ebook img

Geometry Seminar “Luigi Bianchi”: Lectures given at the Scuola Normale Superiore, 1982 PDF

182 Pages·1983·2.287 MB·English-French
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Geometry Seminar “Luigi Bianchi”: Lectures given at the Scuola Normale Superiore, 1982

Lecture Notes ni Mathematics Edited by .A Dold and B. Eckmann :seiresbuS aloucS elamroN ,eroirepuS asiP :resivdA .E initneseV 1022 II Graziano Gentili Simon Salamon erreiP-naeJ Vigu6 Geometry Seminar igiuL" "ihcnaiB Lectures given at the Scuola Normate Superiore, 1982 Edited by .E Vesentini galreV-regnirpS Berlin Heidelberg New York Tokyo 1983 Authors Graziano Gentifi Simon Salamon Scuola Normale Superiore Piazza dei Cavalieri 7, 56100 Pisa, Italy Jean-Pierre Vigue U.ER. de Mathematiques, Universit6 de Paris VI 4 Place Jussieu, ?5230 Paris Cedex 05, France Editor Edoardo Vesentini Scuola Normale Superiore Piazza dei Cavalieri ?, 56100 Pisa, Italy AMS Subject Classifications (1980): 53 B, 53 C, 32 A, 32 C, 32 M, 46 A, 15 K ISBN 3-540-12719-4 Springer-Verlag Berlin Heidelberg New York Tokyo ISBN 0-387-12719-4 Springer-Verlag New York Heidelberg Berlin Tokyo All rights copyright. to subject is work This era ,devreser whole the whether ro the of part lairetam of illustrations, re-use reprinting, translation, of those specifically concerned, is ,gnitsacdaorb reproduction yb similar or machine photocopying ,snaem dna data in storage .sknab Under § 54o f the namreG Copyright waL copies where era edam a use, private than for other eef is elbayap to tfahcsllesegsgnutrewreV" Munich. Wort", © by galreV-regnirpS Bedin Heidelberg 1983 in Printed ynamreG Printing dna Offsetdruck, Beltz binding: .rtsgreB/hcabsmeH 012345-0413/6412 G') N z 0 I1"1 Z -4 r" co z i-i-i oo o z o z rrl x 0 rl-i oo o z I-" o z --I o c-~ Go z o ! rvl cD z p-- r~ z z l-rl 0 Fr'l --4 -<~ c_ m z ! m m G') C) rr'l Oo C~ r~. oo -< ~rl', INTRODUCTION The geometry seminar held during the Winter and Spring of 1982 at the Scuola Normale Superiore consisted mainly of three cycles of lectures delivered by Graziano Gentili, Simon Salamon and Jean-Pierre Vigu~. The texts published here are amplified versions of those lectures. E.V. CONTENTS GRAZIANO GENTILI: DISTANCES ON CONVEX CONES Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 Preliminaries and formulation of the problem . . . . . . . . . . . . 3 I. Order and Carath~odory pseudo-distance . . . . . . . . . . . . . 7 + + 2. Special distances on ~. x ~. . . . . . . . . . . . . . . . . . 13 3. Classification of all special pairs of distances in dimension greater than one . . . . . . . . . . . . . . . . . 22 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 SIMON SALAMON: TOPICS IN FOUR-DIMENSIONAL RIEMANNIAN GEOMETRY Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 I. Elementary Representation Theory . . . . . . . . . . . . . . . 36 2. Representations of SO(4) . . . . . . . . . . . . . . . . . . . 42 3. Spin Manifolds . . . . . . . . . . . . . . . . . . . . . . . . 49 4. Connections and Curvature . . . . . . . . . . . . . . . . . . . 55 5. Riemannian Curvature . . . . . . . . . . . . . . . . . . . . . 62 6. Almost Hermitian Manifolds . . . . . . . . . . . . . . . . . . 69 7. Representations of U(2) . . . . . . . . . . . . . . . . . . . . 76 8. The Twistor Space . . . . . . . . . . . . . . . . . . . . . . . 82 9. The Normal Bundle . . . . . . . . . . . . . . . . . . . . . . . 90 10. K~hler Twistor Spaces . . . . . . . . . . . . . . . . . . . . . 98 11. Differential Operators and Cohomology . . . . . . . . . . . . 105 12. Conformal Structure . . . . . . . . . . . . . . . . . . . . . 114 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122 IV JEAN-PIERRE VIGU~ : DOMAINES BORNES SYM~TRIQUES Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126 I. Automorphismes analytiques d'un domaine born~ d'un espace de Banach complexe: la topologie de la convergence uniforme locale . . . . . . . . . . . . . . . . . 127 II. L'alg~bre de Lie des transformations infinit~simales d'un domaine born~ D . . . . . . . . . . . . . . . . . . . . 133 III. Domaines bombs sym~triques . . . . . . . . . . . . . . . . . 139 IV. Automorphismes analytiques des produits continus de domaines born~s et domaines born~s sym~triques irr~ductibles . . . . . . . . . . . . . . . . . . . . . . . . 149 V. Automorphismes analytiques des domaines cercl~s born~s . . . 159 VI. Automorphismes analytiques des domaines born~s et distances invariantes . . . . . . . . . . . . . . . . . . . . 169 Bibliographie . . . . . . . . . . . . . . . . . . . . . . . . . . 175 N z d'~ .-I n 0 C'~ r~ oo c) C) r"m X d'b C) Z rrl Oo PREFACE Kobayashi and Carath~odory-type pseudo-distances on convex cones in locally convex real vector spaces were defined by E. Vesentini [7 .] Their most characteristic property is the following: P) Every linear homomorphism between any two cones is a contraction with respect to the Kobayashi (Carath~odory) pseudo-distance. In this work all the distances (on cones of dimension greater than one) having property P) will be classified. For definitions and properties of Kobayashi and Carath~odory-type pseudo-distances (denoted respectively by y and 6 ) we refer to Vesentini [7] and Franzoni [I .] PRELIMINARIES AND FORMULATION OF THE PROBLEM Let R be a real vector space and let V ~ {0} be a convex cone + in R, i.e. a subset of R such that v E V = tv E V for all t E]R., and that u,v 6 V ~ u + v @ V. We shall always suppose that R coincides with the vector space Sp(V) = V - V spanned by V, and shall be concerned mainly with the case in which V is sharp (i.e. does not contain any entire affine straight line of R) and satisfies the following condition: )i If v E V and if Z is any affine straight line in R such that v 6 £ and that £ A V contains a half-line, then there is a half-line ~6 C 2 A V containing v in its interior. V Condition i) turns out to be equivalent to the following (see Vesenti- ni 7 [ )] : i)' For every finite-dimensional subspace S of R such that S N V ~ {0}, S ~ V is open in the subspace Sp(S %f V) of S generated by S lf V, with respect to the Euclidean topology. + For the sharp convex cone ~. of ~ we shall take as a distance between any two points x and y the Haar measure (with respect to + the multiplicative group ~) of the interval determined by x and y: ~(x,y) = Iiog ~tx - The distance ~ is invariant with respect to the action of the group + + + GL~R.) = {f e GLaR) : faR.) =~.}; + + moreover for every affine endomorphism g of ~ such that g~R.) C ~. we have o(g(x),g(y)) < o(x,y) (x,y 6(cid:127)+). + By means of the distance o on ~., the Kobayashi-type and Carath@o- dory-type pseudo-distances can be defined on any convex cone V sati- sfying condition i) (see Vesentini [7 .)] The Kobayashi-type__pseudo-distance. Let 0 w =u, wl,...,w = v be points in V, let x ,...,x , n 1 n yl,...,y n be points in ~, + and let f i ,...,f n be affine functions of ~ into R mapping ~, + into V, and such that f (x) = w f (y) = w j( = I ..... n). j j j-l' j j j Let us define Yv(U,V) = inf{o(xl,y )I + ... + O(Xn 'yn )} taking the infimum over all possible choices of n, Wl,...,Wn_ ,I Xl,...,x , yl,...,y , f ,...,f . The function v T is a Dseudo-distan- n n I n ce for every V and property P) (see the Preface) is fulfilled. Moreover it turns out that: KI. The pseudo-distance TV is a distance if, and only if, V is sharp. + + K2. If R = R] x R] and V =JR. x ]R then T + +((Xl,X2), (yl,Y2)) = max (~(xl,Yl),o(x2,Y2)) ]R.x ~, or ¥ + + ((Xl,X2),(yl,Y2)) = O(xl,Y )I + o(x2{Y2), ~.x ,RJ depending on whether the affine line determined by (xl,x )2 and + + (yl,y2) intersects ~, x ~, in a half-line or in a segment. The Carath~odory-type__pseudo-distance. Let F(V) be the collection of all real-valued affine functionals

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.