SergeyLychevandKonstantinKoifman GeometryofIncompatibleDeformations De Gruyter Studies in Mathematical Physics | Editedby MichaelEfroimsky,Bethesda,Maryland,USA LeonardGamberg,Reading,Pennsylvania,USA DmitryGitman,SãoPaulo,Brazil AlexanderLazarian,Madison,Wisconsin,USA BorisSmirnov,Moscow,Russia Volume 50 Sergey Lychev and Konstantin Koifman Geometry of Incompatible Deformations | Differential Geometry in Continuum Mechanics PhysicsandAstronomyClassificationScheme2010 Primary:46.05.+b;Secondary:02.40.Yy Authors Prof.SergeyLychev IshlinskyInstituteforProblemsinMechanicsRAS(IPMechRAS) [email protected] KonstantinKoifman DepartmentofAppliedMathematics BaumanMoscowStateTechnicalUniversity [email protected] ISBN978-3-11-056201-9 e-ISBN(PDF)978-3-11-056321-4 e-ISBN(EPUB)978-3-11-056227-9 ISSN2194-3532 BibliographicinformationpublishedbytheDeutscheNationalbibliothek TheDeutscheNationalbibliothekliststhispublicationintheDeutscheNationalbibliografie; detailedbibliographicdataareavailableontheInternetathttp://dnb.dnb.de. ©2019WalterdeGruyterGmbH,Berlin/Boston Typesetting:le-texpublishingservicesGmbH,Leipzig Printingandbinding:CPIbooksGmbH,Leck www.degruyter.com | Toourfamilies andfriends Preface Thisbookisintendedtoprovideasystematictreatmentofthosepartsofmoderndiffer- entialgeometrythatareessentialforthemodelingofincompatiblefinitedeformations insolids.Includedarediscussionsofgeneralizeddeformationandstressmeasureson smoothmanifolds,geometricalformalizationforstructurallyinhomogeneousbodies, variousdefinitionsformaterialconnection,andevolutionequationsforthem. Theincompatibilityofdeformationsmaybecausedbyavarietyofphysicalphe- nomena; among them aredistributed dislocationsand disclinations,point defects, non-uniformthermalfields,shrinkage,growth,etc.Incompatibledeformationsresult inresidualstressesanddistortionofgeometricalshape.Thesefactorsareassociated withcriticalparametersinmodernhigh-precisiontechnologies,particularly,inaddi- tivemanufacturing,andareconsideredtobeipsofactoessentialconstituentsinthe correspondingmathematicalmodels.Inthiscontext,thedevelopmentofmethodsfor theirquantitativedescriptionistheactualproblemofmodernsolidmechanics.The methodsinquestionarebasedontherepresentationofabodyandphysicalspacein termsofdifferentiablemanifolds,namelymaterialmanifoldandphysicalmanifold. Thesemanifoldsareequippedwithspecificmetricsandconnections,non-Euclidian ingeneral. The book isdivided into 14 chapters. The first one is an introduction. The sec- ondonebrieflyreviewsvariousrepresentationsofthegeometryofphysicalspaceand time,includingEuclidean,Minkowski, andcurvedspacetimemodels. Thisreview, ontheonehand,leadstoexhaustivedefinitionofphysicalspaceintermsofsmooth manifolds.Ontheotherhand,itdrawsattentiontothespecificaspectsofgeometri- calformalizationforspaceandspacetime,whichhavemuchincommonwiththeir counterpartsinthemodelingofelasticbodies,suchassmooth(material)manifolds. Thethirdchapterfocusesontheessentialsofconventionalnon-linearelasticity. Inthischapter,those fundamentalsofcontinuummechanicsthatarerooted inthe conceptofabsolute,Euclidean,spaceandabsolute,Newtonian,timearediscussed. Specialattentionispaidtotheassumptionthatglobalstress-freeshapesofanybody exists.Rejectionofthisassumptionreflectsthemainideaofthepresentbook.Com- monnotationsforstrainandstressmeasures,variationalsymmetries,andconstitu- tiveequations,whichwouldbegeneralizedintherestofthebook,arehighlighted. Inthefourthchapter,weconsidertheissueofthephysicalinterpretationofthe non-Euclideanstructureofthematerialmanifold.Itisshownthatatwo-dimensional rigidsurface,whichformalizesthecurvedsubstrateusedinthedepositionprocess, may serve as an example of a non-Euclideanphysical manifold. Affine connection onthematerialmanifoldrepresentstheintrinsicproperties(innergeometry)ofthe body and is determined by the field of local uniform configurations performing its “assembly” of identical and uniform infinitesimal “bricks”.Uniformity means that theresponsefunctionalgivesthesameresponseonalladmissiblesmoothdeforma- https://doi.org/10.1515/9783110563214-201 VIII | Preface tionsforthem.Asaresultofassembling,oneobtainsabodythatcannotbeimmersed inanundistortedstateintothephysicalmanifold.Itisanessentialfeatureofresid- ualstressedbodiesproducedbyadditiveprocesses.Forthisreason,itshouldbenefit fromimmersionintoanon-Euclideanspace(materialmanifoldwithnon-Euclidean materialconnection).Tothisend,itisconvenienttoformalizethebodyandphysical spaceintermsofthetheoryofsmoothmanifolds.Thedeformationisformalizedas embedding(or,inaspecialcase,asimmersion)oftheformermanifoldintothelatter one. The fifth chapter is dedicated to generalization of relations for Cauchy–Green strainmeasures.TheyaregeneratedbyembeddingofaRiemannianmanifold,repre- sentingthebody,intoaRiemannianmanifold,representingthespace.Weconsider suchissues asthe transposeof the deformationgradientand generalizationof the Cauchydecompositiontheoremonsmoothmanifolds. Thesixthchaptercoversthedefinitionofmotion,velocity,andaccelerationfields intheframeworkofthetheoryofsmoothmanifolds.Themotionisrepresentedasa time-dependentflow. Theseventhchapteraddressestheissuesoftheformalizationofstressandpower measuresbyfieldsdefinedonsmoothmanifoldsthatrepresent thebodyandphys- ical space. It contains the systematic construction of a theory for the general non- Euclideancase.Forcesareinterpretedascovectors,i.e.,asalinearfunctionals,whose actiononthevelocityvectorsofmaterialpointsresultsinmechanicalpower.Theab- stracttheory ofintegrationbased onexterior form formalismisadapted tothe ele- mentsofthisstructure, whichallowsonetoformulatethepower balanceequation ofthe materialmanifold (similarly to the reference descriptioninthe classicalme- chanicsofcompatibledeformation)andofthephysicalone(similarlytothespatial description). In the eighth chapter the response of hyperelastic solids on smooth manifolds isgeneralized.Onlysimplematerialsareconsidered:theirresponsedependsonthe local configuration and material points. For such materials, the notion of material isomorphismisintroduced.Themainassumptionthatleadstothenotionofastruc- turallyinhomogeneoussolidisthefollowing:foreachbodyofsimplematerial,there exists a family of configurations, which index set is identicalto the set of material pointsconstitutingthewholebody.Eachconfigurationmapsitsindexpointtotheuni- formstate.Thisassumptionisusedforsynthesizingthematerialmetric.Amethodis proposedfordescribingadeformablebodyofvariablecompositionasafamilyofRie- mannianmanifoldsover whichpartitionandjoiningoperationsaredefined. These operationscharacterizethe structuralfeatures ofthe inhomogeneities given by the additiveprocessscenario. Intheninthchapter,thevariouswaystospecifythegeneralformofaffinecon- nections on the materialand physicalmanifoldsare considered. Affine connection endowsmanifoldswithgeometricproperties,inparticular,withparalleltranslation rulesforvectorfields.Forsimplematerialstheparalleltranslationisanelegantmath- Preface | IX ematicalformalizationof the concept of a materially uniform (inparticular,stress- free)non-Euclideanreferenceshape.Infact,onecanobtainaconnectiononphysical spacebydeterminingtheparalleltransportruleasatransformationofthetangent vector,whichcorrespondstothestructureofthephysicalspacecontainingshapesof thebody.Inturn,onecanobtainaffineconnectiononmaterialmanifoldbydefining aparalleltransportruleasthetransformationofthetangentvector,inwhichitsin- verseimagewithrespecttolocallyuniformembeddingsdoesnotchange.Utilizingthe conceptionofmaterialconnectionsandthecorrespondingmethodsofnon-Euclidean geometrymaysignificantlysimplifyformulationoftheinitialboundaryvalueprob- lemsofthetheoryofincompatibledeformations,sothechoiceofconnectionsisim- portant.Connectiononthephysicalmanifoldiscompatiblewiththemetric,andthe Levi–Civitarelationholdsforit.Connectionofthematerialmanifoldisconsideredin twoalternativevariants.ThefirstleadstotheWeitzenböckspace(thespaceofabso- luteparallelismorteleparallelism,i.e.,spacewithzerocurvatureandnon-metricity butwithnon-zerotorsion)andgivesaclearinterpretationofthematerialconnection intermsofthelocallineartransformationsthatreturnanelementaryvolumeofsimple materialtotheuniformstate.ThesecondoneleadstotheRiemannianspace(space withzeronon-metricityandtorsionbutwithnon-zerocurvature).Examplesforsuch generalizationsareconsideredintherestofthechapter. Thetenthchapterreferstothebalanceequations,whichareobtainedintermsof Cartan’sexteriorcovariantderivativefromthegeneralprincipleofcovariance. Theeleventhchaptercontainstheexamplesofinhomogeneoussolids,whichin- homogeneitywasinducedbysomeadditivetechnologicalprocess.Varioustypesof evolutionaryproblems,owningtodifferenttechnologicalregimes,areconsidered.The calculationsareillustratedbynumericalcomputationsandgraphs. In the last chapters, the required mathematical preliminaries adapted to the presentbookareconsidered. May2018,Moscow SergeyLychev KonstantinKoifman