Instructor's Solutions Manual to accompany Geometry: from Isometries to Special Relativity Nam-Hoon Lee Undergraduate Texts in Mathematics Springer, New York, 2020. Preface Thismanualcontainssolutionstoallexercisesinthetext, Geometry:fromIsometriestoSpecialRelativity, publishedbySpringerin2020.Eachexercisewhosesolutionisincludedinthetext hasanunderlinednumbering.Pleasenote:forstudentstakingacoursebasedonthe text, copying solutions from this Manual can place you in violation of academic honesty.Theremaybestillsomeerrorsinthesolutions.Ifyouhaveanycomments, corrections or feedback regarding the book and this solutions manual, feel free to [email protected]. Nam-HoonLee Contents 1 Euclidean Plane . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 2 Sphere . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 3 Stereographic Projection and Inversions . . . . . . . . . . . . . . . . . . . . . . . . . . 19 4 Hyperbolic Plane . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 5 Lorentz–Minkowski Plane . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 6 Geometry of Special Relativity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 Answers to Exercises Chapter1 1.1 (a)Let p =0and p =(1,0).Then,d(p ,p )=1;however, 1 2 1 2 d(φ(p ),φ(p ))=2(cid:54)=d(p ,p ). 1 2 1 2 Hence,φ isnotanisometry. (b)Let p =(0,1)and p =(−1,0).Then,d(p ,p )=2;however, 1 2 1 2 d(φ(p ),φ(p ))=0(cid:54)=d(p ,p ). 1 2 1 2 Hence,φ isnotanisometry. (c)Fortwopoints p =(x ,y ),p =(x ,y )∈R2, 1 1 1 2 2 2 1 (cid:113) d(φ(p ),φ(p ))= √ ((x −y )−(x −y ))2+((x +y +1)−(x +y +1))2 1 2 1 1 2 2 1 1 2 2 2 1 (cid:113) = √ 2((x −x )2+(y −y )2) 1 2 1 2 2 (cid:113) = (x −x )2+(y −y )2 1 2 1 2 =d(p ,p ). 1 2 Therefore,φ isanisometry. (d)Fortwopoints p =(x ,y ),p =(x ,y )∈R2, 1 1 1 2 2 2 1 2 AnswerstoExercises 1(cid:113) d(φ(p ),φ(p ))= ((3x +4y )−(3x +4y ))2+((4x −3y )−(4x −3y ))2 1 2 1 1 2 2 1 1 2 2 5 1(cid:113) = 25((x −x )2+(y −y )2) 1 2 1 2 5 (cid:113) = (x −x )2+(y −y )2 1 2 1 2 =d(p ,p ). 1 2 Therefore, φ is an isometry. 1.2 Note that a (cid:54)= 0 or b (cid:54)= 0. First assume that a (cid:54)= 0. Let (cid:16) c (cid:17) p = a− ,b 1 a and (cid:16) c (cid:17) p = −a− ,−b . 2 a Then,for p=(x,y)∈R2, p∈L ⇔d(p ,p)=d(p ,p) p1,p2 1 2 ⇔d(p ,p)2=d(p ,p)2 1 2 (cid:16) c(cid:17)2 (cid:16) c(cid:17)2 ⇔ x−a+ +(y−b)2= x+a+ +(y+b)2 a a (cid:16) c(cid:17) (cid:16) c(cid:17)2 (cid:16) c(cid:17) (cid:16) c(cid:17)2 ⇔2 −a+ x+ −a+ −2by=2 a+ x+ a+ +2by a a a a ⇔0=4ax+4by+4c ⇔0=ax+by+c. Therefore,L=L . p1,p2 Nowassumea=0.Thenb(cid:54)=0andthelineLisdefinedbytheequation c y=− . b Let (cid:16) c (cid:17) p = 0,− −1 1 b and (cid:16) c (cid:17) p = 0,− +1 . 2 b Then we have L = Lp1,p2 also in this case. 1.3 For an isometry φ and a circle C={p∈R2|d(p,q)=r}, whereqisthecenterandristheradius,let AnswerstoExercises 3 C(cid:48)={p∈R2|d(p,φ(q))=r}, acircleofradiusr,centeredatφ(q). Wewillshowthat C(cid:48)=φ(C). p∈C(cid:48)⇔d(p,φ(q))=r ⇔d(φ−1(p),φ−1(φ(q)))=r ⇔d(φ−1(p),q))=r ⇔φ−1(p)∈C ⇔p∈φ(C). Hence,C(cid:48)=φ(C). 1.4Ifφ(p)=φ(q)andφ isanisometry,then d(φ(p),φ(q))=0, andthus,d(p,q)=0,whichimplies p=q. 1.5 Ifa2+b2=1,thena=cosθ andb=sinθ forsomeθ.Hence,φ isarotation aroundtheorigin. Conversely,if φ(x,y)=(ax−by,bx+ay) isarotationaroundtheorigin,thena=cosθ andb=sinθ forsomeθ.Therefore, a2+b2=1. 1.6 Note that r =t ◦r ◦t . (a,b),θ (a,b) θ −(a,b) Hence, r (x,y)=(t ◦r ◦t )(x,y) (a,b),θ (a,b) θ −(a,b) =(t ◦r )(x−a,y−b) (a,b) θ =t ((x−a)cosθ−(y−b)sinθ,(x−a)sinθ+(y−b)cosθ) (a,b) =(a+(x−a)cosθ−(y−b)sinθ,b+(x−a)sinθ+(y−b)cosθ). 1.7 1.Forall p,q∈R2, d(id (p),id (q))=d(p,q). R2 R2 Hence,theidentitymapisanisometry. 4 AnswerstoExercises 2.Letφ beanisometryofR2.Forall p,q∈R2, d(φ−1(p),φ−1(q))=d(φ(φ−1(p)),φ(φ−1(q)))) =d(p,q). Hence,φ−1isalsoanisometry. 3.Letφ andψ beisometriesofR2.Forall p,q∈R2, d((φ◦ψ)(p),(φ◦ψ)(q))=d(φ(ψ(p)),φ(ψ(q))) =d(ψ(p),ψ(q)) =d(p,q). Hence,φ◦ψ isalsoanisometry. 1.8 (a)Foreach(x,y)∈R2, (r¯◦r¯)(x,y)=r¯(x,−y)=(x,y). Hence,r¯◦r¯=id ,whichmeansthat R2 r¯−1=r¯. (b)Foreach p∈R2, (t ◦t )(p)=t (β+p)=α+β+p=t (p). α β α α+β Hence, t ◦t =t . α β α+β Notethat id =t =t =t ◦t . R2 0 α+(−α) α −α Therefore, t−1=t . α −α (c)Foreach(x,y)∈R2, (rθ◦rθ(cid:48))(x,y)=rθ(xcosθ(cid:48)−ysinθ(cid:48),xsinθ(cid:48)+ycosθ(cid:48)) =((xcosθ(cid:48)−ysinθ(cid:48))cosθ−(xsinθ(cid:48)+ycosθ(cid:48))sinθ, (xcosθ(cid:48)−ysinθ(cid:48))sinθ+(xsinθ(cid:48)+ycosθ(cid:48))cosθ) =(xcos(θ+θ(cid:48))−ysin(θ+θ(cid:48)),xsin(θ+θ(cid:48))+ycos(θ+θ(cid:48))) =r (x,y). θ+θ(cid:48) Hence,rθ◦rθ(cid:48) =rθ+θ(cid:48). AnswerstoExercises 5 Notethat id =r =r =r ◦r . R2 0 θ+(−θ) θ −θ Therefore,r−1=r . θ −θ 1.9 Letβ beapointonthelinethrough pandqandR =d(p,β),R =d(q,β).Let p q C andC becirclesofradiiR andR ,centeredat pandq,respectively.Notethat p q p q C ∩C ={β}. p q From the solution of Exercise 1.3 and using the condition that p and q are fixed pointsofanisometryφ, φ(C )=C andφ(C )=C . p p q q Hence, {φ(β)}=φ({β})=φ(C ∩C )=φ(C )∩φ(C )=C ∩C ={β}, p q p q p q andtherefore,φ(β)=β.Weshowedthateverypointonthelinethrough pandqis afixedpointofφ. 1.10 Thegivenconditionimpliesthatr¯−1=r¯ .Notethatr¯−1=r¯ .Hence, L1 L2 L1 L1 r¯ =r¯ , L1 L2 whichimpliesthatL =L . 1 2 1.11 Choose non-collinear points p1, p2 and p3. The isometry φ maps the triangle (cid:52)p1 p2 p3 to a congruent triangle (cid:52)φ(p )φ(p )φ(p ), 1 2 3 whichimpliesthatthepointsφ(p ),φ(p )andφ(p )arealsonon-collinear.Asin 1 2 3 the proof of Theorem 1.6, by composing reflections, we can build an isometry ψ suchthat φ(p )=ψ(p ),φ(p )=ψ(p )andφ(p )=ψ(p ). 1 1 2 2 3 3 UsingargumentssimilartothoseintheproofofTheorem1.4,weshowthatφ =ψ. Sinceψ isbijective,φ isalsobijective. 1.12 (a) 6 AnswerstoExercises (φ◦ψ)ξ =(φ◦ψ)◦ξ◦(φ◦ψ)−1 =φ◦ψ◦ξ◦ψ−1◦φ−1 =φ◦(ψ◦ξ◦ψ−1)◦φ−1 =φ◦(ψξ)◦φ−1 = φ(ψξ) and φ(ψ◦ξ)=φ◦(ψ◦ξ)◦φ−1 =φ◦ψ◦φ−1◦φ◦ξ◦φ−1 =(cid:0)φ◦ψ◦φ−1(cid:1)◦(cid:0)φ◦ξ◦φ−1(cid:1) =(cid:0)φψ(cid:1)◦(cid:0)φξ(cid:1). (b)Choosetwopointsp1,p2∈L(cid:48)=r¯M(L).Then,r¯M(pi)∈L.Notethatr¯L(cid:48)(pi)= p.However, i r¯Mr¯ (p)=(r¯ ◦r¯ ◦r¯−1)(p) L i M L M i =(r¯ ◦r¯ ◦r¯ )(p) M L M i =(r¯ ◦r¯ )(r¯ (p)) M L M i =r¯ (r¯ (r¯ (p))) M L M i =r¯ (r¯ (p)) M M i =p i fori=1,2.Chooseanotherpoint p3thatdoesnotbelongtoL(cid:48);then,L(cid:48)=Lp3,p(cid:48)3 for somepoint p(cid:48).Notethat 3 L=(r¯M)−1(L(cid:48))=r¯M(L(cid:48))=r¯M(Lp3,p(cid:48)3)=Lr¯M(p3),r¯M(p(cid:48)3). Clearly,r¯L(cid:48)(p3)=p(cid:48)3.Notethat r¯Mr¯ (p )=(r¯ ◦r¯ ◦r¯ )(p ) L 3 M L M 3 =r¯ (r¯ (r¯ (p ))) M L M 3 =r¯ (r¯ (p(cid:48))) M M 3 =p(cid:48). 3 Insum, r¯L(cid:48)(pi)=r¯Mr¯L(pi) fori=1,2,3,and p ,p and p arenon-collinear.AccordingtoTheorem1.4, 1 2 3 r¯L(cid:48) =r¯Mr¯L.