GEOMOR-06094;NoofPages15 Geomorphologyxxx(2017)xxx–xxx ContentslistsavailableatScienceDirect Geomorphology journal homepage: www.elsevier.com/locate/geomorph Geomorphology and forest management in New Zealand's erodible steeplands: An overview ChrisPhillipsa,⁎,MichaelMardenb,LesR.Basherc aLandcareResearch,P.O.Box69040,Lincoln7640,NewZealand bLandcareResearch,P.O.Box445,Gisborne4040,NewZealand cLandcareResearch,Nelson7042,NewZealand a r t i c l e i n f o a b s t r a c t Articlehistory: InthispaperweoutlinehowgeomorphologicalunderstandinghasunderpinnedforestmanagementinNew Received5April2017 Zealand'serodiblesteeplands,whereitcontributestocurrentforestmanagement,andsuggestwhereitwillbe Receivedinrevisedform31July2017 ofvalueinthefuture.Wefocusonthehighlyerodiblesoft-rockhillcountryoftheEastCoastregionofNorthIs- Accepted31July2017 land,butcoverotherpartsofNewZealandwhereappropriate.Weconcludethatforestrywillcontinuetomakea Availableonlinexxxx significantcontributiontoNewZealand'seconomy,butseveralissuesneedtobeaddressed.Themostpressing concernsaretheincidenceofpost-harvest,storm-initiatedlandslidesanddebrisflowsarisingfromsteeplandfor- Keywords: estsfollowingtimberharvesting.Therearethreeareaswheregeomorphologicalinformationandunderstanding EastCoast Erosionprocesses arerequiredtosupporttheforestindustry—developmentofanimprovednationalerosionsusceptibilityclassi- Forestmanagement ficationtosupportanewnationalstandardforplantationforestry;terrainanalysistosupportimprovedhazard Landslides andriskassessmentatdetailedoperationalscales;andunderstandingofpost-harvestshallowlandslide-debris Terrainzoning flows,includingtheirpredictionandmanagement. ©2017ElsevierB.V.Allrightsreserved. 1.Introductionandbackground (Pinusradiata).Thesecondplantingboomoccurredinthe1960swith muchofthisonlandthathadbeenidentifiedaserosion-proneandgen- ErosionratesinNewZealandareveryhighbyworldstandardsbe- erallyinsteeperhillcountry.Thethirdplantingboom(1992–1997)oc- causeofnaturalandanthropogenicfactors.Ahigh-energygeomorphic curredmainlyintheEastCoastregion(Fig.1)followingCycloneBola environmentisaconsequenceoflocationonanactiveplateboundary (MardenandRowan,1993).Nativeforestnowcoversabout25%of in the mid-latitude zone of strong westerly winds (Basher, 2013) NewZealand,withmostinreservesornationalparks,manyofwhich resultinginadominanceofsteepslopes,highratesoftectonicactivity, areinthesteepmountainlandsandeffectivelynolongerusedfortimber generallyhighrainfallandcommonhighintensityrainstorms(Soons production.Currentlyexoticforestcovers1.7Mha(about8%oftheland andSelby,1992;Hicksetal.,2011).Erosionrateswereintensifieddur- area;(NewZealandForestOwnersAssociation,2016). ingEuropeancolonisationinthelatenineteenthandearlytwentieth AwidevarietyoferosionprocessesoccurinNewZealand,andthe centurieswhenlarge-scaledeforestationoccurredovermuchofthe types and activity of erosion show strong regional patterns first country,followedbytheintroductionoflargenumbersofgrazingani- recognisedbyCumberland(1943,1944)thatrelatetogeologicalset- malsandintensivelanduseinsomelocations(Mosley,1978;Pageet ting,climate,andlanduse.Massmovementsareregardedasthedomi- al.,2000;Glade,2003).Inthatperiod,mostofthelowlandnaturalfor- nanterosionprocessinsteeplands(Basher,2013). estswereclearedandloggingprogressedintothehillier,steeperparts Theuseofforestsforcontrollingerosionorreducingnaturalhazards ofthecountry.Whilesustainedyieldmanagementofnativeforests iswellestablishedinNewZealandasitisinmanyotherpartsofthe waspracticed,itbecameapparentthatinordertoprovideacontinuing world(O'Loughlin,1991).NewZealandforestryhasbenefitedsignifi- supplyoftimbertomeettheneedsofagrowingcountry,forestsneeded cantlyfromexperiencesgainedfromthemountainlandsofEuropeto tobeplanted.ThisledultimatelytotheestablishmentoftheStateForest thosefromthePacificNorthwestoftheUSAandCanada.However, Servicein1921(Roche,1990;TeAra,2017).Whatfollowedwerea NewZealandhasalsocontributedtoglobalunderstandingofthisrela- numberofplantingbooms,initiallyinthecentralNorthIsland,but tionship,owinginnosmallparttoitsrecentcolonialhistoryandthe laterspreadingelsewhere.Themainspeciesplantedwasradiatapine naturally high rates of geomorphic processes (O'Loughlin, 1995, 2005a,2005b;Basher,2013). ⁎ Correspondingauthor. Globally,considerablescientificendeavourhasfocusedonunder- E-mailaddress:[email protected](C.Phillips). standingrelationshipsbetweenforestsandgeomorphology,including http://dx.doi.org/10.1016/j.geomorph.2017.07.031 0169-555X/©2017ElsevierB.V.Allrightsreserved. Pleasecitethisarticleas:Phillips,C.,etal.,GeomorphologyandforestmanagementinNewZealand'serodiblesteeplands:Anoverview,Geomor- phology(2017),http://dx.doi.org/10.1016/j.geomorph.2017.07.031 2 C.Phillipsetal./Geomorphologyxxx(2017)xxx–xxx Fig.1.MapofNewZealandincludinginsetofEastCoastregionofNorthIsland. landscapesandforestcomposition(e.g.,Turner,1989),steeplandforest hydrological),andforestmanagement(estatemanagement,roading, management including harvesting (Swanson and Swanston, 1977; planning)withanemphasisonplantedforests. Grantetal.,1984;Sidleetal.,1985;Swanson,1998;Wempleetal., 2001; Sidle, 2005); and the value of forests and trees to provide a 2.Historicalcontext widevarietyofecosystemservices,includingwatershedprotection anderosioncontrol(O'Loughlin,1994;Roche,1997;Marden,2012; GeomorphologicalunderstandingofNewZealand'ssteeplandshas Basher,2013;Phillipsetal.,2013). playedasignificantroleinthemanagementofindigenousforestsand Inthispaperweprovideaselectiveoverviewandhistoricalaccount mountainlandsandinthedevelopmentoftheforestindustrybasedei- ofhowgeomorphologicalunderstandinghasunderpinnedforestman- theronindigenousforestsorintroducedspecies.Forexample,therela- agementinNewZealand'serodiblesteeplands,outlinethecurrentfor- tionshipsbetweenforestremoval,introducedanimals,anderosionhave estry situation in New Zealand, and then suggest where an beenwelldocumented(Cumberland,1943,1944;Wallis,1966;James, understandingofgeomorphologywillbeofvalueinthefuture.Inpar- 1969;McCaskill,1973;Jane,1979;Holloway,1982;McSaveneyand ticularwefocusonthehighlyerodiblesoft-rockhillcountryofthe Whitehouse,1989;McKelvey,1992).IntheearlydaysofNewZealand's EastCoastregionofNorthIsland(Fig.1),thoughincludeothergeologi- colonisationanddevelopment,vasttractsofsteeperodiblehillcountry calterrainswhereappropriate.Ourapproachisfocusedonthreemain forestswerecutandburnttomakewayforpastoralfarming,inmuch areas: terrain assessment, process understanding (erosion and thesamewayasoccurredinothercountriesexceptthatNewZealand's Pleasecitethisarticleas:Phillips,C.,etal.,GeomorphologyandforestmanagementinNewZealand'serodiblesteeplands:Anoverview,Geomor- phology(2017),http://dx.doi.org/10.1016/j.geomorph.2017.07.031 C.Phillipsetal./Geomorphologyxxx(2017)xxx–xxx 3 colonisationwasrelativelyrecent(withinthelast150years)andthere- processesandreducingsedimentyield—theveryreasonforwhich sponsetoforestremovalislikelystillimpactingslopeandchannelpro- theywereestablishedalsoneededtobeunderstood. cesses(Mardenetal.,2014b).Inmanyplaces,thenaturallandscape respondedbysignificantlyincreasingerosion,sedimentload,andag- 3.1.Terrainassessment gradationinriverchannelsandresultinginconsequentdownstream floodingissues. Geologicalandgeomorphologicalinformationhasbeenusedindif- SomeofthemostdramaticresponsesoccurredintheEastCoastof ferentpartsofNewZealandtoinformforestmanagementandplanning. NorthIsland(e.g.,Allsop,1973).Here,acombinationoffactorsinclud- Inthebroadestsense,landuseorforestestateplanningiswheresetsof ingtectonic(e.g.,earthquakes,upliftrates,faulting),lithologic(rock constraintsandoptionsareconsideredandthenmappedtoproduce type),adynamicclimateinfluencedbytropicalcyclones,andtherecent someoptimumpatternoflanduseorspeciesplantingpattern.Thesec- clearanceofvegetationfromsteepslopespredisposesthisregiontoero- ondaspect,operationalplanning(Pearce,1981),isconcernedwithde- sion.Dramaticincreasesinsoilerosionundergrasslandultimatelyledto cisionsratherthanoptions—examplesincludefollowingaparticular the establishment of a major government-led reforestation project roadalignmentorchoosingthetypeofmachinerytologaforestcom- largelywithexoticconifersintheWaipaoaRivercatchmentinthe partment.Loggingorharvestplanninginwhichharddecisions,short 1950s and 1960s (Phillips and Marden, 2005). Reforestation was timescales,andfinespatialresolutionarerequiredcreatethepullfor regarded as the most economical way of controlling erosion geomorphologicalinformation;butappropriatedatathatcanbequickly (CommitteeofEnquiry,1970),andwhiletheseforestswereprincipally interpretedorusedatthescaleneededisnotoftenavailable.Somespa- for‘protection’itwasacknowledgedthatapartfromcreatingemploy- tialmappingapproachesareusefulforbroad-scaleplanningbutarenot ment,partsofthoseforestswouldbeabletobeusedfortimberproduc- suitableforoperationalplanning,whichwouldnormallyrequireinfor- tion.Subsequentpolicyenabledreforestationtobeextendedtoother mationatscalestypicallybetween1:10,000and1:5000. catchmentsintheregion.Chronologiesoftheattemptstocontrolwide- Earlyterrainzoningapproacheswereusedinplanningfornative spreadsoilerosionintheEastCoastofNorthIslandhavepreviously forestharvestingaspartoftheWestCoastBeechUtilisationProposals, beendocumented(Phillipsetal.,2013;PhillipsandMarden,2005).For- whichwerelocatedinareasonSouthIslandwithrecognisedhighero- estremovalandreforestationisnotuniquetoNewZealand(McKelvey, sionhazardsonerodiblerocktypesandlowerhazardsonsimilarterrain 1992;PhillipsandMarden,2005;Phillipsetal.,2013)buthasalsobeen underlain by other rock types (Fitzsimons and O'Loughlin, 1984; experienced elsewhere (e.g., European Alps, Japan, United States, Fitzsimons et al., 1985; Eggers, 1987; O'Loughlin and Gage, 1975; France)andiswelldocumented(Kittredge,1948;Matheretal.,1999; O'Loughlin and Pearce, 1976). A three-class system of zoning was Piégayetal.,2004;Liebaultetal.,2005). foundusefulasanoperationalplanningtoolforthesebeechforests, In1987theNewZealandForestService(NZFS)wasdisestablishedas andzoningmapsofthreeclasseswerepresentedon1:10,000scaleto- partofgovernmentreforms(Roche,1990)withstate-ownedexoticfor- pographicmaps.Thethreeclasseswere:noerosionorwaterandsoil estsinitiallygoingtoagovernmentbusinessentity(ForestryCorpora- conservationconstraintsonclearfelling,ifthatwasdesirable;wherese- tion),butwithin3yearsittoowasdisbandedandtheforestcrops lectionloggingwouldbeacceptable,butwhereclearfellingwaslikelyto (butnottheland)soldtomany,mostlyoverseas-ownedcompanies. causeerosionproblems;andaprotectionzoneclasswherelogging Withthischange,aphilosophicalshiftoccurredfromforeststhathad shouldnotbepermitted.Theapplicationofthisinformationinanoper- previously been considered as ‘protection forests' to one of much ationalsensewasnotfullytestedasthebeechschemewasdiscontinued moreutilitarian‘productionforests'(Poole,1960),inpartbecausethe asaresultofpublicpressuretostopharvestingindigenousforests(Te forestsplantedonerosion-pronelandhadgrownmuchbetterthanan- Ara,2017). ticipatedwhenfirstplanted.Today,manyoftheseforestshavebeen OneareainneedofterrainassessmentwasintheEastCoastofNorth ‘returned’totheindigenouspeopleofNewZealand(Māori)aspartof Island,particularlyintheupperreachesoftheregion'smajorriver theTreatyofWaitangisettlements(e.g.,NgātiPorou,2010)andin catchments(Fig.1).Inordertosupportthenewreforestationpolicies somecasesonsoldtoprivateinterests.Othersstillremainunderforeign onformerpastoralland,questionsbegantoberaisedaboutthefuture managementandallarenowmanagedforwoodproduction.Inrecent oftheseprotectionforestsforproducingtimber.Whiletheoriginalob- yearsastheseforestshavebeenharvestedmanyofthegeomorphicfac- jectiveswereprimarilyremedialandprotective,prospectsthatatleast torsthatcontributedtotheirestablishmenthavebeguntomanifest partsoftheseforestswouldeventuallybesuitableforproductionforest- themselvesinwaysforeseenbysomebutlargelyforgottenbyothers rylookedgood.Tosomedegree,thiswouldcompensateforthelossof duringthetransitiontocommercialplantationforestry(Pearce,1977; agriculturalproductivityfromlandtakenoutofpastoralfarming.How- Phillipsetal.,2012). ever,thechoiceofwhichareastoleaveasprotectionandwhichareas weresuitableforproductionrequiredanassessmentofthelandscape intermsofitssusceptibilitytoerosionfromvariousprocesses(Gage 3.Researchandinformationneeds andBlack,1979;O'Loughlin,2005a). Inthe1970s,TerrainStabilityZoningwasdevelopedincorporating SeekingtounderstandNewZealand'sforestedenvironmentsand theunderlyinggeologyandgeomorphologicalfactorstoaccountfordif- howmanaffectedthesehasbeenanintegralpartofresearchwithin ferencesinslopestabilityanderosionalbehaviourwithinforests(Gage theNZFSandothergovernmentagenciesfornearlyacentury.Fascina- andBlack,1979).Terrainstabilityzoning,an8-classterrainclassifica- tionwiththemountainandsteeplandenvironmentsinparticularand tionintermsofslopestabilityanderosional(ordepositional)behav- theirerosionalhistoryledtoarangeofresearchandtheestablishment iour,wasinitiallydevelopedatMangatuForestandlaterappliedto ofdedicatedagenciestoconductthatresearch(e.g.,TussockGrasslands other East Coast exotic forests (Pearce, 1977; Phillips and Pearce, andMountainLandsInstitute;ForestandRangeExperimentalStation; 1984a,1984b).WhileextensiveareasofStateForestintheEastCoastre- NationalWaterandSoilConservationOrganisation).Allthesededicated gionwereassessedandreportsandmapsproduced,inclusionofthis researchagencieshavesubsequentlybeendisestablishedasaresultof knowledgeintoforestmanagementwasmostlyignoredbecausethe governmentpolicyandfundingchanges. timingofpublicationcoincidedwithaperiodofmajorchangeinthefor- Theearlyerosioncontrolreforestationprogrammesestablishedby estindustry:thedisestablishmentoftheNZFSandtheselling-offofthe theNZFSinplacesliketheEastCoastalsotriggeredspecificresearch forestestate(outlinedabove).However,inrecenttimes,thisinforma- needs.Apartfromobviousquestionsaboutspeciesselection,establish- tionhasbeenusedbysomeforestmanagers,particularlyinrelationto mentandmanagement,andtheirsubsequentperformanceandwood harvestplanning,whereitprovidedanindicationofareasthatmightre- quality, how these new forests performed in modifying erosion quireadditionalanalysisofslopestability(Phillipsetal.,2012;Marden Pleasecitethisarticleas:Phillips,C.,etal.,GeomorphologyandforestmanagementinNewZealand'serodiblesteeplands:Anoverview,Geomor- phology(2017),http://dx.doi.org/10.1016/j.geomorph.2017.07.031 4 C.Phillipsetal./Geomorphologyxxx(2017)xxx–xxx etal.,2015).Callstomakesuchapproachesmandatoryastheyarein Canada and the USA (Fannin et al., 2007; Schwab and Geertsma, 2010)havealsobeenmade(Mardenetal.,2015). 3.2.Erosionprocessunderstanding Alongsidethedevelopmentoftoolstoassessterrain,questionswere alsobeingaskedabouthowindigenousdeforestationandexoticrefor- estationaffectratesoferosionandhydrologicalprocessesandabout theoverallvalueofsuchforestsforprovidingarangeofservicesto thewidercommunity(NWASCO,1970;SwaffieldandFairweather, 2000).ThissparkedseveraldecadesofexperimentalworkacrossNew Zealand,muchofwhichwasundertakenintheWaipaoacatchment andmorespecificallyinplaceslikeMangatuForest(Fig.1).Here,re- searchersbegantoexaminetheon-siteeffectivenessofreforestation inmitigatingerosion(earthflow,slump,gully)processes(DeRoseet al.,1998;Zhangetal.,1991a,1991b,1993;Mardenetal.,2005,2008a, Fig.2.CycloneBola(1988)damagetoyoungplantationslessthanabout6yearsold,inland 2008b,2011,2012,2014b;Herzigetal.,2011),itsinfluenceonhydro- TolagaBay,EastCoast,NorthIsland,NewZealand.Photo:NoelTrustrum. logical processes studies (Pearce et al., 1987), and the role of tree rootsinsoilreinforcementofsoilsandtheircontributiontoslopestabil- theCoromandelregionofNewZealandthatwasaffectedbyasevere ity(Ekanayakeetal.,1997;EkanayakeandPhillips,1999,2002;Phillips storminMarch1995withfewslopefailuresoccurringwithinclosed- etal.,2011).Promptedbyconcernsoftheoff-siteeffectsofsediment canopyexoticforest(MardenandRowan,2015).Theseresultssuggest anditstransportationandsupplytothePovertyBayfloodplain(an thattheleveloflandslidedamagelikelytooccurwithinaforeststand areausedintensivelyforhorticulture)andtotheocean(Hicksetal., isdependantatleastinpartontheage,density,andmaturityofthe 2000,2004;HicksandShankar,2003),furtherstudieswereundertaken treesatthetimeofamajorstorm.Duringsuchanevent,themagnitude bynationalandinternationalresearcherstocomparemodern-daypro- ofinterceptionlossacrossdifferentclosed-canopyvegetationcommu- cessratesinthecontextofthelonger-term(last~15,000years)geo- nitiesasapercentageofrainfallissmall(Roweetal.,1999).Several morphologicalhistoryofthisarea(Berrymanetal.,2010;Marsagliaet otherstudiesconfirmedthatarelationshipexistsbetweenlandslide al.,2010;Mardenetal.,2011,2014a).Understandingmechanismsof densityandvegetationtype,whereshallowsoilsexistonsteepslopes sedimentgeneration,storage,andfluxtotheoceanwasakeygoalof subjected to intense rainstorms (Selby, 1976; Salter et al., 1983; the MARGINS Source-to-Sink Programme, which focused on the Harmsworthetal.,1987;HancoxandWright,2005). Waipaoacatchment(Marutanietal.,2001). Thegeneralunderstandingofhowreforestationhascontributedto effectiveerosioncontrolintheEastCoastregionisnowrelativelywell advanced.Whatfollowsisabriefsummaryofthatunderstanding: 3.2.1.Shallowlandslides Vegetation,andtreesinparticular,improveslopestabilityandre- duce erosion (e.g., Greenway, 1987; Marden and Rowan, 1993; PhillipsandMarden,2005).Ingeneralterms,thebelow-groundcompo- nents(roots)providemechanicalreinforcement(Watsonetal.,1999) andarethemeansbywhichtreesextractsoilmoisturefromthesoil toreduceporewaterpressures(Ekanayakeetal.,1997),whilethe above-groundcomponentsofvegetation(canopy)reducetheability ofrainfalltocauseshallowlandslidingthroughtheprocessesofinter- ception(Kelliheretal.,1992)andtranspiration(Pearceetal.,1987).An- nualevaporationfromaclosed-canopyforestinthisregionaccountsfor 85%ofrainfallwithinterceptionat35%(Pearceetal.,1987)andtree- transpirationat50%(WhiteheadandKelliher,1991),significantlyre- ducingtheriskoflandslideinitiation.Combined,theseprocessesbe- come most effective when full root occupancy (lateral roots of adjacent treesoverlap) andcanopy closure(canopies of individual treestouch)firstoccurs,andtheyimprovewithincreasingtreeage and/orplantingdensity(Kelliheretal.,1992).Thiswasaptlydemon- stratedbyMardenandRowan(1993)whonotedthatwherehillslopes plantedinpinesN8yearsoldandhadattainedcanopyclosurebefore CycloneBola,wereconsiderablylesspronetorainfall-inducedland- slides than were either pastured hillsides or young stands of pine wherecanopyclosurehadyettooccur(Figs.2and3).Onfurtherinves- tigation,theyfoundthatyoungforeststandsb6yearsoldandpastured hillslopesatthetimeofCycloneBolasustainedsimilarlevelsofland- slidedamageandupto16-timesgreaterthanforeitherexoticplantings orindigenousforestwherethecanopywasfullyclosed.Thisrelation- shipwasparticularlystrongforhillcountryunderlainbyTertiary-age sedimentarybedrockwherelandslidesaretypicallyshallowandtrans- Fig.3.Storm-initiatedlandslidesonpasturecontrastingwithclosedcanopyforests, lational(Mardenetal.,1991).Asimilarresultwasfoundinanareaof northernHawke'sBay.Photo:PFOlsens. Pleasecitethisarticleas:Phillips,C.,etal.,GeomorphologyandforestmanagementinNewZealand'serodiblesteeplands:Anoverview,Geomor- phology(2017),http://dx.doi.org/10.1016/j.geomorph.2017.07.031 C.Phillipsetal./Geomorphologyxxx(2017)xxx–xxx 5 3.2.2.Earthflowmovementstudies Landslideswererelativelysmallscale,generating~≤5%oftheannual Researchonearthflowsshowedthatforestedearthflowshadsurface sedimentbudget(Tayloretal.,2012,thisissue).Phasesofgullyexpan- movementratesthatwere2–3ordersofmagnitudelessthanthoseon sionareinvariablyfollowedbyperiodsofinactivity,andfurthermore, grassedearthflows,onsimilarterrain(Zhangetal.,1993,Fig.4).Subsur- theresponsetimerequiredtostabiliseagullyfollowingreforestation facedeformationofforestedearthflowsaccountedforb25%oftotalsur- ishighlyvariable.Thesignificanceofgulliesinsedimentproductionin facemovementandresultslargelyfromcompressionflowcomparedto these environments arises because sediment supplied from gullies extension flow on grassed earthflows (Zhang et al., 1991a, 1991b, tendstobepersistentandactivatedbysmall,frequentrainfallevents 1993).Araftingmechanisminwhichblocksofrootsfromindividual (Trustrumetal.,1999),andgullyerosionasawholeisthedominant treesinteractwiththoseofneighbouringtreestoretardsurfacemove- processofsedimentdeliverytotheserivers(Trustrumetal.,1999; ment(i.e.,creatinganetworkofraftblocksconnectedbylateralroots) Gomezetal.,2003;Mardenetal.,2005;Pageetal.,2007).Fortherefor- wassuggestedtoexplainobserveddeformationprofilesofforested estationperiodspanning1957to1997gullysourcesgeneratedthe earthflows.Once‘stabilised’,forestedearthflowscouldbereactivated equivalentof43%,49%,and54%oftheaverageannualsuspendedsedi- byanynumberoffactors(Mardenetal.,2008b)—thoughclimate, mentyieldoftheWaipaoa,Waiapu,andUawacatchmentsrespectively treeremoval,andotherforestmanagementfactorssuchasroadcon- (Mardenetal.,2008c). structionweresuggestedasbeingthemostimportant.Inonestudy, Theeffectivenessofreforestationinstabilisinggulliesisbasedon norelationshipwasfoundbetweentheinitiationofearthflowactivity modelsdevelopedtoestablishthetime(yearsafterplanting)required andtheharvestingofforestssurroundingtheearthflow(Mardenet before a wide range (0.07–60.5 ha) of gully sizes ‘closed-down’ al.,2008b),anditwasconsideredunlikelythepracticeofharvestingin (Mardenetal.,2005,2008c,2011).Theconceptofgullystabilisationis itselfwouldinitiateneworrenewedactivityonstableflows.However, basedonthemeasuredchangein‘active’gullyareabetweenmeasure- duringthepost-harvestperiodanduntilevapotranspirationrecovers mentperiodsasafunctionofincreasingtreecanopysize(resultingin sufficientlytoinfluencesoilmoisturelevels(about2years),elevated areductioningullysize),orconversely,gullyreactivation(resultingin soilmoisturewilllikelyresultinincreasedmovementratesofalready anincreaseingullysize)overthelengthofarotationofexoticpines. mobilisedearthflowsandwillprolongtheiractivityintoperiodstradi- Thesemodelsshowedthatthetimerequiredto‘stabilise’gullieswas tionallyassociatedwithsoilmoisturedeficit. stronglyassociatedwithgullysizeandtheduration(years)sinceplant- ing,andforgulliesofequivalentsize,thedurationsinceplantingissim- 3.2.3.Gullies ilarinbothgeologicalterrains.Also,lineargulliesarelikelytostabilise BettsandDeRose(1999)definedgulliesasareasofactivelyeroding earlierthantheiramphitheatre-shapedcounterparts.Usingtheresults baregroundthatarecontiguouswiththechannelsthatdrainthem. oftheseformerstudies,Herzigetal.(2011)developedamodeltoretro- Gullies form through the complex interaction of fluvial and mass spectivelyassesstheeffectivenessofpreviousgovernment-fundedre- movementprocesses(Hicksetal.,2000;Poesenetal.,2003).Thus,an forestationschemes(1957–1997)inreducinggully-derivedsediment increaseingullydepth(orgullyarea)isrelatedtogreaterrunoffrates massandappliedittoevaluatetheeffectivenessofdifferentreforesta- following deforestation, and the converse is true when land tionscenariosinreducingthesedimentmassgeneratedfromremaining surrounding a gully is reforested (Parkner et al., 2007). Based on untreatedgullieslocatedwithingully-pronehillcountryprioritisedfor shape,twotypeswereidentified:linear(lengthexceedswidth)and futurereforestation.Theoverallsuccessofreforestationinameliorating amphitheatre-shaped (width exceeds length). Linear gullies often gullyerosion(Fig.5)canalsobeattributedtotheselectionoffast-grow- beginasaseriesofcoalescinglandslidesinareasofconvergentdrainage ingtreespecies(whichareharvestableca.24–27yearsafterplanting), whereverticalincisionislargelyconfinedwithinexistingdrainagelines. idealgrowingconditions,andtheplantingstrategyadopted.Thatis, Lineargulliesaremainly,butnotexclusively,locatedwithintheTertiary gullystabilisationisachievedfirstbyplantingasmuchofthegullywa- terrainwherestructuralandbedrockcontrolsdeterminetherateand tershedareaasphysicallypossibleandsecondbydelayingwithin-gully modeofgullyexpansion,whichispredominantlybyfluvialprocesses. plantingsuntilanoticeablereductioninrunoffandsedimentsupplyto Giventherightcombinationofpredisposingsiteconditions,juxtaposed thechannelisobserved.Whileregionwidereforestationeffortshavere- lineargulliesoftenenlargeintooneamphitheatre-shapedgully.Once sultedina~42%netreductionincompositegullyarea,theinitiationof initiated,thesegulliesrapidlybecomeentrenchedintotheweakbed- newgulliesandexpansionofnumerousgulliesthatremaineduntreated rock resulting in repeated rotational collapse of gully sideslopes throughout the measurement period (1957–1997), collectively destroyingallformsofvegetationcover(Bettsetal.,2003)andwhere accountedforanoverall~27%netincreaseingullyarea.Ifallremaining rillingandgullyingtendtobethemostpersistentandwidespreadof gulliesinthesecatchmentsweretobereforestedby2020,thevolumeof theerosionprocessesgenerating~≥80%oftheannualsedimentbudget. gully-derivedsedimentwouldhalveby2030,butifleftuntreatedthe Debris flows generated ~≤15% of the annual sediment budget. yieldwoulddouble(Herzigetal.,2011). Fig.4.WetherRunearthflow,MangatuForestbeforeandafterreforestation(afterMarden,2004). Pleasecitethisarticleas:Phillips,C.,etal.,GeomorphologyandforestmanagementinNewZealand'serodiblesteeplands:Anoverview,Geomor- phology(2017),http://dx.doi.org/10.1016/j.geomorph.2017.07.031 6 C.Phillipsetal./Geomorphologyxxx(2017)xxx–xxx Fig.5.Pre-(1961)andpost-reforestation(1972,2004)photographyofamedium-sizedgullyinTeWeraroaStream,MangatuForest.Pinusnigrawasplanted(1962)onthelesser-eroded interfluvessurroundingthisgully;thenin1966Pinusradiatawasplantedonthesteeperandmoreseverelyerodingslopesimmediatelyflankingthegullyandwithinthegullyitself.By 1972theeffectivenessoftheplantingsinstabilisingthegullywereapparentanditschannelincisedbelowthelevelofthefanatthemouthofthegully.Furtherwithin-gullyplantings (1974)ofP.radiatawereundertakenontheremainderofbareslopesandofthefan.Beforeplanting,thisgullywas7.6hainsize,andby1988reforestationhadreducedtheareaof activeerosionto0.8ha.Thelatestphotographshowsthatinspiteofamajorcycloniceventin1988(CycloneBola),thisandsimilarlyreforestedgulliesofthissizehaveremained stable.Theelevationdifferencebetweenstreamlevelandtheridgeattheheadofthisgullyis280m(1961and1972photographscourtesyofJ.Johnsandreproducedbypermission ofNewZealandForestResearchInstituteLimited;2004photographwastakenbyR.HamblingandreproducedbypermissionofR.Hambling,MinistryofAgricultureandForestry) (afterMardenetal.,2005). 3.2.4.Splashandsurfaceerosion someindigenoustreespecies.Investigationsexaminedrootarchi- Surfaceerosionunderforestshasreceivedmuchlessattentionthan tecture(Fig.6;WatsonandO'Loughlin,1990;PhillipsandWatson, massmovementerosion.Otherthansurfaceerosionrelatingtoforest 1994), root tensilestrength (Watson andMarden, 2004), loss of managementpracticessuchasfromroadsorfromharvestingopera- root tensile strength following tree removal (O'Loughlin, 1974; tions(discussedlater)theonlystudyofsurfaceerosionunderforests O'LoughlinandWatson,1981;Watsonetal.,1999),sheartestingof was by Mosley (1982a,1982b)who assessed the kineticenergy of rootedsoil(Ekanayakeetal.,1997),rootsiteoccupancy(Phillipset waterdropsandtheimplicationforsurfaceerosion.Itwasconcluded al.,2011),rootgrowth(Phillipsetal.,2014;Mardenetal.,2016), thatrates of soil detachment by splash under forest would exceed androotbiomass(WatsonandO'Loughlin,1985).Morerecentstud- thoseintheopen,especiallywherethelitterandhumuswereremoved iesutiliseddatafromsomeoftheearlierrootstudiestoconstructand ordisturbedandthemineralsoilexposedatthesurface. validatemodelsofrootreinforcement(EkanayakeandPhillips,1999, 2002;Schwarzetal.,2016)ortodeterminetheroleoftreerootsin contributing to slope stability (O'Loughlin and Ziemer, 1982; 3.2.5.Treerootstudies O'LoughlinandZhang,1986;Phillipsetal.,2015).Soilswithtree Aspartoftheneedtounderstandhowforestsmodifiederosional rootswillundergolargersheardisplacementsbeforefailingthan andhydrologicalprocesses,exploratorystudieswereinitiatedinthe soil without roots (Ekanayake et al., 1997) confirming why tree 1980stodeterminehowtreerootsreinforcedsoilsandwhatrole rootsareconsideredtobeamajorcontributortosoilstrengthand rootarchitectureplayedinslopestability.Initialeffortsfocusedon slope stability in the zone where roots are present (O'Loughlin, the predominant exotic species Pinus radiata but also included 1985;PhillipsandWatson,1994). Attentionwasalsofocusedonwhathappenedoncetreeswere harvested. Studies concluded that plantation forests located on steeplands were more prone to shallow landsliding for several yearsfollowingharvestingthanatanyothertimeinthegrowing cycle(e.g.Phillipsetal.,2012).Treeremovalallowedsoilmoisture conditionstobecomewetterforlonger(Pearceetal.,1987;because ofthelossofinterceptioncapacityofthecanopyandreductionsin evapotranspiration).Thiscoupledwithrootdecay—inthecaseof softwoods like Pinus radiata this is fairly rapid (O'Loughlin and Watson,1979;Watsonetal.,1995)—increasedthepotentialfor shallowslopefailuretooccur.Thispost-harvestperiodbeforethe replantedcropbecomesfullyfunctionalandwhererootreinforce- mentislow,hasbeenreferredtoasthe‘windowofvulnerability’ (O'Loughlin,1985;Sidle,1991;Fig.7).However,therelationshipbe- tweenforestremovalanddeep-seatedlandslidingislessclearthan withshallowlandslides.Onceshallowlandslidesareinitiated,they have the potential to transform into debris flows, which in turn erode ephemeral gullies and riparian margins, delivering large amountsofsedimentandwoodydebrisfartherdownthecatchment. Suchoccurrencesareoftenwidespreadduringlargeregionalstorms (e.g.,CycloneBola)orasa result oflocalisedintenserainstorms (MardenandRowan,2015).Theseverityoflandslidesanddebris flowsduringthewindowofvulnerabilitybringsintoquestionthe roleofforestryasasustainablelanduseandraisesquestionsabout whatpracticescanbeusedtomanagetheseeffects(Collins,1988; Fig.6.Excavated25-year-oldPinusradiatatreefromMangatuForest,EastCoast(after Phillipsetal.,2015). Phillipsetal.,1989,2012). Pleasecitethisarticleas:Phillips,C.,etal.,GeomorphologyandforestmanagementinNewZealand'serodiblesteeplands:Anoverview,Geomor- phology(2017),http://dx.doi.org/10.1016/j.geomorph.2017.07.031 C.Phillipsetal./Geomorphologyxxx(2017)xxx–xxx 7 reductioninthelatterperiodofreforestationwhensmall-tomedium- sizedgulliesbecamelessactive.However,largeamphitheatre-shaped gulliesfailedtostabiliseandcontinuedtodominatethesedimentsup- ply, indicating a strong coupling with channels. Contribution of earthflowstothestudybasinsedimentloadwasseveralordersofmag- nitudelessthanforgulliesandwasfurtherdecreasedbyanorderof magnitudefollowingcanopyclosure. Althoughreforestationprovedeffectiveinstabilisingshallowland- slides,smaller(1–5ha)gullies,andearthflows,theresultantreduction intheircontributiontobasinsedimentyieldloadandtooverallcatch- mentyieldwasminimal(Mardenetal.,2014b).Thegreatestreduction insedimentloadoccurredduringthelaterphasesofreforestationasthe numeroussmall-tomedium-sizedgulliesstabilised,coincidentwith canopyclosureabout 8–10yearsafterplanting.However,thevery large gully-mass movementcomplexes failed to stabilisefollowing planting, and they remained the dominant source of sediment (Mardenetal.,2014b).Theconclusiondrawnfromthesestudieswas thatspecifictargetingofgully-massmovementcomplexesinhighsed- iment-yieldingcatchmentscouldleadtosignificantreductionsinsedi- mentyieldwithinthreedecadesofforestestablishment. ReforestationoftheupperWaipaoaRiverbasinindicateda62%re- Fig. 7. An example of typical changes in forest vegetation root strength or root ductionintheareaeroding,a51%reductioninerosionrate,andanes- reinforcementaftertimberharvesting(afterPhillipsetal.,2015).Initialcurvesfrom timated12%reductioninsedimentyieldoftheWaipaoaRiverfrom6% O'Loughlin(1985)andSidle(1992,2005)andmodifiedbyWatsonandothers.Net ofitscatchmentarea(Mardenetal.,2014b). strengthorreinforcementisthesumofthedecayandrecoverycurves.Thewindowof vulnerabilityforNewZealandplantationsisestimatedtobeintheperiod1–6years afterharvesting,butthisisspeciesanddensitydependent. 3.3.Foresthydrologyandwaterquality Asmentionedabove,contemporaneouswithresearchonerosion 3.2.6.Reforestationeffectsoncatchmentsedimentyield processesandtreeroots,studieswerealsoundertakentodetermine Oneoftheanticipatedresponsesofreforestationisareductioninthe the role of forests in the hydrological cycle. Many of these studies sedimentsupplyfromslopestoriverchannelsandincatchmentsedi- wereinitiallyinstigatedinresponsetoaplantoharvestlargetractsof mentyield.ThemostcomprehensiveNewZealandstudythatassessed beechforestintheSouthIsland(mentionedearlier),aschemethat thecontributionsfromdifferenterosionprocesseswasthatofMarden didnotproceed.Smallpairedcatchmentstudieswereestablishedat etal.(2014b)thatfocusedonanalysingtheeffectofreforestationofa MaimaiinnorthWestlandandatBigBushnearNelsontodetermine small area of extensively eroding land in theupperWaipaoa River theeffectofdifferentharvestingoptionsfornativebeechforeston catchmentonsedimentyieldintheentirecatchment.Inthatstudy,an erosionrate(ty−1)andadenudationrate(mmy−1)wascalculated waterquantityandwaterquality.Thisresearchlaidthefoundationfor thecurrentunderstandingofhowindigenousforests(andforestsin foreachoffourerosionprocesses(gullies,earthflows,slumps,shallow general)inNewZealandaffectbothofthesehydrologicalattributes landslides)andcomparedtothosederivedfromthewiderWaipaoa (Faheyetal.,2004;QuinnandPhillips,2016).Studiesincludedstorm Rivercatchmentandlongertermratesforthepost-glacialperiod.Sedi- runoffandwaterquantity(PearceandMcKerchar,1978;Fahey,1994; mentloadbyprocessandtimeperiodwasthenexpressedasapercent- FaheyandJackson,1997),waterquality(FaheyandJackson,1997; ageofthesedimentyieldfortheWaipaoaRivercatchment(Fig.8). Parkyn et al., 2006; Baillie and Neary, 2015), management effects Withcompletionofreforestation,asignificant(about43%)decrease (Nearyetal.,1978),hydrologicalpathwaystudies(McDonnelletal., insedimentsupplyfromgullieswasobservedalongsideagreaterrateof 1998),rainsplash(Mosley,1982b),andinterceptionandevapotranspi- ration(Pearceetal.,1980;Rowe,1983;Faheyetal.,2001).Someofthe conclusionsfromtheseearlierstudiessuggestedthattheinfluenceof forestcoveronhydrologyisasecondaryone,whichisoverriddenbyre- gionaldifferencesinrainfallanditsvariability,topography,soilparam- eters,andunderlyinggeology(PearceandO'Loughlin,1978). 3.4.Forestmanagementeffects AlongsideearlyEastCoastresearch,studieswerealsotakingplacein otherregionsofNewZealandthatfocusedondifferentaspectsofforest management. These included assessments of sediment yield from paired catchment studies with and without different management treatments(O'Loughlinetal.,1980);sedimentproductionfromforest roadsincludingsurfaceerosion(FaheyandCoker,1989,1992;Coker et al., 1993; Fransen et al., 2001) and mass movement erosion (Mosley,1980);storminfluencesfollowingharvestingonlandingfail- ures(Cokeretal.,1990)andmassmovements(Phillipsetal.,1996; Mardenetal.,2015);assessmentoftheeffectsofloggingonstream ecology(Graynoth,1979;Roweetal.,2002);surfaceerosion(Fransen, Fig.8.Trendsinrelativespecificerosionratesfordifferentprocessesbeforeandafter 1998;Mardenetal.,2006,2007);andsedimentproductionacrossa reforestation(afterMardenetal.,2014b). number of different rock types, land uses, and regions (Visser and Pleasecitethisarticleas:Phillips,C.,etal.,GeomorphologyandforestmanagementinNewZealand'serodiblesteeplands:Anoverview,Geomor- phology(2017),http://dx.doi.org/10.1016/j.geomorph.2017.07.031 8 C.Phillipsetal./Geomorphologyxxx(2017)xxx–xxx McConchie,1993;FransenandBrownlie,1995;MardenandRowan, • post-harveststorm-initiatedlandslidesanddebrisflowsposea 1997). threattothesociallicensetooperatefortheforestindustrylocat- Monitoringofsedimentyieldfollowingforestoperationsinbeech edonsteep,erosion-pronelands(seenextsections);and forestshowedthattrackconstructionrequiredforskidderextraction • forestsareimportantforerosioncontrolinNewZealandandcan resultedinsubstantialincreasesinsuspendedsedimentoutputeven deliverarangeofotherecosystemservices. withprovisionofa20-mstreamsideprotectionzonefromwhichno woodwasremoved.Observationsalsoindicatedthatwithinmany forestedareasatthattime,massmovementswerethepredominant 4.Currentsituation erosionprocessunderundisturbedconditions,withsmalldebris slide/debrisavalanchesbeingtriggeredbystormswithreturnpe- 4.1.Overview riods of several years to several tens of years (O'Loughlin et al., 1978).Similarly,inclearfelledcatchments,numeroussmallslides Since 1987, when New Zealand's exotic plantation forest estate weretriggeredbyeventsthatcausednomass-movementactivity changedfromlargelybeingunderonecentralagency,theapproachto inuncutcatchments. forestmanagementbegantovarywithincreasingnumbersofnewcom- Results of these earlier studies confirmed other international paniesemerginginthesector.Manyinitiallyemployedex-NZFSstaff, findings that elimination of forest cover frequently produces in- andsomeinstitutionalknowledgeremained.Overtime,ownership creasesinerosionratesthatrangefromonetothreeordersofmag- changes,differingdemandsofshareholders,anddifferentpersonnel nitude, and that smaller changes in erosion rate might well be sawtheearlier‘consistency’inforestmanagementapproachesacross regardedasnaturalfluctuationsaboutanaveragerate(Pearceand NewZealandchange,andwiththose,theuseandplaceofgeomorpho- O'Loughlin,1978).Whilenotclarifyingtheroleofsedimentstorage, logical information in all aspects of forestry. In 2004, 66% of New suchstudiessuggestedthattherelativesizeofthestoragecompo- Zealand's exotic forestry estate was owned by private companies, nentsofthesedimentsupplysystemlikelyvariesfromregiontore- manyofwhichweresmall,largelygeneratedbyasmall-growerplant- gion but is a necessary feature that smooths out the larger ingboombetween1990and2005.In2016,18companieshad42%of fluctuationsofsedimentinputsothatoutputchangesaresmoothed thetotalestate(NewZealandForestOwnersAssociation,2016)andof andlaggedintimefrominputchanges. the1.7Mha,155,079ha(9%)wasintheEastCoastregion. Insummary,theseearlystudieslaidthefoundationforthenext InplacesliketheEastCoastofNorthIsland,manyforestsplantedas 30–40yearsofresearchandconcludedthatinacountrysuchas partofearlyreforestationeffortshavenowbeenthroughonerotation. NewZealandwithlargevariationingeology,topography,soiltype EarliestplantingsatMangatuForestarenowapproachingtheharvest andthickness,andclimate,theeffectsofforestcoveronthehydro- phaseofthesecondrotation.Apartfromthedeep-seatedamphitheatre logicregimeanderosionratesandprocesseswillgenerallybesec- gulliesthathavenotbeenfullycontrolled,sedimentcontributionsfrom ondarytothosefourfundamentalfactors.Theseconclusionswere mostotherslopeprocesseshavereducedsignificantly.However,large notoutofstepwithinternationalthinkingatthetime,andthecon- quantitiesofsedimentarestoredinchannelsthatwillcontinuetosup- tributionsNewZealandresearchmadetothewidebodyofunder- plysedimenttoriversliketheWaipaoa,Uawa,andWaiapufordecades standing cannot be underestimated (Swanson and Fredricksen, orcenturiestocome(Mardenetal.,2014a).Awayfromthoseearlyre- 1982;Sidleetal.,1985). forestationeffortsintheheadwaters,onthesteeper,shorter-sloped, Inrecentyears(post-2000),attentionhascentredondetermining Tertiaryterraintotheeast,andinotherpartsofNewZealand(including sedimentyieldduringorfollowingforestharvesting(Basheretal., BayofPlenty,Northland,Nelson,Marlborough),newissuesareemerg- 2011; Fahey and Marden, 2006; Phillips et al., 2005; Quinn and ingespeciallyasaresultofharvesting. Phillips,2016)andoncomparingsedimentyieldfrompastureandhar- Oneofthoseispost-harvestshallowlandslidesanddebrisflowstrig- vestedcatchments(Faheyetal.,2003;FaheyandMarden,2006);deter- geredduringrainstorms(inthewindowofvulnerability)thatcandeliv- miningslopewash(raindropimpact,slopewash,andrilling)duringthe erlargequantitiesofloggingslash(frombranchestowholetrees)and post-harvestperiod(MardenandRowan,1997;Mardenetal.,2006, sedimenttoriverchannelsanddownstream-receivingenvironments 2007);post-harvestlandscaperesponse,particularlyinrelationtoland- suchasbeachesorriverfloodplains.Thegeomorphologicalprocesses slidesanddebrisflows(Phillipsetal.,2012;Basheretal.,2015c);policy atplayarenotnewandarethesameasthoseinnaturalforeststhat relatingtoharvesting,reforestation,andtheroleofforestryforerosion alsocontinuetoshapethelandscapesofNewZealand(Mardenetal., controlandcatchmentprotection(Marden,2012;Phillipsetal.,2013); andtheprovisionofecosystemservices(Smailletal.,2014).Thesestud- iessuggest • storm-initiatedlandslidesarethemostimportanthillslopeprocesses generatinganddeliveringsedimenttostreamsandthatmostgenerat- edsedimentisretainedontheslope; • the degree of soil disturbance from harvesting operations and theamountofsurfaceerosioninthefirstyeararestronglycor- related; • theamountofsedimentproducedon-sitebysurfaceerosionand massmovementcanbemuchgreaterthanthatleavingthecatch- mentassedimentyield; • forestsedimentyieldsatharvesttimecanincrease5timesover pre-harvestrates,decliningtopre-harvestlevelswithinabout 2–3yearsafterreplanting; • inexoticforests,post-harvestsedimentyieldsvaryfrom10sto 100softkm−2y−1acrossarangeofgeologies; • atsmall-catchmentandstorm-eventscales,forestedcatchments yieldsignificantlylesssedimentthanpasturecatchments(50– 80%less); Fig.9.Photooflogjamfollowingastormin2010. Pleasecitethisarticleas:Phillips,C.,etal.,GeomorphologyandforestmanagementinNewZealand'serodiblesteeplands:Anoverview,Geomor- phology(2017),http://dx.doi.org/10.1016/j.geomorph.2017.07.031 C.Phillipsetal./Geomorphologyxxx(2017)xxx–xxx 9 2015).However,these‘new’storm-inducedmassmovementsareoc- WhiletheNES-PFhasnotyetbeengazetted,severalforestrycompa- curringonamanagedlanduse(plantationforestry),anderosionisper- niesinstigatedtheirownapproachestodeterminingerosionsuscepti- ceivedasnot‘natural’byregulatoryagenciesorbythepublic. bility/environmentalimpactassessmentaspartoftheirnormalforest Manyoftheseeventsimpactonproductivelowland,affectinfra- operations. These include terrain stability mapping and empirical structuresuchasroadsandbridges,andcanupsetlocalcommunities modellingapproaches(forexamplesseeAmishevetal.,2014).Geomor- whenlargeamountsofwoodydebrisenduponlocalbeachesfollowing phologyandearthscienceinformationisthusbeingusedintermsof rainevents(Figs.9and10;Basheretal.,2015c).Insomecases,thesame broaderestatemanagementandinoperationalplanning.Thediffer- communitiesareaffectedmultipletimes,particularlythoselocatedim- encesbetweenthevariousapproachesoftenreflectcompanyowner- mediatelydownstreamofforests.Whileenvironmentalandeconomic ship and philosophy with greater or lesser acknowledgement of impactsofsucheventsareimmediate,increasingpublicattentionisbe- environmentalriskandhowitshouldbemanaged.However,while comingfocusedonforestry'ssociallicensetooperate(Edwardsetal., themajorityofforestrycompanieswithlargerestateshaveresponded 2016;andthis,inturn,isbeingreflectedinincreasingscrutinyinre- toaneedforbetterenvironmentalmanagement,asignificantpropor- sourcemanagementplanningprocesses).Asaconsequence,attention tion(30%)oftheNewZealandplantationestateisinsmallholdings hasbeenrefocusedonwhatgeomorphologicalunderstandingisneeded b1000ha(MPI,2016).Inthesesituationsalowerlevelofdetailedplan- tobettermanagetheriskofharvestingforestsonerosion-proneterrain ning,roadandearthworkconstruction,andthusenvironmentalperfor- (Phillipsetal.,2012;Basheretal.,2015c;Mardenetal.,2015;Paynetal., manceoftenoccurs.TheNES–PFwillattempttoprovidemoreuniform 2015). coverageacrossthecountryaswellasprovidingmorecertaintyforfor- estryinvestment,whichiscurrentlyatitslowestwiththeplantation areahavingdeclined5%inthelast10years(MPI,2016)andiscontinu- 4.2.ANationalEnvironmentalStandardforPlantationForestry(NES-PF) ingtodecline. IncontrasttotheNewZealandsituation,regulatorycontrolsonfor- TheMinistryforPrimaryIndustries(MPI)inNewZealandiscurrent- estryactivitiesinothercountriesaregenerallymuchmorestringentand lyleadingaprocesstodelivergreaternationalconsistencyintheman- havebeenineffectformuchlonger.InCanadaandtheUSA,forestprac- agementofplantationforestryundertheResourceManagementAct ticesarehighlyregulated,withmostattentionfocusedontimberhar- 1991byimplementingaNationalEnvironmentalStandardforPlanta- vest,roadconstruction,andchemicaluse.InNewZealand,theseare tionForestry(NES-PF).Atpresentforestryismanagedbylocalregional ‘managed’througharangeofgovernmentalactsandindustryguide- councilswiththeresultthatdifferentrulesapplyindifferentregions lines(e.g.,NewZealandEnvironmentalCodeofPracticeforPlantation andthatasingleforestmaybesubjecttodifferentrulesifitcrossesre- Forestry,2007).Alsoasageneralrule,countriessuchastheUSA,Cana- gionalboundaries. da,andpartsofEuroperequireahigherlevelofgeomorphologicalinput AtthecoreoftheNES-PFisanerosionsusceptibilityclassification intoforestplanningandmanagementthanNewZealand(Fanninetal., (ESC)thatdeterminesthesetofrulesforplantationforestryactivities 2007;SchwabandGeertsma,2010).Thisusuallytakestheformofde- coveringthewholeplantationforestlifecycle.Itcategorisesthesuscep- tailedterrainassessment,follow-upfieldinspection,significantengi- tibilitytoerosioninfourclassesfromlowtoveryhighrisk.Thehigher neering design input to roads and construction activities and therisk,thetighterthecontrolofforestryactivities.Thebasisofthe compliancemonitoringofactivities.NewZealandiscatchingupthough, ESCanditsderivationfromaconceptof‘potentialerosion’andland witheffortssuchastheNES-PF,widespreadadoptionofengineeringde- usecapability(LUC)datafromtheNewZealandLandResourceInvento- signinput(NewZealandForestOwnersAssociation,2011),anduseof ry(NZLRI)iscomprehensivelydescribedinBloombergetal.(2011)and erosionandsedimentcontrolplansaspartofharvestplanningallcon- Basheretal.(2014,2015a,2016).Whileelementsofgeomorphological tributingto‘liftingthebar’intermsofforestmanagementandenviron- understandingunderpinpotentialerosionandLUC(slope,rocktype, mentalperformance. erosiontypeandseverity)andhencetheNES-PF,somefundamental difficultiesremain.Theconceptofpotentialerosion(includingpoordef- 5.Thefuture inition of the concept and inadequate description of classification criteria)andthescaleofmappingthatunderpinsit(1:50,000),limit 5.1.Overview itsusefulnessforeffectiveforestmanagement(Bloombergetal.,2011; Mardenetal.,2015;Basheretal.,2015b,2015c). ForestrymakesasignificantcontributiontoNewZealand'seconomy withthesectorbeingthethirdlargestexportearnerwithatotalexport offorestryproductsin2015valuedat$4.8billionandcontributing1.6% toGDP(NewZealandForestOwner'sAssociation,2016).Eventhough forestinvestmenthasdeclinedinrecentyears,thefutureforforestry isstilllookingpromising(PureAdvantage,2016).Plantedforestscan anddoplayasignificantroleinenvironmentalimprovement,notonly intermsofreducederosionbutthroughimprovementsinwaterquality duringtherotation(O'Loughlin,1995;Parkynetal.,2006;Quinnand Phillips,2016),carbonsequestration(McLaren,1996),anderosioncon- trol(Marden,2012).Currentlyradiatapine(PinusradiataD.Don)isthe dominantspeciesmakingup90%oftheplantedproductionforestarea. However,infuture,thismaychangeassocietyviewsmonoculturesas something inherently bad in terms of the environment (Rosoman, 1995)andfinanciallyrisky(Wiltshire,2000),eventhoughmanyexam- plesofnaturallyoccurringmonoculturesexist–NewZealandindigenous beechforests,forexample,tendtobenaturallyoccurringmonocultures (e.g.,McLaren,1996). Aboutone-thirdoftheNewZealandplantationforestestateislocat- edonerodiblesteeplands.Manyoftheseforestswereoriginallyplanted Fig.10.PhotoofdebrisaccumulatingonMidwayBeachinGisborneCityafteralandslide- toprovideasoilandwaterprotectionfunction.Formostoftherotation, triggeringrainstorm.PortofGisborneinbackground,withstacksoflogswaitingforexport torightandleftofwhitebuildings.Photo:BillWheeler. ahighlevelofslopestability,reducederosionandsedimentsupply,and Pleasecitethisarticleas:Phillips,C.,etal.,GeomorphologyandforestmanagementinNewZealand'serodiblesteeplands:Anoverview,Geomor- phology(2017),http://dx.doi.org/10.1016/j.geomorph.2017.07.031 10 C.Phillipsetal./Geomorphologyxxx(2017)xxx–xxx otherbenefitsareconferredbytheseforests(e.g.,Marden,2012).How- debrisflows,tomaintainlocallicensetooperateandmeetinternational ever,whenforestsareharvested,landslideriskinparticularincreases certificationrequirements(e.g.,ForestStewardshipCouncil,2017),and (andthepotentialforrainstormstotriggershallowlandslidesandde- tomanagethelikelyimpactsofclimatechangethatispredictedtoin- brisflowsthatentrainloggingresidues(slash)andcauseimpactsbe- creasetheincidenceoflandslide-triggeringstormsinmanypartsof yondtheforestboundaryrises;Phillipsetal.,2012;Fulleretal.,2016). NewZealandwhereplantationforestsarelocated(Basheretal.,2012). Infuture,wesuggestthatarequirementtoimprovetheassessmentof thatrisktoaidforestmanagementandtofindpracticesthataimtore- ducetheincidenceandconsequencesoftheseeventswillbenecessary 5.3.Datacollectionandterrainanalysistosupportimprovedhazardand (Phillipsetal.,2012).Assuch,weseegeomorphologyandearthscience riskassessmentatdetailedoperationalscales information'sroleinNewZealandforestrylikelytogrowassocietyde- mandsbetterenvironmentalinformationandperformancefromnatu- Inadditiontosupportingthedevelopmentofanerosionsusceptibil- ralresourcesectorindustries. ityclassificationabove,detailedterrainanalysisisalsoneededtosup- Weseethreeareaswhereinformationandunderstandingarestill port improved hazard and risk assessment at detailed operational requiredtosupporttheforestindustry:developmentofanimproved scales(O'Loughlin,2005a;Mardenetal.,2015).Inthelast50years,ex- nationalerosionsusceptibilityclassificationspecificallytosupportthe periencesfromCanadaandtheUSAhaveshownamixofregulationto NES-PF;terrainanalysistosupportimprovedhazardandriskassess- voluntary‘results-basedmanagement’(Wiseetal.,2004)intermsof mentatdetailedoperationalscales;andunderstandingofpost-harvest howlandslideriskmanagementinlandslide-proneterrainrelatingto shallow landslide-debris flows including their prediction and forestpracticesiscarriedout.However,coretothishasbeenlandslide management. hazardidentification,terrainstabilityhazardmapping,andterrainsta- bilityfieldassessmentstoevaluatepotentialorexistingeffectsofforest 5.2.DevelopmentofanimprovednationalESC development on terrain stability. The question for New Zealand is whetherterrainassessmentshouldbemandatoryorvoluntary.Howev- TheESCwasfoundedontheconceptofpotentialerosion.Thiscon- er,eitherway,thegeneralmethodologicalapproachesarelikelytobe ceptwasdevelopedinNewZealandduringanationwidesurveyof similar. landresourcesinthe1970sand1980s.Itwasdefinedas‘thepotential Abasicruleintheapplicationofterrainstabilitymappingprinciples erosionunderanactualorassumedgrasslandcoverwithnosoilconser- isthatanyforestmanagementactivity—notjustharvesting—thatin- vationmeasuresapplied’(NWASCO,1979).Clearlybecausethedefini- creasesthepotentialforgroundwaterorsurfacewatertoenterland- tion refers to grassland, its application to forestry is problematic. slide-prone terrain or unstable slopes and on material created by Whilenoformaldefinitionwaseverpublished,itincorporatedconsid- constructionactivities,increasestheriskofslopefailureorreactivation. erationsofobservedpresentandpasterosion,underlyingsusceptibility Identificationofpartsofthelandscapethatarelandslide-proneorcould toerosion,magnitudeandfrequencyoferosion-causingevents,anddif- becomeunstablefollowingsitedisturbanceisthusakeyrequirement. ficultyofrepairoflandfollowingerosion(Basheretal.,2014).TheESCis Anotherconsiderationofthisapproachwasthattheinformationshould recognisedashavinglimitationsrelatedto:theunderlyingdataitwas bepresentedinaformthatcouldbeeasilyinterpretedforforestanden- derivedfrom;thescaleofmapping;andprobablemisclassificationof vironmentalmanagementplanning.Mappingcanbeattwolevels:re- someland.Becauseofthis,anapproachhasbeendevelopedtomanage connaissanceanddetailed.Theformerisappropriatewhereonlylocal classification changes and incorporate detailed site-level mapping occurrencesofpotentiallyunstableterrainexistwithinextensivestable (Basheretal.,2015b). areas.Thelatterisrecommendedforareasthathavealargeproportion Potentialerosionisnotatermthatisincommonscientificusagenor ofsteeperosion-susceptibleterrainandwheresignificantresources doesithaveacleardefinition,andthereforeitislargelybasedonsubjec- mightbeaffectedbyslopefailure(Mardenetal.,2015). tive judgementandopen tointerpretation errors.Bloomberg etal. Someforestrycompanieshavestartedtodevelopoperationallevel (2011)andBasheretal.(2015c)havearguedthatNewZealandshould hazardidentificationandriskmanagementapproachestotryandbetter developafit-for-purposeriskassessmentforforestmanagementthat managetheriskoflandsliding,woodyresiduemobilisation,anddebris independentlyassessesthreethings: flows.Oftentheseapproachesarepartofenvironmentalmanagement systems(e.g.,RayonierMatarikiForests,2015).Furtherworkisrequired • susceptibility(theunderlyingsusceptibilitytodifferenttypesofero- todevelopimprovedquantitativehazardidentificationandriskman- sionlargelydeterminedbytopography,rocktype,andsoils); agementmethodsthatcanbewidelyappliedandareacceptabletofor- • hazard(thelikelihoodorfrequencyoflandslidesanddebrisflowsthat est companies and to environmental regulators (central and local islargelydeterminedbyclimaticfactors);and governmentagencies).Oneofthemostpressingneedsisforbetter • risk(theconsequencesofthehazardbeingrealised,incorporatingon- data on landslides and debris flows and on the conditions under siteandoff-siteimpacts). whichtheyaretriggeredbecausethemanagementofothererosionpro- cesses(earthflowsandgullying)isbetterunderstood. Underpinningthedevelopmentofimprovedriskmanagementis Basheretal.(2015c)suggestedthatwhatisneededisascreening aneedforbetterdatacollectionontheincidenceandextentofero- tool(basedongeomorphicandclimaticanalysistodeterminewhere sioninforests,particularlypost-harvest.Whilesomelocalexamples detailedsite-levelriskassessmentisrequired)anddevelopmentofan ofdatacollectionontheoccurrenceofpost-harveststorm-induced accepted methodology for site-level risk assessment. They suggest landslidesanddebrisflowsandontherainfallandforestmanage- threepossibleapproaches:quantitativelandslide/debrisflowsuscepti- mentconditions(i.e.,roadingorloglandingrelated)thattriggered bilityzoning,mechanisticslopestabilitymodelling,orterrainstability themexist,nationallevelinformationisstillapriority(Phillipset analysisbysuitablyqualifiedpersonnel.Suchanapproach,incorporat- al.,2012).Thisshouldincludewhatwasaffectedbysuchevents ingareconnaissancescreeningtoolanddetailedsite-levelassessment (e.g.,roads,bridges,communities)andwhatthecostsweretoreme- andbasedonterrainstabilityanalysis,wouldbesimilartotheapproach diate any damage caused. A consistent national monitoring pro- requiredinNorthAmerica(Fanninetal.,2007;SchwabandGeertsma, gramme with clearly set methodology and criteria and a simple 2010)andwouldbeunderpinnedbydetailedgeomorphicunderstand- processtorecordthisdataandreportatregionalandnationallevels ingoftheoccurrenceandsignificanceoflandslidesanddebrisflows.De- would meet this need. It potentially could be incorporated into velopmentofmethodologytoachievethisisurgenttoallayincreasing GeoNet,theNewZealandnationalgeologicalhazardinformationda- communityconcernsabouttheimpactofpost-harvestlandslidesand tabase(Dellow,2001). Pleasecitethisarticleas:Phillips,C.,etal.,GeomorphologyandforestmanagementinNewZealand'serodiblesteeplands:Anoverview,Geomor- phology(2017),http://dx.doi.org/10.1016/j.geomorph.2017.07.031
Description: