ebook img

Geometry of Crystals Polycrystals and Phase Transformations PDF

245 Pages·2018·55.605 MB·english
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Geometry of Crystals Polycrystals and Phase Transformations

Geometry Crystals of , Polycrystals Phase , and Transformations Harshad K. D. H. Bhadeshia CRC Press Taylor & Francis Group 6000 Broken Sound Parkway NW, Suite 300 Boca Raton, FL 33487-2742 © 2018 by Taylor & Francis Group, LLC CRC Press is an imprint of Taylor & Francis Group, an Informa business Version Date: 20170802 International Standard Book Number-13: 978-1-138-07078-3 (Hardback) Visit the Taylor & Francis Web site at http://www.taylorandfrancis.com and the CRC Press Web site at http://www.crcpress.com Contents PrefaceandAcknowledgments xi Author xiii Acronyms xv I BasicCrystallography 1 1 IntroductionandPointGroups 3 1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.2 Thelattice . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 PrimitiverepresentationofCubic-F . . . . . . . . . . . . . . . 7 1.3 Bravaislattices . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 1.4 Directions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 Numberofequivalentindices . . . . . . . . . . . . . . . . . . . 12 1.5 Planes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 1.6 Weisszonelaw . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 1.7 Symmetry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 1.8 Symmetryoperations . . . . . . . . . . . . . . . . . . . . . . . . 15 Five-foldrotation . . . . . . . . . . . . . . . . . . . . . . . . . 17 1.9 Crystalstructure . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 Structureofgraphene . . . . . . . . . . . . . . . . . . . . . . . 20 1.10 Pointgroupsymmetry . . . . . . . . . . . . . . . . . . . . . . . . 21 Pointsymmetryofchesspieces . . . . . . . . . . . . . . . . . . 23 Octahedralintersticesiniron . . . . . . . . . . . . . . . . . . . 23 1.11 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 2 StereographicProjections 29 2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 Projectionofsmallcircle . . . . . . . . . . . . . . . . . . . . . 29 2.2 Utilityofstereographicprojections . . . . . . . . . . . . . . . . . 31 2.3 Stereographicprojection:constructionandcharacteristics . . . . . 32 RadiusoftraceofgreatcircleonWulffnet . . . . . . . . . . . . 35 Tracesofplates . . . . . . . . . . . . . . . . . . . . . . . . . . 36 2.4 Stereographicrepresentationofpointgroups . . . . . . . . . . . . 38 Mirrorplaneequivalentto2 . . . . . . . . . . . . . . . . . . . 38 Thepointgroups3mandm3 . . . . . . . . . . . . . . . . . . . 39 2.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 3 StereogramsforLowSymmetrySystems 45 3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 3.2 Hexagonalsystem . . . . . . . . . . . . . . . . . . . . . . . . . . 46 Anglesinthehexagonalsystem . . . . . . . . . . . . . . . . . . 48 Growthdirectionofcementitelaths . . . . . . . . . . . . . . . . 50 3.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 4 SpaceGroups 55 4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 4.2 Screwaxesandglideplanes . . . . . . . . . . . . . . . . . . . . 55 4.3 Cuprite . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 4.4 Locationofatomsincupritecell . . . . . . . . . . . . . . . . . . 58 SpacegroupofFe-Si-Ucompound . . . . . . . . . . . . . . . . 60 Cementite . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 Diamondandzincsulfide . . . . . . . . . . . . . . . . . . . . . 62 4.5 Shapeofprecipitates . . . . . . . . . . . . . . . . . . . . . . . . 63 4.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 5 TheReciprocalLatticeandDiffraction 67 5.1 Thereciprocalbasis . . . . . . . . . . . . . . . . . . . . . . . . . 67 Weisszonelaw . . . . . . . . . . . . . . . . . . . . . . . . . . 68 5.2 Crystallographyofdiffraction . . . . . . . . . . . . . . . . . . . 70 5.3 Intensities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 Solutionofelectrondiffractionpattern . . . . . . . . . . . . . . 71 Anotherdiffractionpatternsolution . . . . . . . . . . . . . . . 73 Disorderedandorderedcrystals . . . . . . . . . . . . . . . . . 74 5.4 Diffractionfromthincrystals . . . . . . . . . . . . . . . . . . . . 76 5.5 Neutrondiffraction . . . . . . . . . . . . . . . . . . . . . . . . . 78 5.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 6 DeformationandTexture 81 6.1 Slipinasingle-crystal . . . . . . . . . . . . . . . . . . . . . . . 81 Elongationduringsingle-crystaldeformation . . . . . . . . . . 83 εmartensite . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 6.2 Texture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 6.3 Orientationdistributionfunctions . . . . . . . . . . . . . . . . . . 88 Euleranglesrelatingtwoframes . . . . . . . . . . . . . . . . . 89 6.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90 7 Interfaces,OrientationRelationships 93 7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 7.2 Symmetricaltiltboundary . . . . . . . . . . . . . . . . . . . . . 94 7.3 Coincidencesitelattices . . . . . . . . . . . . . . . . . . . . . . 96 7.4 Representationoforientationrelationships . . . . . . . . . . . . . 96 Coordinatetransformation . . . . . . . . . . . . . . . . . . . . 97 7.5 MathematicalmethodfordeterminingΣ . . . . . . . . . . . . . . 100 7.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101 8 CrystallographyofMartensiticTransformations 103 8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 8.2 Shapedeformation . . . . . . . . . . . . . . . . . . . . . . . . . 104 8.3 Bainstrain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104 8.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109 II A FewAdvanced Methods 111 9 OrientationRelations 113 9.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113 9.2 Cementiteinsteels . . . . . . . . . . . . . . . . . . . . . . . . . 114 Bagaryatskiorientationrelationship . . . . . . . . . . . . . . . 114 9.3 Relationsbetweenfccandbcccrystals . . . . . . . . . . . . . . . 118 Kurdjumov–Sachsorientationrelationship . . . . . . . . . . . . 119 9.4 Relationshipsbetweengrainsofidenticalstructure . . . . . . . . 122 Axis-anglepairsandrotationmatrices . . . . . . . . . . . . . . 122 Doubletwinning . . . . . . . . . . . . . . . . . . . . . . . . . 125 9.5 Themetric . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126 Planenormalsanddirectionsinanorthorhombicstructure . . . 126 9.6 Moreaboutthevectorcrossproduct . . . . . . . . . . . . . . . . 127 9.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129 10 Homogeneousdeformations 133 10.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133 10.2 Homogeneousdeformations . . . . . . . . . . . . . . . . . . . . 134 Bainstrain:undistortedvectors . . . . . . . . . . . . . . . . . 136 10.3 Eigenvectorsandeigenvalues . . . . . . . . . . . . . . . . . . . . 138 Eigenvectorsandeigenvalues . . . . . . . . . . . . . . . . . . . 139 10.4 Stretchandrotation . . . . . . . . . . . . . . . . . . . . . . . . . 140 10.5 Interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143 Deformationsandinterfaces . . . . . . . . . . . . . . . . . . . 143 10.6 Topologyofgraindeformation . . . . . . . . . . . . . . . . . . . 144 10.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149 11 Invariant-planestrains 153 11.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153 Tensiletestsonsingle-crystals . . . . . . . . . . . . . . . . . . 157 Transitionfromeasyglidetoduplexslip . . . . . . . . . . . . . 160 11.2 Deformationtwins . . . . . . . . . . . . . . . . . . . . . . . . . 161 Twinsinfcccrystals . . . . . . . . . . . . . . . . . . . . . . . . 161 11.3 Correspondencematrix . . . . . . . . . . . . . . . . . . . . . . . 164 11.4 AnalternativetotheBainstrain . . . . . . . . . . . . . . . . . . 165 11.5 Steppedinterfaces . . . . . . . . . . . . . . . . . . . . . . . . . . 167 Interactionofdislocationswithinterfaces . . . . . . . . . . . . 168 fcctohcptransformationrevisited . . . . . . . . . . . . . . . . 172 11.6 Conjugateofaninvariant-planestrain . . . . . . . . . . . . . . . 178 Combinedeffectoftwoinvariant-planestrains . . . . . . . . . . 179 11.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181 12 Martensite 185 12.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185 12.2 Shapedeformation . . . . . . . . . . . . . . . . . . . . . . . . . 185 12.3 Interfacialstructureofmartensite . . . . . . . . . . . . . . . . . . 188 12.4 Phenomenologicaltheoryofmartensitecrystallography . . . . . . 190 12.5 Stage1:Calculationoflatticetransformationstrain . . . . . . . . 193 Determinationoflatticetransformationstrain . . . . . . . . . . 194 12.6 Stage2:Determinationoftheorientationrelationship . . . . . . . 197 Martensite-austeniteorientationrelationship . . . . . . . . . . 197 12.7 Stage3:Natureoftheshapedeformation . . . . . . . . . . . . . . 198 Habitplaneandtheshapedeformation . . . . . . . . . . . . . 199 12.8 Stage4:Natureofthelattice-invariantshear . . . . . . . . . . . . 201 Lattice–invariantshear . . . . . . . . . . . . . . . . . . . . . . 202 12.9 Textureduetodisplacivetransformations . . . . . . . . . . . . . 204 12.10 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206 13 Interfaces 211 13.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211 13.2 Misfit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212 Symmetricaltiltboundary . . . . . . . . . . . . . . . . . . . . 214 Interfacebetweenalphaandbetabrass . . . . . . . . . . . . . 217 13.3 Coincidencesitelattices . . . . . . . . . . . . . . . . . . . . . . 219 Coincidencesitelattices . . . . . . . . . . . . . . . . . . . . . 219 Symmetryandtheaxis-anglerepresentationsofCSL’s . . . . . . 222 13.4 TheO-lattice . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225 alpha/betabrassinterfaceusingO-latticetheory . . . . . . . . 227 13.5 Secondarydislocations . . . . . . . . . . . . . . . . . . . . . . . 228 Intrinsicsecondarydislocations . . . . . . . . . . . . . . . . . 229 13.6 TheDSClattice . . . . . . . . . . . . . . . . . . . . . . . . . . . 230 13.7 Somedifficultiesassociatedwithinterfacetheory . . . . . . . . . 233 13.8 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 234 Appendices 239 A Matrixmethods 241 A.1 Vectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 241 A.2 Matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 242 B Generalrotationmatrix 247 Index 249 Preface Tostatetheobvious,crystalscontainorder.Evenwhenthatisdisturbedlocally,the perturbations themselves may sometimes form regular patterns. This is evident in the structure of interfaces where two or more crystals meet in an apparently hap- hazardmanner.Disordercansometimesbeignoredwithoutcompromisingsomeof the consequences of long-range order. Crystalline solid solutions in which atoms aredispersedatrandomwouldfailthestrictdefinitionoflong-rangeorder,butthey neverthelessshowthecharacteristicsofcrystalswhenprobedbyX-rays.Weshallat- temptinthisbooktounderstandnotonlytheeleganceofindividualcrystals,butalso ofclustersofspace-fillingcrystalsandtransformationsbetweencrystallinephases. Crystallographyishardlyanew subjectso therearenumerousbooksavailable, manyofwhicharebeaconsofscholarship.Sowhyanothertextonthismuchmooted topic?First,asBuckminsterFullerpointedout,therehasbeenamassiveexpansionin humanknowledge,withtheprocesscontinuingatanunabatingpace.Newsubjects spring up with notorious regularity and some of these have come to be regarded as essential first steps in the higher education curriculum. Modern undergraduate studentsarethereforefacedwithamuchgreaterpaletteofdistinctcoursesthanhas beenthecaseinthepast. This book is partitioned into two, the first part of which is meant to be self- containedanddealswithwhatIfeelisessentiallearningforanystudentinthemate- rialsciences,physics,chemistry,earthsciences,andthenaturalsciencesingeneral. Thispart,intentionallyconcise,isbasedonasetofninelecturesthatIgiveannually to undergraduatestudentsof the Natural Sciences Triposin CambridgeUniversity. It is of generic value and has just sufficient material to deliver concepts. It covers crystals, polycrystals, interfaces, and transformationsthat occur by the disciplined motion of atoms. I feel that most books on crystallography are too detailed to ac- commodatewithinthescheduleofacontemporaryundergraduate. The second part has depth which would be appreciated most in the context of research.ItisadevelopmentfromabookthatItaughtandpublishedin1987onthe GeometryofCrystals.Thetreatmentislimitedtophenomenadominatedbycrystal- lography. Thebookcontainsworkedexamplesthroughoutbecausecrystallographyisasub- ject that thrives on practice. Video lectures and other electronic materials that can enhancethecontentofthisbookareavailablefreelyon http://www.phase-trans.msm.cam.ac.uk/teaching.html Crystallographyhasrules,establishedbyconvention,butmanyofthesehaveex- ceptions and there sometimes are multiple conventions.Donnay in his 1943 paper proposed rules for defining the crystallographic orientation of a crystal [American Mineral28(1943)313–328],punctuatedbyexceptions,specialcases, anddifficul- ties. Inthe BungeconventionforEulerangles,thesample frameis rotatedintothe crystalframe,butthereisanotherconventionwherethereverseisthecase.Myview isthatintheapplicationofcrystallography,onlyalimitednumberofconventionsare important. For example, the handednessof cell axes should be consistent through- out. Similarly, although only three indices are necessary to define vectors in three dimensions, the four index system for the hexagonalclass permeates the literature andhenceneedstobetaught.Theemphasisofthebookistoteachconceptsrather thanrules,whichnecessarilyrequirerotelearning– I amuncertainas towhetherI havedoneenoughtominimizetheuseofconventions. Myinterestincrystallographystemsprimarilyfromresearchonsolid-statephase transformations. I have benefitted enormously from the writings of the late J. W. ChristianandC.M.Wayman.Andfromincisivequestionsposedbyundergraduates. IhavebeenabletotaproutinelyintotheknowledgeandwisdomofJohnLeakeand Kevin Knowles whenever I felt confused about the fine detail of crystallography. To all of these characters, I shall remain perpetuallygratefulfor the educationand camaraderie. H.K.D.H.Bhadeshia Cambridge Acronyms bcc Body-centeredcubic ILS Invariant-linestrain bct Body-centeredtetragonal P Primitive fcc Face-centeredcubic I Body-centered hcp Hexagonalclose-packed F Face-centered IPS Invariant-planestrain R Trigonal Part I Basic Crystallography

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.