ebook img

Geometry, Teacher's Edition PDF

399 Pages·2012·4.42 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Geometry, Teacher's Edition

Geometry Teacher’s Edition Jen Kershaw, (JenK) Melissa Kramer, (MelissaK) Teresa Zwack, (TeresaZ) SayThankstotheAuthors Clickhttp://www.ck12.org/saythanks (Nosigninrequired) www.ck12.org iii AUTHORS Jen Kershaw,(JenK) To access a customizable version of this book, as well as other Melissa Kramer,(MelissaK) interactivecontent,visitwww.ck12.org Teresa Zwack, (TeresaZ) CK-12 Foundation is a non-profit organization with a mission to reduce the cost of textbook materials for the K-12 market both in the U.S. and worldwide. Using an open-content, web-based collaborative model termed the FlexBook®, CK-12 intends to pioneerthegenerationanddistributionofhigh-qualityeducational content that will serve both as core text as well as provide an adaptiveenvironmentforlearning,poweredthroughtheFlexBook Platform®. Copyright©2012CK-12Foundation,www.ck12.org The names “CK-12” and “CK12” and associated logos and the terms “FlexBook®” and “FlexBook Platform®” (collectively “CK-12 Marks”) are trademarks and service marks of CK-12 Foundation and are protected by federal, state, and international laws. Any form of reproduction of this book in any format or medium, in whole or in sections must include the referral attribution link http://www.ck12.org/saythanks (placed in a visible location) in additiontothefollowingterms. Except as otherwise noted, all CK-12 Content (including CK-12 Curriculum Material) is made available to Users in accordance with the Creative Commons Attribution/Non- Commercial/Share Alike 3.0 Unported (CC BY-NC-SA) License (http://creativecommons.org/licenses/by-nc-sa/3.0/), as amended and updated by Creative Commons from time to time (the “CC License”),whichisincorporatedhereinbythisreference. Completetermscanbefoundathttp://www.ck12.org/terms. Printed: June29,2012 iv www.ck12.org Contents 1 GeometryTE-TeachingTips 1 1.1 BasicsofGeometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.2 ReasoningandProof . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 1.3 ParallelandPerpendicularLines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 1.4 CongruentTriangles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 1.5 RelationshipsWithinTriangles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 1.6 Quadrilaterals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 1.7 Similarity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 1.8 RightTriangleTrigonometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 1.9 Circles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 1.10 PerimeterandArea . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 1.11 SurfaceAreaandVolume . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 1.12 Transformations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 2 GeometryTE-CommonErrors 67 2.1 BasicsofGeometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 2.2 ReasoningandProof . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 2.3 ParallelandPerpendicularLines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 2.4 CongruentTriangles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 2.5 RelationshipsWithinTriangles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 2.6 Quadrilaterals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 2.7 Similarity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 2.8 RightTriangleTrigonometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109 2.9 Circles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116 2.10 PerimeterandArea . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122 2.11 SurfaceAreaandVolume . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128 2.12 Transformations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134 3 GeometryTE-Enrichment 140 3.1 BasicsofGeometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141 3.2 ReasoningandProof . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148 3.3 ParallelandPerpendicularLines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155 3.4 CongruentTriangles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161 3.5 RelationshipsWithinTriangles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168 3.6 Quadrilaterals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175 3.7 Similarity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182 3.8 RightTriangleTrigonometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189 3.9 Circles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196 3.10 PerimeterandArea . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203 3.11 SurfaceAreaandVolume . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209 3.12 Transformations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216 Contents www.ck12.org v 4 GeometryTE-DifferentiatedInstruction 223 4.1 BasicsofGeometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224 4.2 ReasoningandProof . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 232 4.3 ParallelandPerpendicularLines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 239 4.4 CongruentTriangles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 246 4.5 RelationshipsWithinTriangles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 253 4.6 Quadrilateral . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 260 4.7 Similarity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 267 4.8 RightTriangleTrigonometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 274 4.9 Circles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 281 4.10 PerimeterandArea . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 289 4.11 SurfaceAreaandVolume . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 295 4.12 Transformations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 302 5 GeometryTE-ProblemSolving 310 5.1 BasicsofGeometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 311 5.2 ReasoningandProof . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 318 5.3 ParallelandPerpendicularLines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 325 5.4 CongruentTriangles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 332 5.5 RelationshipswithinTriangles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 339 5.6 Quadrilaterals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 346 5.7 Similarity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 353 5.8 RightTriangleTrigonometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 360 5.9 Circles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 367 5.10 PerimeterandArea . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 374 5.11 SurfaceAreaandVolume . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 380 5.12 Transformations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 387 Contents www.ck12.org 1 C 1 HAPTER Geometry TE - Teaching Tips Chapter Outline 1.1 BASICS OF GEOMETRY 1.2 REASONING AND PROOF 1.3 PARALLEL AND PERPENDICULAR LINES 1.4 CONGRUENT TRIANGLES 1.5 RELATIONSHIPS WITHIN TRIANGLES 1.6 QUADRILATERALS 1.7 SIMILARITY 1.8 RIGHT TRIANGLE TRIGONOMETRY 1.9 CIRCLES 1.10 PERIMETER AND AREA 1.11 SURFACE AREA AND VOLUME 1.12 TRANSFORMATIONS Chapter1. GeometryTE-TeachingTips 2 www.ck12.org 1.1 Basics of Geometry Points, Lines, and Planes Pacing: Thislessonshouldtakeapproximatelythreeclassperiods. Goal: Thislessonintroducesstudentstothebasicprinciplesofgeometry. Studentswillbecomefamiliarwiththree primary undefined geometric terms and how these terms are used to define other geometric vocabulary. Finally, studentsareintroducedtotheconceptofdimensions. Study Skills Tips! Start your students off on the correct foot – vocabulary is a necessity in geometry success! Devote five minutes of each class period to creating flash cards of the major terminology of this text. Use personal whiteboards to perform quick vocabulary checks. Or, better yet, visit Discovery School’s puzzle maker and make yourownwordsearchesandcrosswords(http://puzzlemaker.discoveryeducation.com/)! Language Arts Connection! To give an example of why some words are undefined, use the concept of circularity. Students use a dictionary, either electronic or paper (yes, they are still printed!) to complete this activity. Ask students to look up the word point in their reference. Find a key word in that definition. Students should continue thisprocessuntilthewordpoint isfound. Repeatthisprocessforlineandplane. Therationalebehindthisactivity is for students to see there is no one way to define these geometric terms, thus allowing them to be undefined but recognizable. Real World Connection! Have students identify real-life examples of points, lines, planes in the classroom, as well as sets of collinear and coplanar. For example, points could be chairs, lines could be the intersection of the ceiling andwall,andthefloorisagreatmodelofaplane. Ifyourchairsarefour-legged,thisisafantasticexampleofwhy 3pointsdetermineaplane,notfour. Fourleggedchairstendtowobble,while3−leggedstoolsremainstable. Tohelpstudentsunderstanddimension,usethefollowingtable: TABLE 1.1: Zero-dimensional 1-dimensional(length) 2-dimensional(lengthand 3-dimensional (length, width) width,andheight) Have studentswrite abstractexamples of eachdimension (point, line, plane, prism, etc) inthe first row. Then have studentsbrainstormreal-lifeexamplesofeachdimension. Completethetablebygatheringtheresponsesofvarious students. Segments and Distances Pacing: Thislessonshouldtakeoneclassperiod Goal: Students should be familiar with using rulers to measure distances. This lesson incorporates geometric postulatesandpropertiestomeasurement,suchastheSegmentAdditionProperty. RealWorldConnection! Toreviewtheconceptofmeasurement,useamapofyourcommunity. Labelseveralthings on your map important to students – high school, grocery store, movie theatre, etc. Have students practice finding 1.1. BasicsofGeometry www.ck12.org 3 thedistancesbetweenlandmarks“asthecrowflies.” Extension! Discusswithyourstudentstherationaleofusingdifferentunitsofdistance–inch,foot,centimeter,mile, etc. Why are things measured in inches as opposed to fractional feet? This is also a great time to introduce the differencebetweenthemetricsystemandtheU.S.measurementsystem. Havestudentsperformresearchregarding whytheUnitedStatescontinuestouseitssystemwhilethemajorityofothercountriesusethemetricsystem. Provide prosandconstousingeachtypeofsystem. Funtip! Havestudentsdevisetheirownmeasurementdevice. Studentscanusetheirinventiontomeasureaschool hallway,parkinglot,orfootballfield. Engageinawhole-classdiscussionregardingtheresults. Refresher! Studentsmayneedarefresherregardingmultiplyingunits. Havethestudentswriteoutthecompleteunit, asonpage18,andshowstudentshowunitscanbecross-canceled. Look out! While the Segment Addition Property seems simple, students begin to struggle once proofs come into play. Remind students that the Segment Addition Property allows an individual to combine smaller measurements ofalinesegmentintoitswhole. Rays and Angles Pacing: Thislessonshouldtakeoneclassperiod Goal: Thislessonintroducesstudentstoraysandanglesandhowtouseaprotractortomeasureangles. Severalreal worldmodelsareusedtoillustratetheconceptsofangles. Real World Connection! Have students Think-Pair-Share their answers to the opening question, “Can you think of otherreal-lifeexamplesofrays?”Chooseseveralgroupstosharewiththeclass. Notation Tip! Beginning geometry students may get confused regarding the ray notation. Draw rays in different directions so students become comfortable with the concept that ray notation always points to the right, regardless ofthedrawnray’sorientation. Teaching Strategy! Using a classroom sized protractor will allow students to check to make sure their calculations arethesameasyours. Betteryet, useanoverheadprojectorordigitalimagertodemonstratetheproperwaytouse aprotractor. TeachingStrategy! Agoodhabitforstudentsistonameanangleusingofallthreeletters. Thisbecomesimportant whenlabelingverticesoftrianglesandlabelingsimilarandcongruentfiguresusingthesimilaritystatement. Further- more,stresstostudentstheuseofdoubleandtriplearcstodenoteanglesofdifferentmeasurements. Studentscanget caughtupinthemassamountsofnotationandforgetthisimportantconcept,especiallyduringtrianglecongruency. StresstheparallelismbetweentheSegmentAdditionPropertyandAngleAdditionProperty. Studentswilldiscover thatmanygeometricaltheoremsandpropertiesarequitesimilar,withperhapsonewordschanged. Yet,themeaning remainsthesame. ArtsandCraftsTime! Havestudentstakeapieceofpaperandfolditatanyangleoftheirchoosingfromthecorner of the paper. Open the fold and refold the paper at a different angle, forming two “rays” and three angles. Show howtheangleadditionpropertycanbeusedbyaskingstudentstomeasuretheircreatedanglesandfindingthesum –theyshouldequal90degrees! Physical Models! The angle formed at a person’s elbow is a useful physical model of angles. Have the students puttheirarmstraightout, illustratingastraightangle. Thenhavethestudentgraduallyturntheirarmup(ordown) gradually to demonstrate how the degree changes. Use several students as examples to show that the length of the forearmandbicepdonotchangetheanglemeasurement. Chapter1. GeometryTE-TeachingTips 4 www.ck12.org Segments and Angles Pacing: Thislessonshouldtakeonetooneandone-halfclassperiods Goal: Thelessonintroducesstudentstotheconceptofcongruencyandbisectors. Studentswillusealgebratowrite equivalencestatementsandsolveforunknownvariables. Have Fun! Have students do a call-back, similar to what cheerleaders do. You call out “AB” and students would retort, “The distance between!” Continue this for several examples so students begin to see the difference between thedistancenotationandsegmentnotation. This is a great lesson for students to create a “dictionary” of all the notation and definitions learned thus far. In additiontotheflashcardsstudentsaremaking,thedictionaryprovidesaninvaluablereferencebeforeassessments. WhenteachingtheMidpointPostulate,reiteratetostudentsthatthisreallyisthearithmeticaverageoftheendpoints, incorporatingalgebraandstatisticsintothelesson. Visualization! Studentshavenotlearnedaboutaperpendicularbisector. HavestudentscompleteExample3without usingtheirtextsasguides. Havestudentsshowtheirbisectors. Hopefullyyourclasswillconstructmultiplebisectors, not simply those that are perpendicular. This helps students visualize that there are an infinite amount of bisectors, butonlyonethatisperpendicular. FunTip! Tovisualizetheanglecongruencetheoremandprovideameansofassessingtheabilitytouseaprotractor, give students entering your class an angle measure on a slip of paper (the measurements should repeat). Have the students construct the angle as a warm up. Then have the students find their “matching” partner and check their partner’sangleusingaprotractor. Physical Models! Once students have reviewed Example 5, have them copy the angle onto a sheet of notebook paper or patty paper and measure the degree of the bisector. Students will construct a fold at that particular angle measurementtoseetheanglebisectorray. RealLifeApplication! Anothermethodofillustratinganglebisectorsistoshowacompassrose,asshownbelow. http://commons.wikimedia.org/wiki/File:Compass_rose_browns_00.svg StudentscanseehowdirectionssuchasSWS,NNW,etcbisectthetraditionalfour-cornerdirections. Angle Pairs Pacing: Thislessonshouldtakeonetooneandone-halfclassperiods 1.1. BasicsofGeometry www.ck12.org 5 Goal: Anglepairsareimperativetogeometry. Thislessonintroducesstudentstocommonanglepairs. Inquiry Learning! Students should be encouraged to learn through self-discovery whenever possible. To illustrate the concept of the Linear Pair Postulate, offer several examples of linear pairs. Have students measure each angle andfindthesumofthelinearpair. Studentsshoulddiscoveranylinearpairofanglesissupplementary. To further illustrate the idea of vertical angles, extend the adjacent ray of the previous linear pairs to a line. Have studentsrepeattheprocessofmeasuringtheangles, notatingthelinearpairs. Studentswillcometotheconclusion thattheanglesoppositeinthe[U+0080][U+009C]X[U+0080][U+009D]areequal. Students tend to get confused with the term vertical, as in vertical angles. Vertical angles are named because the anglesshareavertex,notnecessarilybecausetheyareinaverticalmanner. InterdisciplinaryConnection! NASAhasdevelopedmanylessonplansthatinfusescience, technology, andmathe- matics. Thefollowinglinkwilltakeyoutoalessonplanincorporatingtheseasonsandverticalangles. http://sunea rthday.nasa.gov/2005/educators/AOTK_lessons.pdf Classifying Triangles Pacing: Thislessonshouldtakeoneclassperiod Goal: Students have previously experienced triangle terminology: scalene, equilateral, isosceles. This lesson incorporatesthesetermswithotherdefiningcharacteristics. InClassActivity: Givepairsofstudentsthreerawpiecesofspaghetti(youcanalsousenon-bendystraws). Instruct onepartnertorecreatethebelowtablewhilethesecondmakestwobreaksinthespaghetti. Itisokayifsomebreaks away! Thestudentsaretomeasurethethreepiecesformedbythetwobreaksandattempttoconstructatriangleusingthese segments. Students will reach the conclusion that the sum of two segments must always be larger than the third if a triangle is to be formed. The Triangle Inequality Theorem can be found in the lesson entitled Inequalities in Triangles TABLE 1.2: Segment1Length(incm) Segment2Length(incm) Segment3Length(incm) Can a triangle be formed (Yes/No) Showing students the difference between line segments and curves, introduce cooked spaghetti. The flexibility of the spaghetti demonstrates to students that segments must be straight in order to provide rigidity and follow the definitionsofpolygons. Students can express the concepts presented in this lesson using a Venn diagram or a hierarchy. If students are not familiarwithahierarchy,remindstudentsahierarchyisanorderingofrelatedobjectsfromthemostgeneraltothe mostspecific. Anexampleisshownbelow. Chapter1. GeometryTE-TeachingTips

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.