Geometry with Trigonometry This page intentionally left blank Geometry with Trigonometry 2nd Edition Patrick D. Barry Professor Emeritus of Mathematics, School of Mathematical Sciences, University College, Cork. “All things stand by proportion.” George Puttenham (1529–1590) “Mathematics possesses not only truth, but supreme beauty – a beauty cold and austere like that of sculpture, and capable of stern perfection, such as only great art can show.” Bertrand Russell in The Principles of Mathematics (1872–1970) Woodhead Publishing is an imprint of Elsevier 80 High Street, Sawston, Cambridge, CB22 3HJ, UK 225 Wyman Street, Waltham, MA 02451, USA Langford Lane, Kidlington, OX5 1GB, UK Copyright © 2016 Elsevier Ltd. All rights reserved. First Published by Horwood Publishing Limited, 2001 Reprinted by Woodhead Publishing Limited, 2014 © P. D. Barry, 2001, 2014. No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying, recording, or any information storage and retrieval system, without permission in writing from the publisher. Details on how to seek permission, further information about the Publisher’s permissions policies and our arrangements with organizations such as the Copyright Clearance Center and the Copyright Licensing Agency, can be found at our website: www.elsevier.com/permissions. This book and the individual contributions contained in it are protected under copyright by the Publisher (other than as may be noted herein). Notices Knowledge and best practice in this field are constantly changing. As new research and experience broaden our understanding, changes in research methods, professional practices, or medical treatment may become necessary. Practitioners and researchers must always rely on their own experience and knowledge in evaluating and using any information, methods, compounds, or experiments described herein. In using such information or methods they should be mindful of their own safety and the safety of others, including parties for whom they have a professional responsibility. To the fullest extent of the law, neither the Publisher nor the authors, contributors, or editors, assume any liability for any injury and/or damage to persons or property as a matter of products liability, negligence or otherwise, or from any use or operation of any methods, products, instructions, or ideas contained in the material herein. ISBN: 978-0-12-805066-8 British Library Cataloguing in Publication Data A catalogue record for this book is available from the British Library Library of Congress Cataloging-in-Publication Data A catalog record for this book is available from the Library of Congress For information on all Woodhead Publishing Publications visit our website at http://store.elsevier.com/ To my late wife Fran, my children Conor, Una and Brian, and my several grandchildren This page intentionally left blank Contents About the author. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xv Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .xvii Glossary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xix 1 Preliminaries 1 1.1 Historicalnote . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Noteondeductivereasoning. . . . . . . . . . . . . . . . . . . . . . 3 1.2.1 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.2.2 Proof . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.3 Euclid’sTheElements . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.3.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.3.2 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.3.3 Postulatesandcommonnotions . . . . . . . . . . . . . . . . . . . . 6 1.3.4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 1.3.5 Congruence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 1.3.6 Quantitiesormagnitudes . . . . . . . . . . . . . . . . . . . . . . . 8 1.4 Ourapproach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 1.4.1 Typeofcourse . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 1.4.2 Needforpreparation . . . . . . . . . . . . . . . . . . . . . . . . . . 9 1.5 Revisionofgeometricalconcepts . . . . . . . . . . . . . . . . . . . 10 1.5.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 1.5.2 Thebasicshapes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 1.5.3 Distance;degree-measure ofanangle . . . . . . . . . . . . . . . . . 15 1.5.4 Ourtreatmentofcongruence . . . . . . . . . . . . . . . . . . . . . 17 1.5.5 Parallellines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 1.6 Pre-requisites . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 1.6.1 Setnotation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 1.6.2 Classicalalgebra . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 1.6.3 Otheralgebra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 1.6.4 Distinctivepropertyofrealnumbersamongfields . . . . . . . . . . 20 2 Basicshapesofgeometry 21 2.1 Lines,segmentsandhalf-lines . . . . . . . . . . . . . . . . . . . . . 21 2.1.1 Plane,points,lines . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 2.1.2 Naturalorderonaline . . . . . . . . . . . . . . . . . . . . . . . . . 22 2.1.3 Reciprocalorders . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 2.1.4 Segments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 2.1.5 Half-lines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 2.2 Openandclosedhalf-planes . . . . . . . . . . . . . . . . . . . . . . 26 2.2.1 Convexsets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 2.2.2 Openhalf-planes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 2.2.3 Closedhalf-planes . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 2.3 Angle-supports, interiorandexteriorregions,angles . . . . . . . . . 28 viii Contents 2.3.1 Angle-supports, interiorregions . . . . . . . . . . . . . . . . . . . . 28 2.3.2 Exteriorregions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 2.3.3 Angles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 2.4 Trianglesandconvexquadrilaterals . . . . . . . . . . . . . . . . . . 30 2.4.1 Terminology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 2.4.2 Triangles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 2.4.3 Pasch’sproperty,1882 . . . . . . . . . . . . . . . . . . . . . . . . . 32 2.4.4 Convexquadrilaterals . . . . . . . . . . . . . . . . . . . . . . . . . 32 3 Distance;degree-measureofanangle 35 3.1 Distance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 3.1.1 Axiomfordistance . . . . . . . . . . . . . . . . . . . . . . . . . . 35 3.1.2 Derivedpropertiesofdistance . . . . . . . . . . . . . . . . . . . . . 36 3.2 Mid-points . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 3.2.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 3.3 Aratioresult . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 3.3.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 3.4 Thecross-bartheorem . . . . . . . . . . . . . . . . . . . . . . . . . 40 3.4.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 3.5 Degree-measureofangles . . . . . . . . . . . . . . . . . . . . . . . 40 3.5.1 Axiomfordegree-measure . . . . . . . . . . . . . . . . . . . . . . 40 3.5.2 Derivedpropertiesofdegree-measure . . . . . . . . . . . . . . . . . 41 3.6 Mid-lineofanangle-support . . . . . . . . . . . . . . . . . . . . . 44 3.6.1 Right-angles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 3.6.2 Perpendicularlines . . . . . . . . . . . . . . . . . . . . . . . . . . 44 3.6.3 Mid-lines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 3.7 Degree-measureofreflexangles. . . . . . . . . . . . . . . . . . . . 46 3.7.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 4 Congruenceoftriangles;parallellines 49 4.1 Principlesofcongruence . . . . . . . . . . . . . . . . . . . . . . . 49 4.1.1 Congruenceoftriangles . . . . . . . . . . . . . . . . . . . . . . . . 49 4.2 Alternateangles,parallellines . . . . . . . . . . . . . . . . . . . . . 53 4.2.1 Alternateangles . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 4.2.2 Parallellines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 4.3 Propertiesoftrianglesandhalf-planes . . . . . . . . . . . . . . . . 55 4.3.1 Side-anglerelationships; thetriangleinequality . . . . . . . . . . . 55 4.3.2 Propertiesofparallelism . . . . . . . . . . . . . . . . . . . . . . . . 56 4.3.3 Droppingaperpendicular . . . . . . . . . . . . . . . . . . . . . . . 56 4.3.4 Projectionandaxialsymmetry . . . . . . . . . . . . . . . . . . . . 57 Contents ix 5 Theparallelaxiom;Euclideangeometry 61 5.1 Theparallelaxiom . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 5.1.1 Uniquenessofaparallelline . . . . . . . . . . . . . . . . . . . . . 61 5.2 Parallelograms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 5.2.1 Parallelogramsandrectangles . . . . . . . . . . . . . . . . . . . . . 62 5.2.2 Sumofmeasuresofwedge-angles ofatriangle . . . . . . . . . . . . 63 5.3 Ratioresultsfortriangles . . . . . . . . . . . . . . . . . . . . . . . 64 5.3.1 Linesparalleltooneside-lineofatriangle . . . . . . . . . . . . . . 64 5.3.2 Similartriangles . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 5.4 Pythagoras’theorem,c.550B.C. . . . . . . . . . . . . . . . . . . . 69 5.4.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 5.5 Mid-linesandtriangles . . . . . . . . . . . . . . . . . . . . . . . . 70 5.5.1 Harmonicranges . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 5.6 Areaoftriangles,andconvexquadrilaterals andpolygons . . . . . . 72 5.6.1 Areaofatriangle . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 5.6.2 Areaofaconvexquadrilateral . . . . . . . . . . . . . . . . . . . . . 75 5.6.3 Areaofaconvexpolygon . . . . . . . . . . . . . . . . . . . . . . . 75 6 Cartesiancoordinates;applications 81 6.1 Frameofreference,Cartesiancoordinates . . . . . . . . . . . . . . 81 6.1.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 6.2 Algebraicnoteonlinearequations . . . . . . . . . . . . . . . . . . 85 6.2.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 6.3 Cartesianequationofaline . . . . . . . . . . . . . . . . . . . . . . 86 6.3.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86 6.4 Parametricequationsofaline . . . . . . . . . . . . . . . . . . . . . 89 6.4.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 6.5 Perpendicularityandparallelismoflines . . . . . . . . . . . . . . . 92 6.5.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92 6.6 Projectionandaxialsymmetry . . . . . . . . . . . . . . . . . . . . 93 6.6.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 6.6.2 Formulaforareaofatriangle . . . . . . . . . . . . . . . . . . . . . 94 6.6.3 Inequalities forclosedhalf-planes . . . . . . . . . . . . . . . . . . . 95 6.7 Coordinatetreatmentofharmonicranges . . . . . . . . . . . . . . . 95 6.7.1 Newparametrisationofaline . . . . . . . . . . . . . . . . . . . . . 95 6.7.2 Interchangeofpairsofpoints . . . . . . . . . . . . . . . . . . . . . 97 6.7.3 Distancesfrommid-point . . . . . . . . . . . . . . . . . . . . . . . 98 6.7.4 Distancesfromend-point . . . . . . . . . . . . . . . . . . . . . . . 98 6.7.5 Constructionforaharmonicrange . . . . . . . . . . . . . . . . . . 99 7 Circles;theirbasicproperties 103 7.1 Intersectionofalineandacircle . . . . . . . . . . . . . . . . . . .103 7.1.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .103 7.2 Propertiesofcircles . . . . . . . . . . . . . . . . . . . . . . . . . .105
Description: