ebook img

Geometry, Topology, and Physics Solution PDF

50 Pages·2016·0.43 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Geometry, Topology, and Physics Solution

SOLUTIONS TO GEOMETRY,TOPOLOGY,PHYSICS BY MIKIO NAKAHARA, 2003. ERNESTYEUNG PermanenthomeofthisNakahara GTP-solutions.texand.pdffilesongithub,https://github.com/ernestyalumni/ mathphysics/blob/master/LaTeX_and_pdfs/Nakahara_GTP-solutions.tex. Go here for the latest version; if youcameherefromanywhereelse(suchasGoogleDrive),thentheversionofsolutionsmostlikelywillbeoutdated. Fromthebeginningof2016,Idecidedtoceaseallexplicitcrowdfundingforanyofmymaterialsonphysics,math. I failed to raise any funds from previous crowdfunding efforts. I decided that if I was going to live in abundance, I must lose a scarcity attitude. I am committed to keeping all of my material open-sourced. I give all my stuff for free. In the beginning of 2017, I received a very generous donation from a reader from Norway who found these notes useful, throughPayPal. Ifyoufindthesenotesuseful, feelfreetodonatedirectlyandeasilythroughPayPal, which won’t go through a 3rd. party such as indiegogo, kickstarter, patreon. Otherwise, under the open-source MIT license, feel free to copy, edit, paste, make your own versions, share, use as you wish. gmail : ernestyalumni linkedin : ernestyalumni tumblr : ernestyalumni twitter : ernestyalumni youtube : ernestyalumni Solutions for Geometry, Topology, and Physics. Mikio Nakahara. Institute of Physics Publishing. 2003. ISBN 0 7503 0606 8 1. Quantum Physics 1.1. Analytical mechanics. 1.1.1. Newtonian mechanics. 1.1.2. Lagrangian formalism. L independent of coordinate q ; q cyclic. k k q (t)→q (t)+δq (t) k k k (cid:90) tf (1) S[q(t),q˙(t)]= L(q,q˙)dt (1.3) ti (cid:90) tf (cid:88) (cid:18)∂L d ∂L(cid:19) (cid:88)(cid:20) ∂L(cid:21)tf δS = δq − + δ =0 k ∂q dt∂q˙ k∂q˙ ti k k k k k ti Note that (cid:90) d ∂L ∂L(cid:12)(cid:12)tf (cid:90) ∂L − δqkdt∂q˙ +δqk ∂q˙ (cid:12)(cid:12) = δq˙k∂q˙ k k ti k with p = ∂L. k ∂q˙k (2) =⇒δq (t )pk(t )=δq (t )pk(t ) k i i k f f since t ,t arbitrary, δq (t)pk(t) independent of t and hence conserved. i f k Date:zima2012. 1 1.1.3. Hamiltonian formalism. Exercise 1.1. A=A(q,p),B(q,p) defined on phase space of H =H(q,p) [A,c B +c B ]=∂ A∂ (c B +c B )−∂ A∂ (c B +c B )= 1 1 2 2 qk pk 1 1 2 2 pk qk 1 1 2 2 =c ∂ A∂ B −c ∂ A∂ B +c ∂ A∂ B −c ∂ A∂ B = 1 qk pk 1 1 pk qk 1 2 qk pk 2 2 pk qk 2 =c [A,B ]+c [A,B ] 1 1 2 2 [A,B]=∂ A∂ B−∂ A∂ B =−(∂ B∂ A−∂ B∂ A)=−[B,A] qk pk pk qk qk pk pk qk [[A,B],C]=∂ (∂ A∂ B−∂ A∂ B)∂ C−∂ (∂ A∂ B−∂ A∂ B)∂ C = qk ql pl pl ql pk pk ql pl pl ql qk =∂2 A∂ B∂ C−∂2 B∂ C∂ A+ qkql pl pk qkql pk pl +∂2 B∂ A∂ C−∂2 A∂ B∂ C+ qkpl ql pk qkpl ql pk +∂2 A∂ C∂ B−∂2 B∂ C∂ A+ pkpl qk ql pkpl qk ql +∂2 B∂ C∂ A−∂2 A∂ C∂ B qlpk qk pl qlpk qk pl =⇒[[A,B],C]+[[C,A],B]+[[B,C],A]=0 (cid:18) (cid:19) (cid:18) (cid:19) (3) dA =(cid:88) dA dq + dA dpk =(cid:88) dA ∂H − dA ∂H =[A,H] (1.23) dt dq dt dp dt dq ∂p dp ∂q k k k k k k k k 1.2. Canonical quantization. 1.2.1. Hilbert space, bras, and kets. 1.2.2. Axioms of canonical quantization. A3. Poisson bracket in classical mechanics is replaced by commutator. (4) [A(cid:98),B(cid:98)]≡A(cid:98)B(cid:98)−B(cid:98)A(cid:98) (1.31) Problems. Problem 1.1. H =(cid:82) dnx(cid:20)1(cid:16)∂φ(cid:17)2+ 1(∇φ)2+V(φ)(cid:21) 2 ∂t 2 If φ time independent, H[φ]=H [φ]+H [φ] 1 2 1(cid:90) H [φ]≡ dnx(∇x)2 1 2 (cid:90) H [φ]≡ dnxV(φ) 2 (1) φ(x)→φ(λx) (∇φ)2 =∂ φ∂jφ=λ−2∂ φ∂iφ=λ−2(∇φ)2 j i ∂ ∂yi ∂ ∂ = =λ ∂xi ∂xi∂yi ∂yi dny =λndnx H [φ]→λn−2H [φ] 1 1 (2) H [φ]→λnH [φ] 2 2 =⇒∂ H =(n−2)H +nH =0 or (2−n)H −nH =0 λ 1 2 1 2 (3) 1.2.3. Heisenberg equation, Heisenberg picture and Schr¨odinger picture. 1.2.4. Wavefunction. 1.2.5. Harmonic oscillator. 1.3. Path integral quantization of a Bose particle. 1.3.1. Path integral quantization. 1.3.2. Imaginary time and partition function. 1.3.3. Time-ordered product and generating functional. 1.4. Harmonic oscillator. 2 1.4.1. Transition amplitude. 1.4.2. Partition function. 1.5. Path integral quantization of a Fermi particle. 1.6. Quantization of a scalar field. 1.7. Quantization of a Dirac field. 1.8. Gauge theories. 1.8.1. Abelian gauge theories. (5) ∇·B =0 (1.241a) ∂B (6) +∇×E =0 (1.241b) ∂t (7) ∇·E =ρ (1.241c) ∂E (8) −∇×B =−j (1.241d) ∂t A =(−φ,A) µ B =∇×A ∂A E = −∇φ (1.242) ∂t Exercise 1.11. ∇·B =0=∂ B =∂ (∇×A) =∂ (cid:15) ∂ A =(cid:15) ∂ ∂ A = i i i i i ijk j k ijk i j k =∂ ∂ A −∂ ∂ A +∂ ∂ A −∂ ∂ A +∂ ∂ A −∂ ∂ A =∂ F +∂ F +∂ F =0 1 2 3 1 3 2 2 3 1 2 1 3 3 1 2 3 2 1 1 23 2 31 3 12 Watch out for convention. (cid:18) (cid:19) ∂ ∂ = ,∇ µ ∂t ∂B +∇×E =∂ (cid:15) ∂ A +(cid:15) ∂ E =(cid:15) ∂ ∂ A +(cid:15) ∂ (∂ A −∂ φ)=(cid:15) ∂ ∂ A +(cid:15) ∂ ∂ A +(cid:15) ∂ ∂ A = ∂t 0 ijk j k ijk j k ijk 0 j k ijk j 0 k k ikj 0 k j ijk j 0 k ijk j k 0 =(cid:15) ∂ ∂ A +(cid:15) ∂ ∂ A +(cid:15) ∂ ∂ A = ikj 0 k j ijk j 0 k ikj j k 0 Fix i. =⇒=∂ ∂ A −∂ ∂ A +∂ ∂ A −∂ ∂ A +∂ ∂ A −∂ ∂ A 0 k j 0 j k j 0 k k 0 j j k 0 k j 0 Exercise 1.12. L=(Dµφ)†(D φ)+m2φ†φ µ φ(cid:48) =e−ieα(x)φ (φ(cid:48))† =φ†eieα(x) A(cid:48) =A −∂ α(x) (1.257) µ µ µ Now easily φ†eieα(x)e−ieα(x)φ=φ†φ D =∂ −ieA µ µ µ D φ=∂ φ−ieA φ µ µ µ ∂ (e−ieαφ)−ie(A −∂ α)e−ieαφ=−e∂ αφe−ieα+e−ieα∂ φ−ieA e−ieαφ+ie∂ αe−ieαφ=e−ieα(x)(D φ) µ µ µ µ µ µ µ µ Dµφ=∂µφ−ieAµφ (Dµφ)† =∂µφ†+ieAµφ† (Dµφ)† →∂µ(φ†eieα)+ie(Aµ−∂µα)φ†eieα =∂µφ†eieα+φ†(ie∂µα)eieα+ieAµφ†eieα−ie∂µαφ†eieα =(Dµφ)†eieα Clearly L is invariant. 3 1.8.2. Non-Abelian gauge theories. 1.8.3. Higgs fields. 1.9. Magnetic monopoles. 1.10. Instantons. 1.10.1. Introduction. 1.10.2. The (anti-)self-dual solution. 2. Mathematical Preliminaries 2.1. Maps. 2.1.1. Definitions. Exercise 2.1. D =[−π/2,π/2], R=[−1.1] f(x)=sin(x) is bijective on D to R Exercise 2.2. f :x→x2, g :→expx f ◦g(x)=exp(2x) g◦f(x)=expx2 Exercise 2.3. Consider f(x)=f(y) gf(x)=x=gf(y)=y =⇒x=y f injective. ∀x∈X, x=g◦f(x)=g(f(x))=g(y) since f :X →Y. so ∃y ∈Y, s.t. g(y)=x g surjective. Exercise 2.4. a−1 :En →En R−1(x)=RTxR−1R(x)=RTRx=1x=x a−1(x)=x−a RR−1(x)=RRTx=1x=x a−1a(x)=(x+a)−a=x (RTR) =RTR =R R =δ ij ik kj ki kj ij aa−1(x)=(x−a)+a=x (RRT) =R RT =R R =RTRT =δ ij ik kj ik jk ki kj ij 20120306 check above. (R,a)(x)=Rx+a (R,a)−1(x)=RT(x−a) (Ra)−1Ra(x)=RT(Rx+a−a)=x (Ra)(Ra)−1(x)=R(RT(x−a))+a=x 2.1.2. Equivalence relation and equivalence class. Exercise 2.5. m∼m since m = m 2 2 m∼n. Then n∼m since remainder of n by 2 is the same as the remainder of m divided by 2. m∼n, n∼p. m∼p since remainder of m by 2 is the same as the remainder of m by 2 which is the same as the remainder of p by 2. Exercise 2.6. H ={τ ∈C|Imτ ≥0} (cid:18) (cid:19) a b SL(2,Z)≡{ |a,b,c,d∈Z, ad−bc=1} c d (cid:18) (cid:19) a b τ ∼τ(cid:48) if ∃A= ∈SL(2,Z) s.t. τ(cid:48) = aτ+b c d cτ+d Note that (cid:18) (cid:19)(cid:18) (cid:19) (cid:18) (cid:19) a b τ aτ +b = c d 1 cτ +d (cid:18) (cid:19)(cid:18) (cid:19) (cid:18) (cid:19) 1 τ τ τ ∼τ since = 1 1 1 4 (cid:18) (cid:19) d −b If τ ∼τ(cid:48) s.t. τ(cid:48) = aτ+b. Consider cτ+d −c a τ(cid:48) ∼τ since (cid:16) (cid:17) (cid:18) d −b(cid:19)(cid:18)τ(cid:48)(cid:19) (cid:18) dτ(cid:48)−b (cid:19) dτ(cid:48)−b d acττ++db −b adτ −bcτ = = = =τ −c a 1 −cτ(cid:48)+a −cτ(cid:48)+a −c(cid:16)aτ+b(cid:17)+a ad−bc cτ+d Given τ ∼τ(cid:48), τ(cid:48) ∼τ(cid:48)(cid:48) (cid:18)a b(cid:19)(cid:18)τ(cid:19) (cid:18)τ(cid:48)(cid:19) = c d 1 1 (cid:18)e f(cid:19)(cid:18)a b(cid:19)(cid:18)τ(cid:19) (cid:18)τ(cid:48)(cid:48)(cid:19) (cid:18)ae+cf be+df(cid:19)(cid:18)τ(cid:19) =⇒ = = (cid:18)e f(cid:19)(cid:18)τ(cid:48)(cid:19) (cid:18)τ(cid:48)(cid:48)(cid:19) g h c d 1 1 ag+ch bg+dh 1 = g h 1 1 (ae+cf)(bg−dh)−(ag+ch)(be+df)=abeg+adeh+bcfg+cdfh−abeg−adfg−bceh−cdfh=1 Example 2.6. g ∼g(cid:48) if ∃h∈H s.t. g(cid:48) =gh [g]={gh|h∈H}≡gH (left) coset. quotient space ≡G/H if H normal subgroup of G, ghg−1 ∈H, ∀g ∈G, h∈H, then G/H quotient group. Since (g(cid:48))−1hg(cid:48) =h(cid:48)(cid:48) ∈H =⇒hg(cid:48) =g(cid:48)h(cid:48)(cid:48) =⇒ghg(cid:48)h(cid:48) =gg(cid:48)h(cid:48)(cid:48)h(cid:48) =gg(cid:48)h(cid:48)(cid:48)(cid:48) [g][g(cid:48)]=[gg(cid:48)] well-defined. Note [e], [g]−1 =[g−1] Exercise 2.7. a,b∈G conjugate to each other, a(cid:39)b, if ∃g ∈G s.t. b=gag−1 a(cid:39)a since a=eae−1 =a If a(cid:39)b, g−1bg =a and g−1 ∈G, so b(cid:39)a. If a(cid:39)b and b(cid:39)c, then c=hbh−1, so c=hgag−1h−1 and (hg)−1 =g−1h−1. 2.2. Vector spaces. 2.2.1. Vectors and vector spaces. 2.2.2. Linear maps, images and kernels. Theorem 1 (2.1). If linear f :V →W, dimV =dim(kerf)+dim(imf) Proof. kerf, imf vector spaces. Let basis of kerf be {g ...g } 1 r basis of imf be {h(cid:48) ...h(cid:48)} 1 s ∀i(1≤i≤s), h ∈V s.t. f(h )=h(cid:48) i i i Consider {g ...g ,h ...h } 1 r 1 s Let arbitrary v ∈V f(v)∈imf, so f(v)=cih(cid:48) =cif(h ) i i by linearity f(v−cih )=0, i so v−cih ∈kerf i so ∀ arbitrary v ∈V, v linear combination of {g ...g ,h ...h } (cid:3) 1 r 1 s Exercise 2.8. 5 (1) If x ,x ∈kerf, then for x +x 1 2 1 2 by linearity of f, f(x +x )=f(x )+f(x )=0+0=0 =⇒x +x ∈kerf 1 2 1 2 1 2 f(cx )=cf(x )=0 =⇒cx ∈kerf 1 1 1 Under closure of addition and multiplication, kerf is a vector space. If w , w ∈imf, 1 2 w =f(x ) 1 1 for some x ,x ∈V 1 2 w =f(x ) 2 2 w +w =f(x )+f(x )=f(x +x )∈imf since f linear and since x +x ∈V 1 2 1 2 1 2 1 2 cw =cf(x )=f(cx )∈imf since cx ∈V 1 1 1 1 (2) If f :V →V isomorphism, f bijective. f(0)=0 always for a linear map. Consider x∈kerf. So f(x)=0. f(x)=f(0), so x=0. Since f linear, if f(x)=f(y), f(x)−f(y)=f(x−y)=0. Since kerf =0, x−y =0 so x=y. f bijective so f an isomorphism. 2.2.3. Dual vector space. f(v)=f αi(vje )=f vjαi(e )=f vi (2.12) i j i j i Use notation (cid:104),(cid:105):V∗×V →K f :V →W g :W →K g ∈W∗ g◦f :V →K (Note g◦f on V, key observation) g◦f ≡h∈V∗ h(v)≡g(f(v)) v∈V (2.13) Given g ∈W∗, f :V →W induces map h∈V∗ f∗ :W∗ →V∗ f∗ :g (cid:55)→h=f∗(g)=g◦f h is the pullback of g by f∗ Exercise 2.9. Given f =Ake , i i k αjf =Akαje =Aj i i k i βjAi =βjαif =αi =⇒αi =βjAi j j j 2.2.4. Inner product and adjoint. isomorphism g :V →V∗, g ∈GL(m,K) g :vj →g vj (2.14) ij g(v ,v )≡(cid:104)gv ,v (cid:105) 1 2 1 2 g(v ,v )=vig vj (2.16) 1 2 1 ji 2 W =W(n,R), {f } basis G:W →W∗ α Given f :V →W adjoint of f, f(cid:101) G(w,fv)=g(v,f(cid:101)w) (2.17) where v ∈V, w ∈W wαGαβfβivi =vigijf(cid:101)jαwα (2.18) Gαβfβi =gijf(cid:101)jα f(cid:101)=g−1ftGt (2.19) Exercise 2.10. (cf. wikipedia, “Rank”) Consider a m×n matrix A with column rank A (maximum number of linearly independent column vectors of A). dim. of column space of A=r. Then let c ...c basis. 1 r Place c ’s as column vectors to form m×r matrix C =[c ...c ] i 1 r 6 ∃r×m matrix R s.t. A=CR. r i=1...r ij j =1...m A = CR, so ∀ row vector of A is a linear combination of row vectors of R, so row space of A contained in row space of R. row rank A≤ row rank R. R has r rows, a =c r j =1...n. row rank R≤r = column rank A ij ik kj row rank A≤ column rank A row rank AT ≤ column rank AT =⇒ row rank A= column rank A or rank(A)=rank(AT) Likewise for NfM by following the same arguments. Exercise 2.11. (a) g(v ,v )=vig vj 1 2 1 ij 2 g(v ,v )=vig vj =vig vj =vjg vi =g(v ,v ) 2 1 2 ij 1 2 ij 1 1 ji 2 1 2 g(v,f(cid:101)w)=vigijf(cid:101)jkwk =G(w,fv)=wαGαβfβγvγ =wαGαβfβγvγ =Gkβfβiviwk =⇒gijf(cid:101)jk =Gkβfβi =fi†βG†βk =⇒f(cid:101)=g−1f†G† (b) 2.2.5. Tensors. tensor T of type (p,q) maps p dual vectors and q vectors to R p q (cid:79) (cid:79) (9) T : V∗ V →R Exercise 2.12. f :V →W, so f(v)∈W. f(v)=w Then tensor identified with dual vector of W∗. Since f :V, Then (1,1). 2.3. Topological spaces. 2.3.1. Definitions. Exercise 2.13. τR ={(a,b)|a,b∈{R,±∞}} (cid:84)∞n=1(a,b+ n1)=(a,b]. Then {b}∈τR, ∀b∈R. So then ∀ subset Y ⊂X is open. Discrete topology. 2.3.2. Continuous maps. Exercise 2.14. If f :R→R then (−(cid:15),+(cid:15))(cid:55)→[0,(cid:15)2] f(x)=x2 2.3.3. Neighborhoods and Hausdorff spaces. Exercise 2.15. Let X ={John,Paul,Ringo,George}. U =∅ 0 (cid:91) U U =U U ={John} 1 2 2 1 U U =U U ={John,Paul} 1 2 1 2 U =X 3 Consider John and Ringo. Only neighborhood with open set is X for Ringo. Then XU (cid:54)=∅ John Exercise 2.16. ∀a,b, consider (cid:0)3a−b,a+b(cid:1), (cid:0)b+a,3b−a(cid:1) 2 2 2 2 7 2.3.4. Closed set. 2.3.5. Compactness. 2.3.6. Connectedness. 2.4. Homeomorphisms and topological invariants. 2.4.1. Homeomorphisms. 2.4.2. Topological invariants. Exercise 2.18. f :S1 →E f(x,y)=(ax,by) ff−1 =f−1f =1 bijective and cont. (cid:16)x y(cid:17) f−1(x,y)= , a b 2.4.3. Homotopy type. 2.4.4. Euler characteristic: an example. 3. Homology Groups 3.1. Abelian groups. 3.1.1. Elementary group theory. e.g. f :Z→Z ={0,1} 2 f(2n)=0 f(2n+1)=1 homomorphism f(2m+1+2n)=f(2(m+n)+1)=1=1+0=f(2m+1)+f(2n) kZ≡{kn|n∈Z}, k ∈N subgroup of Z, Z ={0,1} not a subgroup. 2 Let H subgroup of G, ∀x,y ∈G, x∼y if x−y ∈H group operation in G/H naturally induced: [x]+[y]=[x+y] G/H group since H always a normal subgroup of G. aH =Ha∀a∈G if aH =Ha ∀a∈G, normal indeed. aH =a+x−y =x−y+a=Ha (since G abelian) If H =G, 0−x∈G, ∀x∈G, G/G={0} If H ={0}, G/H =G since x−y =0 iff x=y Ex. 3.1. Let us work out the quotient group Z/kZ. km−kn=k(m−n)∈kZ [km]=[kn] ∀j, 1≤j ≤k−1, (km+j)−(kn+j)=k(m−n)∈kZ. [km+j]=[kn+j] ∀j,l,0≤j,l≤k−1,j (cid:54)=l,(km+j)−(kn+l)=k(m−n)+(j−l)∈/ kZ. Neverbelongtothesameequivalenceclass. =⇒Z.kZ={[0],...,[k−1]}. Define isomorphism ϕ:Z/kZ→Zk, then Z/kZ(cid:39)Zk ϕ([j])=j Lemma 1 (3.1). Let f :G →G homomorphism. Then 1 2 (a) kerf ={x|x∈G ,f(x)=} subgroup of G. Note: kerf normal subgroup of G , 1 1 f(gxg−1)=f(g)f(x)f(g−1)=1∀g ∈G, x∈kerf =⇒kerf normal subgroup (b) imf ={x|x∈f(G )⊂G } subgroup of G 1 2 2 Proof. (a) Let x,y ∈kerf xy ∈kerf since f(xy)=f(x)f(y)=1·1=1 Note 1∈kerf since f(1)=f(1·1)=f(1)f(1)=⇒f(1)=1 x−1 ∈kerf since f(x−1·x)=f(x−1)f(x)=f(x−1)1=f(1)=1 f(x−1)=1 8 (b) Let y1 =f(x1) y1,y2 ∈im(f) y =f(x ) x ,x ∈G 2 2 1 2 1 y y =f(x )f(x )=f(x x ) x x ∈G y y ∈imf 1 2 1 2 1 2 1 2 1 1 2 1∈imf since f(1)=1(or f(x )=f(x ·1)=f(x )f(1); so f(1)=1 and 1∈imf) 1 1 1 1=f(xx−1)=f(x)f(x−1)=yf(x−1)=⇒f(x−1)=y−1 and y−1 ∈imf since x−1 ∈G (cid:3) Theorem 2 (3.1). (Fundamental Thm. of homomorphism) G /kerf (cid:39)imf 1 Proof. By Lemma 3.1, both sides are groups. (cid:3) x(cid:48) =x+h Define. ϕ:G1/kerf →imf. ϕ well-defined since ∀x(cid:48) ∈[x], ∃h∈kerf s.t. f(x(cid:48))=f(x)f(h)=f(x) ϕ([x])=f(x) ϕ([x]+[u])=ϕ([x+y])=f(x+y)=f(x)+f(y)=ϕ([x])+ϕ([y]) ϕ 1-to-1: if ϕ([x])=ϕ([y]), then f(x)=f(y) or f(x)−f(y)=f(x−y)=0. x−y ∈kerf so [x]=[y] ϕ onto: if y ∈imf, ∃x∈G s.t. f(x)=y =ϕ([x]) 1 3.1.2. Finitely generated Abelian groups and free Abelian groups. Lemma 2 (3.2). Let G be free Abelian group of rank r, G={n x +···+n x |n ∈Z, 1≤i≤r, n x +···+n x =0 only if n =···=n =0}≡ free Abelian group of rank r 1 1 r r i 1 1 r r 1 r Let subgroup H. Choose p generators x ...x of r generators of G so generate H. 1 p H (cid:39)k Z⊕···⊕k Z and H rank p 1 p Proof. f :Z⊕···⊕Z→G (cid:124) (cid:123)(cid:122) (cid:125) m f(n ...n )=n x +···+n x (surjective homomorphism) 1 m 1 1 m m From Thm. 3.1. Z⊕···⊕Z/kerf (cid:39)G (cid:124) (cid:123)(cid:122) (cid:125) m kerf subgroup of Z⊕···⊕Z, so Lemma 3.2, kerf (cid:39)k ZZ⊕···⊕k Z 1 p (cid:124) (cid:123)(cid:122) (cid:125) m G(cid:39)Z⊕···⊕Z/kerf (cid:39)Z⊕···⊕Z/(k Z⊕···⊕k Z)(cid:39)Z⊕···⊕Z⊕Z ⊕···⊕Z (cid:124) (cid:123)(cid:122) (cid:125) (cid:124) (cid:123)(cid:122) (cid:125) 1 p (cid:124) (cid:123)(cid:122) (cid:125) k1 kp m m m−p (cid:3) 3.2. Simplexes and simplicial complexes. 3.2.1. Simplexes. number of q-faces in r-simplex is (cid:0)r+1(cid:1) q+1 r+1 p ...p pts., choose p ...p pts. 0 r i0 iq 3.2.2. Simplicial complexes and polyhedra. Example 3.5. Fig. 3.5(b) not a triangulation of a cylinder. σ =(cid:104)p p p (cid:105) 2 0 1 2 σ(cid:48) =(cid:104)p p p (cid:105) 2 2 3 0 σ σ(cid:48) (cid:54)=∅ 2 2 σ σ(cid:48) =(cid:104)p (cid:105)(cid:83)(cid:104)p (cid:105) σ σ(cid:48) is not an actual face. 2 2 0 2 2 2 3.3. Homology groups of simplicial complexes. 3.3.1. Oriented simplexes. 9 3.3.2. Chain group, Cycle group and boundary group. Definition 1 (3.2). r-chain group C (K) of simplicial complex K is free Abelian group generated by oriented r r-simplexes of K element of C (K) is r-chain. r Let I r- simplexes in K, σ (1≤i≤I ) r r,i r (cid:88)Ir (10) c= c σ c ∈Z, coefficients of c (3.15) i r,i i i=1 (cid:88) c= c σ addition of 2 r-chains i r,i c+c(cid:48) =(cid:80) (c +c(cid:48))σ (3.16) i i i i r,i (cid:88) c(cid:48) = c(cid:48)σ i r,i i (cid:80) inverse −c= (−c )σ i i r,i (11) C (K)(cid:39)Z⊕···⊕Z (3.17) free Abelian group of rank I r r (cid:124) (cid:123)(cid:122) (cid:125) Ir 0-simplex has no boundary: ∂ p =0 (3.18) 0 0 Fig. 3.7(a) oriented 1 simplex. ∂ (p p )+∂ (p p )=p −p +p −p =p −p =∂ (p p ) 1 0 1 1 1 2 1 0 2 1 2 0 1 2 0 Fig. 3.7(b) triangle. ∂ (p p )+∂ (p p )+∂ (p p )=p −p +p −p +p −p =0 1 0 1 1 1 2 1 2 0 1 0 2 1 0 2 Let σ (p ...p ) oriented r-simplex. r 0 r r (cid:88) (12) ∂ σ ≡ (−1)i(p p ...p ...p ) (3.20) r r 0 1 (cid:98)i r i=0 K ≡n-dim. simplicial complex. chain complex C(K). i inclusion map i:0(cid:44)→C (K) n (13) 0→−i C (K)−∂→n C (K)−∂−n−−→1 ...−∂→2 C (K)−∂→1 C (K)−∂→0 0 (3.23) n n−1 1 0 Definition 2 (3.3). If c∈C (K), ∂ c=0, c r-cycle. r r Z (K)={c|∂ c=0}=ker∂ ≡r−cycle group r r r if r =0, ∂ c=0, Z (K)=C (K) 0 0 0 Definition 3 (3.4). If ∃d∈C (K), c=∂ d (3.25), c r-boundary r+1 r+1 B (K)=im∂ ≡r−boundary group B (K)=0 r r+1 n Theorem 3 (3.3). (14) B (K)⊂Z (K) (⊂C (K)) (3.27) r r r Proof. ∀c∈B (K), ∃d∈c (K) s.t. c=∂ d ∂ c=∂ ∂ d=0(Lemma 3.3, ∂2d=0) c∈Z (K) r r+1 r+1 r r r+1 r (cid:3) 10

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.