%netincreaseingullyarea.Ifallremaining rillingandgullyingtendtobethemostpersistentandwidespreadof gulliesinthesecatchmentsweretobereforestedby2020,thevolumeof theerosionprocessesgenerating~≥80%oftheannualsedimentbudget. gully-derivedsedimentwouldhalveby2030,butifleftuntreatedthe Debris flows generated ~≤15% of the annual sediment budget. yieldwoulddouble(Herzigetal.,2011). Fig.4.WetherRunearthflow,MangatuForestbeforeandafterreforestation(afterMarden,2004). Pleasecitethisarticleas:Phillips,C.,etal.,GeomorphologyandforestmanagementinNewZealand'serodiblesteeplands:Anoverview,Geomor- phology(2017),http://dx.doi.org/10.1016/j.geomorph.2017.07.031 6 C.Phillipsetal./Geomorphologyxxx(2017)xxx–xxx Fig.5.Pre-(1961)andpost-reforestation(1972,2004)photographyofamedium-sizedgullyinTeWeraroaStream,MangatuForest.Pinusnigrawasplanted(1962)onthelesser-eroded interfluvessurroundingthisgully;thenin1966Pinusradiatawasplantedonthesteeperandmoreseverelyerodingslopesimmediatelyflankingthegullyandwithinthegullyitself.By 1972theeffectivenessoftheplantingsinstabilisingthegullywereapparentanditschannelincisedbelowthelevelofthefanatthemouthofthegully.Furtherwithin-gullyplantings (1974)ofP.radiatawereundertakenontheremainderofbareslopesandofthefan.Beforeplanting,thisgullywas7.6hainsize,andby1988reforestationhadreducedtheareaof activeerosionto0.8ha.Thelatestphotographshowsthatinspiteofamajorcycloniceventin1988(CycloneBola),thisandsimilarlyreforestedgulliesofthissizehaveremained stable.Theelevationdifferencebetweenstreamlevelandtheridgeattheheadofthisgullyis280m(1961and1972photographscourtesyofJ.Johnsandreproducedbypermission ofNewZealandForestResearchInstituteLimited;2004photographwastakenbyR.HamblingandreproducedbypermissionofR.Hambling,MinistryofAgricultureandForestry) (afterMardenetal.,2005). 3.2.4.Splashandsurfaceerosion someindigenoustreespecies.Investigationsexaminedrootarchi- Surfaceerosionunderforestshasreceivedmuchlessattentionthan tecture(Fig.6;WatsonandO'Loughlin,1990;PhillipsandWatson, massmovementerosion.Otherthansurfaceerosionrelatingtoforest 1994), root tensilestrength (Watson andMarden, 2004), loss of managementpracticessuchasfromroadsorfromharvestingopera- root tensile strength following tree removal (O'Loughlin, 1974; tions(discussedlater)theonlystudyofsurfaceerosionunderforests O'LoughlinandWatson,1981;Watsonetal.,1999),sheartestingof was by Mosley (1982a,1982b)who assessed the kineticenergy of rootedsoil(Ekanayakeetal.,1997),rootsiteoccupancy(Phillipset waterdropsandtheimplicationforsurfaceerosion.Itwasconcluded al.,2011),rootgrowth(Phillipsetal.,2014;Mardenetal.,2016), thatrates of soil detachment by splash under forest would exceed androotbiomass(WatsonandO'Loughlin,1985).Morerecentstud- thoseintheopen,especiallywherethelitterandhumuswereremoved iesutiliseddatafromsomeoftheearlierrootstudiestoconstructand ordisturbedandthemineralsoilexposedatthesurface. validatemodelsofrootreinforcement(EkanayakeandPhillips,1999, 2002;Schwarzetal.,2016)ortodeterminetheroleoftreerootsin contributing to slope stability (O'Loughlin and Ziemer, 1982; 3.2.5.Treerootstudies O'LoughlinandZhang,1986;Phillipsetal.,2015).Soilswithtree Aspartoftheneedtounderstandhowforestsmodifiederosional rootswillundergolargersheardisplacementsbeforefailingthan andhydrologicalprocesses,exploratorystudieswereinitiatedinthe soil without roots (Ekanayake et al., 1997) confirming why tree 1980stodeterminehowtreerootsreinforcedsoilsandwhatrole rootsareconsideredtobeamajorcontributortosoilstrengthand rootarchitectureplayedinslopestability.Initialeffortsfocusedon slope stability in the zone where roots are present (O'Loughlin, the predominant exotic species Pinus radiata but also included 1985;PhillipsandWatson,1994). Attentionwasalsofocusedonwhathappenedoncetreeswere harvested. Studies concluded that plantation forests located on steeplands were more prone to shallow landsliding for several yearsfollowingharvestingthanatanyothertimeinthegrowing cycle(e.g.Phillipsetal.,2012).Treeremovalallowedsoilmoisture conditionstobecomewetterforlonger(Pearceetal.,1987;because ofthelossofinterceptioncapacityofthecanopyandreductionsin evapotranspiration).Thiscoupledwithrootdecay—inthecaseof softwoods like Pinus radiata this is fairly rapid (O'Loughlin and Watson,1979;Watsonetal.,1995)—increasedthepotentialfor shallowslopefailuretooccur.Thispost-harvestperiodbeforethe replantedcropbecomesfullyfunctionalandwhererootreinforce- mentislow,hasbeenreferredtoasthe‘windowofvulnerability’ (O'Loughlin,1985;Sidle,1991;Fig.7).However,therelationshipbe- tweenforestremovalanddeep-seatedlandslidingislessclearthan withshallowlandslides.Onceshallowlandslidesareinitiated,they have the potential to transform into debris flows, which in turn erode ephemeral gullies and riparian margins, delivering large amountsofsedimentandwoodydebrisfartherdownthecatchment. Suchoccurrencesareoftenwidespreadduringlargeregionalstorms (e.g.,CycloneBola)orasa result oflocalisedintenserainstorms (MardenandRowan,2015).Theseverityoflandslidesanddebris flowsduringthewindowofvulnerabilitybringsintoquestionthe roleofforestryasasustainablelanduseandraisesquestionsabout whatpracticescanbeusedtomanagetheseeffects(Collins,1988; Fig.6.Excavated25-year-oldPinusradiatatreefromMangatuForest,EastCoast(after Phillipsetal.,2015). Phillipsetal.,1989,2012). Pleasecitethisarticleas:Phillips,C.,etal.,GeomorphologyandforestmanagementinNewZealand'serodiblesteeplands:Anoverview,Geomor- phology(2017),http://dx.doi.org/10.1016/j.geomorph.2017.07.031 C.Phillipsetal./Geomorphologyxxx(2017)xxx–xxx 7 reductioninthelatterperiodofreforestationwhensmall-tomedium- sizedgulliesbecamelessactive.However,largeamphitheatre-shaped gulliesfailedtostabiliseandcontinuedtodominatethesedimentsup- ply, indicating a strong coupling with channels. Contribution of earthflowstothestudybasinsedimentloadwasseveralordersofmag- nitudelessthanforgulliesandwasfurtherdecreasedbyanorderof magnitudefollowingcanopyclosure. Althoughreforestationprovedeffectiveinstabilisingshallowland- slides,smaller(1–5ha)gullies,andearthflows,theresultantreduction intheircontributiontobasinsedimentyieldloadandtooverallcatch- mentyieldwasminimal(Mardenetal.,2014b).Thegreatestreduction insedimentloadoccurredduringthelaterphasesofreforestationasthe numeroussmall-tomedium-sizedgulliesstabilised,coincidentwith canopyclosureabout 8–10yearsafterplanting.However,thevery large gully-mass movementcomplexes failed to stabilisefollowing planting, and they remained the dominant source of sediment (Mardenetal.,2014b).Theconclusiondrawnfromthesestudieswas thatspecifictargetingofgully-massmovementcomplexesinhighsed- iment-yieldingcatchmentscouldleadtosignificantreductionsinsedi- mentyieldwithinthreedecadesofforestestablishment. ReforestationoftheupperWaipaoaRiverbasinindicateda62%re- Fig. 7. An example of typical changes in forest vegetation root strength or root ductionintheareaeroding,a51%reductioninerosionrate,andanes- reinforcementaftertimberharvesting(afterPhillipsetal.,2015).Initialcurvesfrom timated12%reductioninsedimentyieldoftheWaipaoaRiverfrom6% O'Loughlin(1985)andSidle(1992,2005)andmodifiedbyWatsonandothers.Net ofitscatchmentarea(Mardenetal.,2014b). strengthorreinforcementisthesumofthedecayandrecoverycurves.Thewindowof vulnerabilityforNewZealandplantationsisestimatedtobeintheperiod1–6years afterharvesting,butthisisspeciesanddensitydependent. 3.3.Foresthydrologyandwaterquality Asmentionedabove,contemporaneouswithresearchonerosion 3.2.6.Reforestationeffectsoncatchmentsedimentyield processesandtreeroots,studieswerealsoundertakentodetermine Oneoftheanticipatedresponsesofreforestationisareductioninthe the role of forests in the hydrological cycle. Many of these studies sedimentsupplyfromslopestoriverchannelsandincatchmentsedi- wereinitiallyinstigatedinresponsetoaplantoharvestlargetractsof mentyield.ThemostcomprehensiveNewZealandstudythatassessed beechforestintheSouthIsland(mentionedearlier),aschemethat thecontributionsfromdifferenterosionprocesseswasthatofMarden didnotproceed.Smallpairedcatchmentstudieswereestablishedat etal.(2014b)thatfocusedonanalysingtheeffectofreforestationofa MaimaiinnorthWestlandandatBigBushnearNelsontodetermine small area of extensively eroding land in theupperWaipaoa River theeffectofdifferentharvestingoptionsfornativebeechforeston catchmentonsedimentyieldintheentirecatchment.Inthatstudy,an erosionrate(ty−1)andadenudationrate(mmy−1)wascalculated waterquantityandwaterquality.Thisresearchlaidthefoundationfor thecurrentunderstandingofhowindigenousforests(andforestsin foreachoffourerosionprocesses(gullies,earthflows,slumps,shallow general)inNewZealandaffectbothofthesehydrologicalattributes landslides)andcomparedtothosederivedfromthewiderWaipaoa (Faheyetal.,2004;QuinnandPhillips,2016).Studiesincludedstorm Rivercatchmentandlongertermratesforthepost-glacialperiod.Sedi- runoffandwaterquantity(PearceandMcKerchar,1978;Fahey,1994; mentloadbyprocessandtimeperiodwasthenexpressedasapercent- FaheyandJackson,1997),waterquality(FaheyandJackson,1997; ageofthesedimentyieldfortheWaipaoaRivercatchment(Fig.8). Parkyn et al., 2006; Baillie and Neary, 2015), management effects Withcompletionofreforestation,asignificant(about43%)decrease (Nearyetal.,1978),hydrologicalpathwaystudies(McDonnelletal., insedimentsupplyfromgullieswasobservedalongsideagreaterrateof 1998),rainsplash(Mosley,1982b),andinterceptionandevapotranspi- ration(Pearceetal.,1980;Rowe,1983;Faheyetal.,2001).Someofthe conclusionsfromtheseearlierstudiessuggestedthattheinfluenceof forestcoveronhydrologyisasecondaryone,whichisoverriddenbyre- gionaldifferencesinrainfallanditsvariability,topography,soilparam- eters,andunderlyinggeology(PearceandO'Loughlin,1978). 3.4.Forestmanagementeffects AlongsideearlyEastCoastresearch,studieswerealsotakingplacein otherregionsofNewZealandthatfocusedondifferentaspectsofforest management. These included assessments of sediment yield from paired catchment studies with and without different management treatments(O'Loughlinetal.,1980);sedimentproductionfromforest roadsincludingsurfaceerosion(FaheyandCoker,1989,1992;Coker et al., 1993; Fransen et al., 2001) and mass movement erosion (Mosley,1980);storminfluencesfollowingharvestingonlandingfail- ures(Cokeretal.,1990)andmassmovements(Phillipsetal.,1996; Mardenetal.,2015);assessmentoftheeffectsofloggingonstream ecology(Graynoth,1979;Roweetal.,2002);surfaceerosion(Fransen, Fig.8.Trendsinrelativespecificerosionratesfordifferentprocessesbeforeandafter 1998;Mardenetal.,2006,2007);andsedimentproductionacrossa reforestation(afterMardenetal.,2014b). number of different rock types, land uses, and regions (Visser and Pleasecitethisarticleas:Phillips,C.,etal.,GeomorphologyandforestmanagementinNewZealand'serodiblesteeplands:Anoverview,Geomor- phology(2017),http://dx.doi.org/10.1016/j.geomorph.2017.07.031 8 C.Phillipsetal./Geomorphologyxxx(2017)xxx–xxx McConchie,1993;FransenandBrownlie,1995;MardenandRowan, • post-harveststorm-initiatedlandslidesanddebrisflowsposea 1997). threattothesociallicensetooperatefortheforestindustrylocat- Monitoringofsedimentyieldfollowingforestoperationsinbeech edonsteep,erosion-pronelands(seenextsections);and forestshowedthattrackconstructionrequiredforskidderextraction • forestsareimportantforerosioncontrolinNewZealandandcan resultedinsubstantialincreasesinsuspendedsedimentoutputeven deliverarangeofotherecosystemservices. withprovisionofa20-mstreamsideprotectionzonefromwhichno woodwasremoved.Observationsalsoindicatedthatwithinmany forestedareasatthattime,massmovementswerethepredominant 4.Currentsituation erosionprocessunderundisturbedconditions,withsmalldebris slide/debrisavalanchesbeingtriggeredbystormswithreturnpe- 4.1.Overview riods of several years to several tens of years (O'Loughlin et al., 1978).Similarly,inclearfelledcatchments,numeroussmallslides Since 1987, when New Zealand's exotic plantation forest estate weretriggeredbyeventsthatcausednomass-movementactivity changedfromlargelybeingunderonecentralagency,theapproachto inuncutcatchments. forestmanagementbegantovarywithincreasingnumbersofnewcom- Results of these earlier studies confirmed other international paniesemerginginthesector.Manyinitiallyemployedex-NZFSstaff, findings that elimination of forest cover frequently produces in- andsomeinstitutionalknowledgeremained.Overtime,ownership creasesinerosionratesthatrangefromonetothreeordersofmag- changes,differingdemandsofshareholders,anddifferentpersonnel nitude, and that smaller changes in erosion rate might well be sawtheearlier‘consistency’inforestmanagementapproachesacross regardedasnaturalfluctuationsaboutanaveragerate(Pearceand NewZealandchange,andwiththose,theuseandplaceofgeomorpho- O'Loughlin,1978).Whilenotclarifyingtheroleofsedimentstorage, logical information in all aspects of forestry. In 2004, 66% of New suchstudiessuggestedthattherelativesizeofthestoragecompo- Zealand's exotic forestry estate was owned by private companies, nentsofthesedimentsupplysystemlikelyvariesfromregiontore- manyofwhichweresmall,largelygeneratedbyasmall-growerplant- gion but is a necessary feature that smooths out the larger ingboombetween1990and2005.In2016,18companieshad42%of fluctuationsofsedimentinputsothatoutputchangesaresmoothed thetotalestate(NewZealandForestOwnersAssociation,2016)andof andlaggedintimefrominputchanges. the1.7Mha,155,079ha(9%)wasintheEastCoastregion. Insummary,theseearlystudieslaidthefoundationforthenext InplacesliketheEastCoastofNorthIsland,manyforestsplantedas 30–40yearsofresearchandconcludedthatinacountrysuchas partofearlyreforestationeffortshavenowbeenthroughonerotation. NewZealandwithlargevariationingeology,topography,soiltype EarliestplantingsatMangatuForestarenowapproachingtheharvest andthickness,andclimate,theeffectsofforestcoveronthehydro- phaseofthesecondrotation.Apartfromthedeep-seatedamphitheatre logicregimeanderosionratesandprocesseswillgenerallybesec- gulliesthathavenotbeenfullycontrolled,sedimentcontributionsfrom ondarytothosefourfundamentalfactors.Theseconclusionswere mostotherslopeprocesseshavereducedsignificantly.However,large notoutofstepwithinternationalthinkingatthetime,andthecon- quantitiesofsedimentarestoredinchannelsthatwillcontinuetosup- tributionsNewZealandresearchmadetothewidebodyofunder- plysedimenttoriversliketheWaipaoa,Uawa,andWaiapufordecades standing cannot be underestimated (Swanson and Fredricksen, orcenturiestocome(Mardenetal.,2014a).Awayfromthoseearlyre- 1982;Sidleetal.,1985). forestationeffortsintheheadwaters,onthesteeper,shorter-sloped, Inrecentyears(post-2000),attentionhascentredondetermining Tertiaryterraintotheeast,andinotherpartsofNewZealand(including sedimentyieldduringorfollowingforestharvesting(Basheretal., BayofPlenty,Northland,Nelson,Marlborough),newissuesareemerg- 2011; Fahey and Marden, 2006; Phillips et al., 2005; Quinn and ingespeciallyasaresultofharvesting. Phillips,2016)andoncomparingsedimentyieldfrompastureandhar- Oneofthoseispost-harvestshallowlandslidesanddebrisflowstrig- vestedcatchments(Faheyetal.,2003;FaheyandMarden,2006);deter- geredduringrainstorms(inthewindowofvulnerability)thatcandeliv- miningslopewash(raindropimpact,slopewash,andrilling)duringthe erlargequantitiesofloggingslash(frombranchestowholetrees)and post-harvestperiod(MardenandRowan,1997;Mardenetal.,2006, sedimenttoriverchannelsanddownstream-receivingenvironments 2007);post-harvestlandscaperesponse,particularlyinrelationtoland- suchasbeachesorriverfloodplains.Thegeomorphologicalprocesses slidesanddebrisflows(Phillipsetal.,2012;Basheretal.,2015c);policy atplayarenotnewandarethesameasthoseinnaturalforeststhat relatingtoharvesting,reforestation,andtheroleofforestryforerosion alsocontinuetoshapethelandscapesofNewZealand(Mardenetal., controlandcatchmentprotection(Marden,2012;Phillipsetal.,2013); andtheprovisionofecosystemservices(Smailletal.,2014).Thesestud- iessuggest • storm-initiatedlandslidesarethemostimportanthillslopeprocesses generatinganddeliveringsedimenttostreamsandthatmostgenerat- edsedimentisretainedontheslope; • the degree of soil disturbance from harvesting operations and theamountofsurfaceerosioninthefirstyeararestronglycor- related; • theamountofsedimentproducedon-sitebysurfaceerosionand massmovementcanbemuchgreaterthanthatleavingthecatch- mentassedimentyield; • forestsedimentyieldsatharvesttimecanincrease5timesover pre-harvestrates,decliningtopre-harvestlevelswithinabout 2–3yearsafterreplanting; • inexoticforests,post-harvestsedimentyieldsvaryfrom10sto 100softkm−2y−1acrossarangeofgeologies; • atsmall-catchmentandstorm-eventscales,forestedcatchments yieldsignificantlylesssedimentthanpasturecatchments(50– 80%less); Fig.9.Photooflogjamfollowingastormin2010. Pleasecitethisarticleas:Phillips,C.,etal.,GeomorphologyandforestmanagementinNewZealand'serodiblesteeplands:Anoverview,Geomor- phology(2017),http://dx.doi.org/10.1016/j.geomorph.2017.07.031 C.Phillipsetal./Geomorphologyxxx(2017)xxx–xxx 9 2015).However,these‘new’storm-inducedmassmovementsareoc- WhiletheNES-PFhasnotyetbeengazetted,severalforestrycompa- curringonamanagedlanduse(plantationforestry),anderosionisper- niesinstigatedtheirownapproachestodeterminingerosionsuscepti- ceivedasnot‘natural’byregulatoryagenciesorbythepublic. bility/environmentalimpactassessmentaspartoftheirnormalforest Manyoftheseeventsimpactonproductivelowland,affectinfra- operations. These include terrain stability mapping and empirical structuresuchasroadsandbridges,andcanupsetlocalcommunities modellingapproaches(forexamplesseeAmishevetal.,2014).Geomor- whenlargeamountsofwoodydebrisenduponlocalbeachesfollowing phologyandearthscienceinformationisthusbeingusedintermsof rainevents(Figs.9and10;Basheretal.,2015c).Insomecases,thesame broaderestatemanagementandinoperationalplanning.Thediffer- communitiesareaffectedmultipletimes,particularlythoselocatedim- encesbetweenthevariousapproachesoftenreflectcompanyowner- mediatelydownstreamofforests.Whileenvironmentalandeconomic ship and philosophy with greater or lesser acknowledgement of impactsofsucheventsareimmediate,increasingpublicattentionisbe- environmentalriskandhowitshouldbemanaged.However,while comingfocusedonforestry'ssociallicensetooperate(Edwardsetal., themajorityofforestrycompanieswithlargerestateshaveresponded 2016;andthis,inturn,isbeingreflectedinincreasingscrutinyinre- toaneedforbetterenvironmentalmanagement,asignificantpropor- sourcemanagementplanningprocesses).Asaconsequence,attention tion(30%)oftheNewZealandplantationestateisinsmallholdings hasbeenrefocusedonwhatgeomorphologicalunderstandingisneeded b1000ha(MPI,2016).Inthesesituationsalowerlevelofdetailedplan- tobettermanagetheriskofharvestingforestsonerosion-proneterrain ning,roadandearthworkconstruction,andthusenvironmentalperfor- (Phillipsetal.,2012;Basheretal.,2015c;Mardenetal.,2015;Paynetal., manceoftenoccurs.TheNES–PFwillattempttoprovidemoreuniform 2015). coverageacrossthecountryaswellasprovidingmorecertaintyforfor- estryinvestment,whichiscurrentlyatitslowestwiththeplantation areahavingdeclined5%inthelast10years(MPI,2016)andiscontinu- 4.2.ANationalEnvironmentalStandardforPlantationForestry(NES-PF) ingtodecline. IncontrasttotheNewZealandsituation,regulatorycontrolsonfor- TheMinistryforPrimaryIndustries(MPI)inNewZealandiscurrent- estryactivitiesinothercountriesaregenerallymuchmorestringentand lyleadingaprocesstodelivergreaternationalconsistencyintheman- havebeenineffectformuchlonger.InCanadaandtheUSA,forestprac- agementofplantationforestryundertheResourceManagementAct ticesarehighlyregulated,withmostattentionfocusedontimberhar- 1991byimplementingaNationalEnvironmentalStandardforPlanta- vest,roadconstruction,andchemicaluse.InNewZealand,theseare tionForestry(NES-PF).Atpresentforestryismanagedbylocalregional ‘managed’througharangeofgovernmentalactsandindustryguide- councilswiththeresultthatdifferentrulesapplyindifferentregions lines(e.g.,NewZealandEnvironmentalCodeofPracticeforPlantation andthatasingleforestmaybesubjecttodifferentrulesifitcrossesre- Forestry,2007).Alsoasageneralrule,countriessuchastheUSA,Cana- gionalboundaries. da,andpartsofEuroperequireahigherlevelofgeomorphologicalinput AtthecoreoftheNES-PFisanerosionsusceptibilityclassification intoforestplanningandmanagementthanNewZealand(Fanninetal., (ESC)thatdeterminesthesetofrulesforplantationforestryactivities 2007;SchwabandGeertsma,2010).Thisusuallytakestheformofde- coveringthewholeplantationforestlifecycle.Itcategorisesthesuscep- tailedterrainassessment,follow-upfieldinspection,significantengi- tibilitytoerosioninfourclassesfromlowtoveryhighrisk.Thehigher neering design input to roads and construction activities and therisk,thetighterthecontrolofforestryactivities.Thebasisofthe compliancemonitoringofactivities.NewZealandiscatchingupthough, ESCanditsderivationfromaconceptof‘potentialerosion’andland witheffortssuchastheNES-PF,widespreadadoptionofengineeringde- usecapability(LUC)datafromtheNewZealandLandResourceInvento- signinput(NewZealandForestOwnersAssociation,2011),anduseof ry(NZLRI)iscomprehensivelydescribedinBloombergetal.(2011)and erosionandsedimentcontrolplansaspartofharvestplanningallcon- Basheretal.(2014,2015a,2016).Whileelementsofgeomorphological tributingto‘liftingthebar’intermsofforestmanagementandenviron- understandingunderpinpotentialerosionandLUC(slope,rocktype, mentalperformance. erosiontypeandseverity)andhencetheNES-PF,somefundamental difficultiesremain.Theconceptofpotentialerosion(includingpoordef- 5.Thefuture inition of the concept and inadequate description of classification criteria)andthescaleofmappingthatunderpinsit(1:50,000),limit 5.1.Overview itsusefulnessforeffectiveforestmanagement(Bloombergetal.,2011; Mardenetal.,2015;Basheretal.,2015b,2015c). ForestrymakesasignificantcontributiontoNewZealand'seconomy withthesectorbeingthethirdlargestexportearnerwithatotalexport offorestryproductsin2015valuedat$4.8billionandcontributing1.6% toGDP(NewZealandForestOwner'sAssociation,2016).Eventhough forestinvestmenthasdeclinedinrecentyears,thefutureforforestry isstilllookingpromising(PureAdvantage,2016).Plantedforestscan anddoplayasignificantroleinenvironmentalimprovement,notonly intermsofreducederosionbutthroughimprovementsinwaterquality duringtherotation(O'Loughlin,1995;Parkynetal.,2006;Quinnand Phillips,2016),carbonsequestration(McLaren,1996),anderosioncon- trol(Marden,2012).Currentlyradiatapine(PinusradiataD.Don)isthe dominantspeciesmakingup90%oftheplantedproductionforestarea. However,infuture,thismaychangeassocietyviewsmonoculturesas something inherently bad in terms of the environment (Rosoman, 1995)andfinanciallyrisky(Wiltshire,2000),eventhoughmanyexam- plesofnaturallyoccurringmonoculturesexist–NewZealandindigenous beechforests,forexample,tendtobenaturallyoccurringmonocultures (e.g.,McLaren,1996). Aboutone-thirdoftheNewZealandplantationforestestateislocat- edonerodiblesteeplands.Manyoftheseforestswereoriginallyplanted Fig.10.PhotoofdebrisaccumulatingonMidwayBeachinGisborneCityafteralandslide- toprovideasoilandwaterprotectionfunction.Formostoftherotation, triggeringrainstorm.PortofGisborneinbackground,withstacksoflogswaitingforexport torightandleftofwhitebuildings.Photo:BillWheeler. ahighlevelofslopestability,reducederosionandsedimentsupply,and Pleasecitethisarticleas:Phillips,C.,etal.,GeomorphologyandforestmanagementinNewZealand'serodiblesteeplands:Anoverview,Geomor- phology(2017),http://dx.doi.org/10.1016/j.geomorph.2017.07.031 10 C.Phillipsetal./Geomorphologyxxx(2017)xxx–xxx otherbenefitsareconferredbytheseforests(e.g.,Marden,2012).How- debrisflows,tomaintainlocallicensetooperateandmeetinternational ever,whenforestsareharvested,landslideriskinparticularincreases certificationrequirements(e.g.,ForestStewardshipCouncil,2017),and (andthepotentialforrainstormstotriggershallowlandslidesandde- tomanagethelikelyimpactsofclimatechangethatispredictedtoin- brisflowsthatentrainloggingresidues(slash)andcauseimpactsbe- creasetheincidenceoflandslide-triggeringstormsinmanypartsof yondtheforestboundaryrises;Phillipsetal.,2012;Fulleretal.,2016). NewZealandwhereplantationforestsarelocated(Basheretal.,2012). Infuture,wesuggestthatarequirementtoimprovetheassessmentof thatrisktoaidforestmanagementandtofindpracticesthataimtore- ducetheincidenceandconsequencesoftheseeventswillbenecessary 5.3.Datacollectionandterrainanalysistosupportimprovedhazardand (Phillipsetal.,2012).Assuch,weseegeomorphologyandearthscience riskassessmentatdetailedoperationalscales information'sroleinNewZealandforestrylikelytogrowassocietyde- mandsbetterenvironmentalinformationandperformancefromnatu- Inadditiontosupportingthedevelopmentofanerosionsusceptibil- ralresourcesectorindustries. ityclassificationabove,detailedterrainanalysisisalsoneededtosup- Weseethreeareaswhereinformationandunderstandingarestill port improved hazard and risk assessment at detailed operational requiredtosupporttheforestindustry:developmentofanimproved scales(O'Loughlin,2005a;Mardenetal.,2015).Inthelast50years,ex- nationalerosionsusceptibilityclassificationspecificallytosupportthe periencesfromCanadaandtheUSAhaveshownamixofregulationto NES-PF;terrainanalysistosupportimprovedhazardandriskassess- voluntary‘results-basedmanagement’(Wiseetal.,2004)intermsof mentatdetailedoperationalscales;andunderstandingofpost-harvest howlandslideriskmanagementinlandslide-proneterrainrelatingto shallow landslide-debris flows including their prediction and forestpracticesiscarriedout.However,coretothishasbeenlandslide management. hazardidentification,terrainstabilityhazardmapping,andterrainsta- bilityfieldassessmentstoevaluatepotentialorexistingeffectsofforest 5.2.DevelopmentofanimprovednationalESC development on terrain stability. The question for New Zealand is whetherterrainassessmentshouldbemandatoryorvoluntary.Howev- TheESCwasfoundedontheconceptofpotentialerosion.Thiscon- er,eitherway,thegeneralmethodologicalapproachesarelikelytobe ceptwasdevelopedinNewZealandduringanationwidesurveyof similar. landresourcesinthe1970sand1980s.Itwasdefinedas‘thepotential Abasicruleintheapplicationofterrainstabilitymappingprinciples erosionunderanactualorassumedgrasslandcoverwithnosoilconser- isthatanyforestmanagementactivity—notjustharvesting—thatin- vationmeasuresapplied’(NWASCO,1979).Clearlybecausethedefini- creasesthepotentialforgroundwaterorsurfacewatertoenterland- tion refers to grassland, its application to forestry is problematic. slide-prone terrain or unstable slopes and on material created by Whilenoformaldefinitionwaseverpublished,itincorporatedconsid- constructionactivities,increasestheriskofslopefailureorreactivation. erationsofobservedpresentandpasterosion,underlyingsusceptibility Identificationofpartsofthelandscapethatarelandslide-proneorcould toerosion,magnitudeandfrequencyoferosion-causingevents,anddif- becomeunstablefollowingsitedisturbanceisthusakeyrequirement. ficultyofrepairoflandfollowingerosion(Basheretal.,2014).TheESCis Anotherconsiderationofthisapproachwasthattheinformationshould recognisedashavinglimitationsrelatedto:theunderlyingdataitwas bepresentedinaformthatcouldbeeasilyinterpretedforforestanden- derivedfrom;thescaleofmapping;andprobablemisclassificationof vironmentalmanagementplanning.Mappingcanbeattwolevels:re- someland.Becauseofthis,anapproachhasbeendevelopedtomanage connaissanceanddetailed.Theformerisappropriatewhereonlylocal classification changes and incorporate detailed site-level mapping occurrencesofpotentiallyunstableterrainexistwithinextensivestable (Basheretal.,2015b). areas.Thelatterisrecommendedforareasthathavealargeproportion Potentialerosionisnotatermthatisincommonscientificusagenor ofsteeperosion-susceptibleterrainandwheresignificantresources doesithaveacleardefinition,andthereforeitislargelybasedonsubjec- mightbeaffectedbyslopefailure(Mardenetal.,2015). tive judgementandopen tointerpretation errors.Bloomberg etal. Someforestrycompanieshavestartedtodevelopoperationallevel (2011)andBasheretal.(2015c)havearguedthatNewZealandshould hazardidentificationandriskmanagementapproachestotryandbetter developafit-for-purposeriskassessmentforforestmanagementthat managetheriskoflandsliding,woodyresiduemobilisation,anddebris independentlyassessesthreethings: flows.Oftentheseapproachesarepartofenvironmentalmanagement systems(e.g.,RayonierMatarikiForests,2015).Furtherworkisrequired • susceptibility(theunderlyingsusceptibilitytodifferenttypesofero- todevelopimprovedquantitativehazardidentificationandriskman- sionlargelydeterminedbytopography,rocktype,andsoils); agementmethodsthatcanbewidelyappliedandareacceptabletofor- • hazard(thelikelihoodorfrequencyoflandslidesanddebrisflowsthat est companies and to environmental regulators (central and local islargelydeterminedbyclimaticfactors);and governmentagencies).Oneofthemostpressingneedsisforbetter • risk(theconsequencesofthehazardbeingrealised,incorporatingon- data on landslides and debris flows and on the conditions under siteandoff-siteimpacts). whichtheyaretriggeredbecausethemanagementofothererosionpro- cesses(earthflowsandgullying)isbetterunderstood. Underpinningthedevelopmentofimprovedriskmanagementis Basheretal.(2015c)suggestedthatwhatisneededisascreening aneedforbetterdatacollectionontheincidenceandextentofero- tool(basedongeomorphicandclimaticanalysistodeterminewhere sioninforests,particularlypost-harvest.Whilesomelocalexamples detailedsite-levelriskassessmentisrequired)anddevelopmentofan ofdatacollectionontheoccurrenceofpost-harveststorm-induced accepted methodology for site-level risk assessment. They suggest landslidesanddebrisflowsandontherainfallandforestmanage- threepossibleapproaches:quantitativelandslide/debrisflowsuscepti- mentconditions(i.e.,roadingorloglandingrelated)thattriggered bilityzoning,mechanisticslopestabilitymodelling,orterrainstability themexist,nationallevelinformationisstillapriority(Phillipset analysisbysuitablyqualifiedpersonnel.Suchanapproach,incorporat- al.,2012).Thisshouldincludewhatwasaffectedbysuchevents ingareconnaissancescreeningtoolanddetailedsite-levelassessment (e.g.,roads,bridges,communities)andwhatthecostsweretoreme- andbasedonterrainstabilityanalysis,wouldbesimilartotheapproach diate any damage caused. A consistent national monitoring pro- requiredinNorthAmerica(Fanninetal.,2007;SchwabandGeertsma, gramme with clearly set methodology and criteria and a simple 2010)andwouldbeunderpinnedbydetailedgeomorphicunderstand- processtorecordthisdataandreportatregionalandnationallevels ingoftheoccurrenceandsignificanceoflandslidesanddebrisflows.De- would meet this need. It potentially could be incorporated into velopmentofmethodologytoachievethisisurgenttoallayincreasing GeoNet,theNewZealandnationalgeologicalhazardinformationda- communityconcernsabouttheimpactofpost-harvestlandslidesand tabase(Dellow,2001). Pleasecitethisarticleas:Phillips,C.,etal.,GeomorphologyandforestmanagementinNewZealand'serodiblesteeplands:Anoverview,Geomor- phology(2017),http://dx.doi.org/10.1016/j.geomorph.2017.07.031

Description:
In this paper we outline how geomorphological understanding has Ackroyd, P.E. (Eds.), Physical Hydrology – the New Zealand Experience.
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.