ebook img

Geometry of Incompatible Deformations: Differential Geometry in Continuum Mechanics PDF

411 Pages·2019·5.277 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Geometry of Incompatible Deformations: Differential Geometry in Continuum Mechanics

SergeyLychevandKonstantinKoifman GeometryofIncompatibleDeformations De Gruyter Studies in Mathematical Physics | Editedby MichaelEfroimsky,Bethesda,Maryland,USA LeonardGamberg,Reading,Pennsylvania,USA DmitryGitman,SãoPaulo,Brazil AlexanderLazarian,Madison,Wisconsin,USA BorisSmirnov,Moscow,Russia Volume 50 Sergey Lychev and Konstantin Koifman Geometry of Incompatible Deformations | Differential Geometry in Continuum Mechanics PhysicsandAstronomyClassificationScheme2010 Primary:46.05.+b;Secondary:02.40.Yy Authors Prof.SergeyLychev IshlinskyInstituteforProblemsinMechanicsRAS(IPMechRAS) [email protected] KonstantinKoifman DepartmentofAppliedMathematics BaumanMoscowStateTechnicalUniversity [email protected] ISBN978-3-11-056201-9 e-ISBN(PDF)978-3-11-056321-4 e-ISBN(EPUB)978-3-11-056227-9 ISSN2194-3532 BibliographicinformationpublishedbytheDeutscheNationalbibliothek TheDeutscheNationalbibliothekliststhispublicationintheDeutscheNationalbibliografie; detailedbibliographicdataareavailableontheInternetathttp://dnb.dnb.de. ©2019WalterdeGruyterGmbH,Berlin/Boston Typesetting:le-texpublishingservicesGmbH,Leipzig Printingandbinding:CPIbooksGmbH,Leck www.degruyter.com | Toourfamilies andfriends Preface Thisbookisintendedtoprovideasystematictreatmentofthosepartsofmoderndiffer- entialgeometrythatareessentialforthemodelingofincompatiblefinitedeformations insolids.Includedarediscussionsofgeneralizeddeformationandstressmeasureson smoothmanifolds,geometricalformalizationforstructurallyinhomogeneousbodies, variousdefinitionsformaterialconnection,andevolutionequationsforthem. Theincompatibilityofdeformationsmaybecausedbyavarietyofphysicalphe- nomena; among them aredistributed dislocationsand disclinations,point defects, non-uniformthermalfields,shrinkage,growth,etc.Incompatibledeformationsresult inresidualstressesanddistortionofgeometricalshape.Thesefactorsareassociated withcriticalparametersinmodernhigh-precisiontechnologies,particularly,inaddi- tivemanufacturing,andareconsideredtobeipsofactoessentialconstituentsinthe correspondingmathematicalmodels.Inthiscontext,thedevelopmentofmethodsfor theirquantitativedescriptionistheactualproblemofmodernsolidmechanics.The methodsinquestionarebasedontherepresentationofabodyandphysicalspacein termsofdifferentiablemanifolds,namelymaterialmanifoldandphysicalmanifold. Thesemanifoldsareequippedwithspecificmetricsandconnections,non-Euclidian ingeneral. The book isdivided into 14 chapters. The first one is an introduction. The sec- ondonebrieflyreviewsvariousrepresentationsofthegeometryofphysicalspaceand time,includingEuclidean,Minkowski, andcurvedspacetimemodels. Thisreview, ontheonehand,leadstoexhaustivedefinitionofphysicalspaceintermsofsmooth manifolds.Ontheotherhand,itdrawsattentiontothespecificaspectsofgeometri- calformalizationforspaceandspacetime,whichhavemuchincommonwiththeir counterpartsinthemodelingofelasticbodies,suchassmooth(material)manifolds. Thethirdchapterfocusesontheessentialsofconventionalnon-linearelasticity. Inthischapter,those fundamentalsofcontinuummechanicsthatarerooted inthe conceptofabsolute,Euclidean,spaceandabsolute,Newtonian,timearediscussed. Specialattentionispaidtotheassumptionthatglobalstress-freeshapesofanybody exists.Rejectionofthisassumptionreflectsthemainideaofthepresentbook.Com- monnotationsforstrainandstressmeasures,variationalsymmetries,andconstitu- tiveequations,whichwouldbegeneralizedintherestofthebook,arehighlighted. Inthefourthchapter,weconsidertheissueofthephysicalinterpretationofthe non-Euclideanstructureofthematerialmanifold.Itisshownthatatwo-dimensional rigidsurface,whichformalizesthecurvedsubstrateusedinthedepositionprocess, may serve as an example of a non-Euclideanphysical manifold. Affine connection onthematerialmanifoldrepresentstheintrinsicproperties(innergeometry)ofthe body and is determined by the field of local uniform configurations performing its “assembly” of identical and uniform infinitesimal “bricks”.Uniformity means that theresponsefunctionalgivesthesameresponseonalladmissiblesmoothdeforma- https://doi.org/10.1515/9783110563214-201 VIII | Preface tionsforthem.Asaresultofassembling,oneobtainsabodythatcannotbeimmersed inanundistortedstateintothephysicalmanifold.Itisanessentialfeatureofresid- ualstressedbodiesproducedbyadditiveprocesses.Forthisreason,itshouldbenefit fromimmersionintoanon-Euclideanspace(materialmanifoldwithnon-Euclidean materialconnection).Tothisend,itisconvenienttoformalizethebodyandphysical spaceintermsofthetheoryofsmoothmanifolds.Thedeformationisformalizedas embedding(or,inaspecialcase,asimmersion)oftheformermanifoldintothelatter one. The fifth chapter is dedicated to generalization of relations for Cauchy–Green strainmeasures.TheyaregeneratedbyembeddingofaRiemannianmanifold,repre- sentingthebody,intoaRiemannianmanifold,representingthespace.Weconsider suchissues asthe transposeof the deformationgradientand generalizationof the Cauchydecompositiontheoremonsmoothmanifolds. Thesixthchaptercoversthedefinitionofmotion,velocity,andaccelerationfields intheframeworkofthetheoryofsmoothmanifolds.Themotionisrepresentedasa time-dependentflow. Theseventhchapteraddressestheissuesoftheformalizationofstressandpower measuresbyfieldsdefinedonsmoothmanifoldsthatrepresent thebodyandphys- ical space. It contains the systematic construction of a theory for the general non- Euclideancase.Forcesareinterpretedascovectors,i.e.,asalinearfunctionals,whose actiononthevelocityvectorsofmaterialpointsresultsinmechanicalpower.Theab- stracttheory ofintegrationbased onexterior form formalismisadapted tothe ele- mentsofthisstructure, whichallowsonetoformulatethepower balanceequation ofthe materialmanifold (similarly to the reference descriptioninthe classicalme- chanicsofcompatibledeformation)andofthephysicalone(similarlytothespatial description). In the eighth chapter the response of hyperelastic solids on smooth manifolds isgeneralized.Onlysimplematerialsareconsidered:theirresponsedependsonthe local configuration and material points. For such materials, the notion of material isomorphismisintroduced.Themainassumptionthatleadstothenotionofastruc- turallyinhomogeneoussolidisthefollowing:foreachbodyofsimplematerial,there exists a family of configurations, which index set is identicalto the set of material pointsconstitutingthewholebody.Eachconfigurationmapsitsindexpointtotheuni- formstate.Thisassumptionisusedforsynthesizingthematerialmetric.Amethodis proposedfordescribingadeformablebodyofvariablecompositionasafamilyofRie- mannianmanifoldsover whichpartitionandjoiningoperationsaredefined. These operationscharacterizethe structuralfeatures ofthe inhomogeneities given by the additiveprocessscenario. Intheninthchapter,thevariouswaystospecifythegeneralformofaffinecon- nections on the materialand physicalmanifoldsare considered. Affine connection endowsmanifoldswithgeometricproperties,inparticular,withparalleltranslation rulesforvectorfields.Forsimplematerialstheparalleltranslationisanelegantmath- Preface | IX ematicalformalizationof the concept of a materially uniform (inparticular,stress- free)non-Euclideanreferenceshape.Infact,onecanobtainaconnectiononphysical spacebydeterminingtheparalleltransportruleasatransformationofthetangent vector,whichcorrespondstothestructureofthephysicalspacecontainingshapesof thebody.Inturn,onecanobtainaffineconnectiononmaterialmanifoldbydefining aparalleltransportruleasthetransformationofthetangentvector,inwhichitsin- verseimagewithrespecttolocallyuniformembeddingsdoesnotchange.Utilizingthe conceptionofmaterialconnectionsandthecorrespondingmethodsofnon-Euclidean geometrymaysignificantlysimplifyformulationoftheinitialboundaryvalueprob- lemsofthetheoryofincompatibledeformations,sothechoiceofconnectionsisim- portant.Connectiononthephysicalmanifoldiscompatiblewiththemetric,andthe Levi–Civitarelationholdsforit.Connectionofthematerialmanifoldisconsideredin twoalternativevariants.ThefirstleadstotheWeitzenböckspace(thespaceofabso- luteparallelismorteleparallelism,i.e.,spacewithzerocurvatureandnon-metricity butwithnon-zerotorsion)andgivesaclearinterpretationofthematerialconnection intermsofthelocallineartransformationsthatreturnanelementaryvolumeofsimple materialtotheuniformstate.ThesecondoneleadstotheRiemannianspace(space withzeronon-metricityandtorsionbutwithnon-zerocurvature).Examplesforsuch generalizationsareconsideredintherestofthechapter. Thetenthchapterreferstothebalanceequations,whichareobtainedintermsof Cartan’sexteriorcovariantderivativefromthegeneralprincipleofcovariance. Theeleventhchaptercontainstheexamplesofinhomogeneoussolids,whichin- homogeneitywasinducedbysomeadditivetechnologicalprocess.Varioustypesof evolutionaryproblems,owningtodifferenttechnologicalregimes,areconsidered.The calculationsareillustratedbynumericalcomputationsandgraphs. In the last chapters, the required mathematical preliminaries adapted to the presentbookareconsidered. May2018,Moscow SergeyLychev KonstantinKoifman

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.