ebook img

Geometry and Quantum Physics: Proceeding of the 38. Internationale Universitätswochen für Kern- und Teilchenphysik, Schladming, Austria, January 9–16, 1999 PDF

412 Pages·2000·13.616 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Geometry and Quantum Physics: Proceeding of the 38. Internationale Universitätswochen für Kern- und Teilchenphysik, Schladming, Austria, January 9–16, 1999

Lecture Notes in Physics EditorialBoard R.Beig,Vienna,Austria J.Ehlers,Potsdam,Germany U.Frisch,Nice,France K.Hepp,Zu¨rich,Switzerland W.Hillebrandt,Garching,Germany R.L.Jaffe,Cambridge,MA,USA R.Kippenhahn,Go¨ttingen,Germany R.Lipowsky,Golm,Germany H.vonLo¨hneysen,Karlsruhe,Germany I.Ojima,Kyoto,Japan H.A.Weidenmu¨ller,Heidelberg,Germany J.Wess,Mu¨nchen,Germany J.Zittartz,Ko¨ln,Germany ManagingEditor W.Beiglbo¨ck c/oSpringer-Verlag,PhysicsEditorialDepartmentII Tiergartenstrasse17,D-69121Heidelberg,Germany 3 Berlin Heidelberg NewYork Barcelona HongKong London Milan Paris Singapore Tokyo TheEditorialPolicyforProceedings TheseriesLectureNotesinPhysicsreportsnewdevelopmentsinphysicalresearchandteaching–quickly, informally,andatahighlevel.Theproceedingstobeconsideredforpublicationinthisseriesshouldbelimited toonlyafewareasofresearch,andtheseshouldbecloselyrelatedtoeachother.Thecontributionsshouldbe ofahighstandardandshouldavoidlengthyredraftingsofpapersalreadypublishedorabouttobepublished elsewhere.Asawhole,theproceedingsshouldaimforabalancedpresentationofthethemeoftheconference includingadescriptionofthetechniquesusedandenoughmotivationforabroadreadership.Itshouldnot beassumedthatthepublishedproceedingsmustreflecttheconferenceinitsentirety.(Alistingorabstracts ofpaperspresentedatthemeetingbutnotincludedintheproceedingscouldbeaddedasanappendix.) WhenapplyingforpublicationintheseriesLectureNotesinPhysicsthevolume’seditor(s)shouldsubmit sufficientmaterialtoenabletheserieseditorsandtheirrefereestomakeafairlyaccurateevaluation(e.g.a completelistofspeakersandtitlesofpaperstobepresentedandabstracts).If,basedonthisinformation,the proceedingsare(tentatively)accepted,thevolume’seditor(s),whosename(s)willappearonthetitlepages, shouldselectthepaperssuitableforpublicationandhavethemrefereed(asforajournal)whenappropriate. Asarulediscussionswillnotbeaccepted.TheserieseditorsandSpringer-Verlagwillnormallynotinterfere withthedetailededitingexceptinfairlyobviouscasesorontechnicalmatters. Finalacceptanceisexpressedbytheserieseditorincharge,inconsultationwithSpringer-Verlagonlyafter receivingthecompletemanuscript.Itmighthelptosendacopyoftheauthors’manuscriptsinadvanceto theeditorinchargetodiscusspossiblerevisionswithhim.Asageneralrule,theserieseditorwillconfirm histentativeacceptanceifthefinalmanuscriptcorrespondstotheoriginalconceptdiscussed,ifthequalityof thecontributionmeetstherequirementsoftheseries,andifthefinalsizeofthemanuscriptdoesnotgreatly exceedthenumberofpagesoriginallyagreedupon.ThemanuscriptshouldbeforwardedtoSpringer-Verlag shortlyafterthemeeting.Incasesofextremedelay(morethansixmonthsaftertheconference)theseries editorswillcheckoncemorethetimelinessofthepapers.Therefore,thevolume’seditor(s)shouldestablish strictdeadlines,orcollectthearticlesduringtheconferenceandhavethemrevisedonthespot.Ifadelayis unavoidable,oneshouldencouragetheauthorstoupdatetheircontributionsifappropriate.Theeditorsof proceedingsarestronglyadvisedtoinformcontributorsaboutthesepointsatanearlystage. Thefinalmanuscriptshouldcontainatableofcontentsandaninformativeintroductionaccessiblealsoto readersnotparticularlyfamiliarwiththetopicoftheconference.ThecontributionsshouldbeinEnglish.The volume’seditor(s)shouldcheckthecontributionsforthecorrectuseoflanguage.AtSpringer-Verlagonlythe prefaceswillbecheckedbyacopy-editorforlanguageandstyle.Gravelinguisticortechnicalshortcomings mayleadtotherejectionofcontributionsbytheserieseditors.Aconferencereportshouldnotexceedatotal of500pages.Keepingthesizewithinthisboundshouldbeachievedbyastricterselectionofarticlesandnot byimposinganupperlimittothelengthoftheindividualpapers.Editorsreceivejointly30complimentary copiesoftheirbook.Theyareentitledtopurchasefurthercopiesoftheirbookatareducedrate.Asaruleno reprintsofindividualcontributionscanbesupplied.NoroyaltyispaidonLectureNotesinPhysicsvolumes. Commitmenttopublishismadebyletterofinterestratherthanbysigningaformalcontract.Springer-Verlag securesthecopyrightforeachvolume. TheProductionProcess Thebooksarehardbound,andthepublisherwillselectqualitypaperappropriatetotheneedsoftheauthor(s). Publicationtimeisabouttenweeks.Morethantwentyyearsofexperienceguaranteeauthorsthebestpossible service.Toreachthegoalofrapidpublicationatalowpricethetechniqueofphotographicreproductionfrom acamera-readymanuscriptwaschosen.Thisprocessshiftsthemainresponsibilityforthetechnicalquality considerablyfromthepublishertotheauthors.Wethereforeurgeallauthorsandeditorsofproceedingsto observeverycarefullytheessentialsforthepreparationofcamera-readymanuscripts,whichwewillsupplyon request.Thisappliesespeciallytothequalityoffiguresandhalftonessubmittedforpublication.Inaddition, itmightbeusefultolookatsomeofthevolumesalreadypublished.Asaspecialservice,weofferfreeof chargeLATEXandTEXmacropackagestoformatthetextaccordingtoSpringer-Verlag’squalityrequirements. Westronglyrecommendthatyoumakeuseofthisoffer,sincetheresultwillbeabookofconsiderably improvedtechnicalquality.Toavoidmistakesandtime-consumingcorrespondenceduringtheproduction periodtheconferenceeditorsshouldrequestspecialinstructionsfromthepublisherwellbeforethebeginning oftheconference.Manuscriptsnotmeetingthetechnicalstandardoftheserieswillhavetobereturnedfor improvement. ForfurtherinformationpleasecontactSpringer-Verlag,PhysicsEditorialDepartmentII,Tiergartenstrasse17, D-69121Heidelberg,Germany Serieshomepage–http://www.springer.de/phys/books/lnpp H. Gausterer H. Grosse L. Pittner (Eds.) Geometry and Quantum Physics Proceedings of the 38. Internationale Universita¨tswochen fu¨r Kern- und Teilchenphysik, Schladming, Austria, January 9-16, 1999 1 3 Editors H.Gausterer L.Pittner Institutfu¨rTheoretischePhysik,Karl-Franzens-Universita¨t Universita¨tsplatz5,8010Graz,Austria HaraldGrosse Institutfu¨rTheoretischePhysik,Universita¨tWien Boltzmanngasse5,1090Wien,Austria SupportedbytheO¨sterreichischeBundesministeriumfu¨rWirtschaft, VerkehrundKunst,Vienna,Austria LibraryofCongressCataloging-in-PublicationDataappliedfor. DieDeutscheBibliothek-CIP-Einheitsaufnahme Geometryandquantumphysics:proceedingsofthe38.Internationale Universita¨tswochenfu¨rKern-undTeilchenphysik,Schladming,Austria, January9-16,1999/H.Gausterer...(ed.).-Berlin;Heidelberg ;NewYork;Barcelona;HongKong;London;lan;Paris;Singapore ;Tokyo:Springer,2000 (Lecturenotesinphysics;543) ISBN3-540-67112-9 ISSN0075-8450 ISBN3-540-67112-9Springer-VerlagBerlinHeidelbergNewYork Thisworkissubjecttocopyright.Allrightsarereserved,whetherthewholeorpartofthe materialisconcerned,specificallytherightsoftranslation,reprinting,reuseofillustra- tions, recitation, broadcasting, reproduction on microfilm or in any other way, and storageindatabanks.Duplicationofthispublicationorpartsthereofispermittedonly undertheprovisionsoftheGermanCopyrightLawofSeptember9,1965,initscurrent version,andpermissionforusemustalwaysbeobtainedfromSpringer-Verlag.Violations areliableforprosecutionundertheGermanCopyrightLaw. Springer-Verlag is a company in the specialist publishing group BertelsmannSpringer ©Springer-VerlagBerlinHeidelberg2000 PrintedinGermany Theuseofgeneraldescriptivenames,registerednames,trademarks,etc.inthispublication doesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexempt fromtherelevantprotectivelawsandregulationsandthereforefreeforgeneraluse. Typesetting:Camera-readybytheauthors/editors Coverdesign:design&production,Heidelberg Printedonacid-freepaper SPIN:10720725 55/3144/du-543210 Preface In many areas of theoretical physics, geometrical and functional analytic methods are used simultaneously. During the course of our studies and edu- cation, these methods appeared to be extremely di(cid:11)erent. For classical (cid:12)eld theories, a di(cid:11)erential complex over smooth manifolds, smooth sections of vector bundles over manifolds, principal (cid:12)bre bundles, connections, curvatu- res, etc. are introduced. For quantum (cid:12)eld theory, singular operator-valued distributionsactonFockspaceandleadtoallthewell-knowndi(cid:14)culties.Af- tertheworkofAlainConnesandthemanyapplicationsofnon-commutative geometry to various subjects, we became familiar with, for example, the fact that on any associative superalgebra at least one di(cid:11)erential calculus exists. Butclearlytherearemanymoreaspects.Weselectedsevensubjectsandlec- turerstocoversymplecticgeometry,quantumgravity,stringtheory,anintro- duction to non-commutative geometry, and the application to fundamental interactions, to the quantum Hall e(cid:11)ect as well as to physics on q-deformed spaces. In the (cid:12)rst contribution, Anton Alexseev uses techniques of symplec- tic geometry to evaluate certain integrals over manifolds that have special symmetries. For them the stationary phase approximation becomes exact. Starting from simple examples, he introduces equivariant cohomology and sketches the proof of localization formulas of Duistermaat - Heckman type. The Weil model, well-known from the BRST formalism, is introduced, and a non-commutative generalization is used to prove group-valued localization. John Baez elucidates the present status of quantum geometry of space- time. Since the implementation of constraints within the Hamiltonian ap- proach to Einstein gravity is complicated, he explains in detail the simplify- ing BF system connected to the Chern - Simons model. We learn about spin net works and spin foams, become familiar with triangulations of four- manifolds,andcalculatespectraofquantumtetrahedra.Hislecturenotesnot only survey the subject, but also give an extensive list of references arranged according to nine di(cid:11)erent subjects. Cesar Gomez then gives an introduction to string theory. Starting from themodeexpansionheexplainsT-duality,asymmetryrelatingclosedstrings of radius R and 1/R. Next D-brane ideas are represented. Both quantum gravity and string theory have their own way of treating space-time. But there is a further approach that goes by the name of non- commutative geometry. This is the subject of the chapter by Daniel Kastler. John Madore introduces a di(cid:11)erential complex over an arbitrary associa- tive algebra. We learn that, depending on the procedure, a regularization e(cid:11)ect may result. Attempts to add a gravitational (cid:12)eld are also reviewed. This introduction is useful to follow the lectures of Daniel Kastler. He spoke about Connes’ approach to the standard model as well as recent ideas forincludinggravityasanexternal(cid:12)eld.Hepresentstheinterestingideathat VI Preface additional dimensions (cid:12)nally lead via the Higgs e(cid:11)ect to masses of particles, as well as the recent attempts to use SU (2) for q being a third root of unity q to \deduce" the gauge group of the standard model. JuliusWessappliesideasofnon-commutativegeometrytotheq-deformed Heisenberg algebra. The spectra of position and momentum are discrete. Phase space gets a lattice-like structure. Higher-dimensional analogues are investigated too. Finally,RuediSeilerexplainsgeometricalpropertiesoftransportinquan- tum Hall systems. The integer e(cid:11)ect is treated in detail. Although we learn here about many di(cid:11)erent applications of non-com- mutative geometry, the hope is that a unique picture of a quantum space- timemay(cid:12)nallyresult.Quantumtheorychangesourideasongeometry,and further surprises may come along soon. We have tried to cover many subjects and were lucky to be supported by so many excellent lecturers. We hope that the school helped young people seekinganentrytothesesubjects.Theywillhopefullyremembertheexcellent atmosphere of the Schladming Winter School 1999. Atthispointwealsowanttoexpressourthankstothemainsponsorofthe School, the Austrian Ministry for Science and Transportation. In addition, we grateful acknowledge the generous support by the Government of Styria and the Town of Schladming. Valuable help towards the organization was received from the Wirtschaftskammer Steiermark (Sektion Industrie), Steyr- Daimler-Puch AG, Ricoh-Austria, and Styria Online. Organizing the 1999 Schladming Winter School, and making it the suc- cessful event that it was, would not have been possible without the help of a number of colleagues and graduate students from our institute. Without naming them all we want to acknowledge the traditionally good coopera- tion within the organizing committee and beyond, which once again guaran- teed the smooth running of all organizational, technical, and social matters. Thanks are due to Wolfgang Schweiger for his valuable technical assistance. Finally we should like to express our sincere thanks to Miss Sabine Fuchs for carrying out the secretarial work and for (cid:12)nalizing the text and layout of these proceedings. Graz, November 1999 H. Gausterer, H. Grosse, L. Pittner Contents Notes on Equivariant Localization AntonAlekseev . . . . . . . . . . . . . . . . . . . . . . . . 1 An Introduction to Spin Foam Models of BF Theory and Quantum Gravity JohnC.Baez . . . . . . . . . . . . . . . . . . . . . . . . . 25 T-Duality and the Gravitational Description of Gauge Theories CesarGomez and PedroSilva . . . . . . . . . . . . . . . . . . 95 Noncommutative Geometry and Basic Physics DanielKastler . . . . . . . . . . . . . . . . . . . . . . . . 131 An Introduction to Noncommutative Geometry JohnMadore . . . . . . . . . . . . . . . . . . . . . . . . . 231 Geometric Properties of Transport in Quantum Hall Systems ThomasRichter and RuediSeiler . . . . . . . . . . . . . . . . 275 q-Deformed Heisenberg Algebras JuliusWess . . . . . . . . . . . . . . . . . . . . . . . . . . 311 Abstracts of the Seminars (given by participants of the school) . . . . . . . . . . . . . . . 383 Notes on Equivariant Localization AntonAlekseev Institutionenf¨orTeoretiskFysik,UppsalaUniversitet,Box803,S-75108,Uppsala, Sweden Abstract. We review the localization formula due to Berline-Vergne and Atiyah- Bott, with applications to the exact stationary phase phenomenon discovered by Duistermaat-Heckman. We explain the Weil model of equivariant cohomology and recall its relation to BRST. We show how to quantize the Weil model, and obtain new localization formulas which, in particular, apply to Hamiltonian spaces with group valued moment maps. 1 Introduction The purpose of these lecture notes is to present the localization formulas for equivariant cocycles. The localization phenomenon was (cid:12)rst discovered by Duistermaat and Heckman in [DH], and then explained in the works of Berline-Vergne[BV]andAtiyah-Bott[AB].Themainideaofthelocalization formulas is similar to the residue formula: a multi-dimensional integral is evaluated exactly by summing up a number of the (cid:12)xed point contributions. In Section 2 we review the localization formula of [BV] and [AB]. We use an elementary example of the sphere S2 as an illustration. Then, we outline the relation between the localization formulas and Hamiltonian Mechanics, and recover the Duistermaat-Heckman formula [DH]. In Section 3 we discuss the relations between the localization formulas and the group actions. In the case of the Duistermaat-Heckman formula, localization is intimately related to the symmetry group of the underlying Hamiltoniansystem.Inparticular,wecomparetheequivariantdi(cid:11)erentialto the BRST di(cid:11)erential. InSection4weexplainhowtoquantizetheequivariantcohomology.This Sectionisbasedonthepapers[AMM],[AM],[AMW1]and[AMW2].Weend up by presenting the new localization formula which is derived in [AMW2]. Some simple applications of this new formula can be found in [P]. Section 4 is based on the joint works with A.Malkin, E.Meinrenken and C.Woodward. These notes do not touch upon various applications of localization for- mulas in Physics. Usually, one proceeds by extrapolating the localization phenomenon to path integrals. Some of the most exciting examples of this approach can be found in [MNP], [W2], [G], [BT], [MNS]. In fact, [W2] was the original motivation for the formulas of Section 3. I am grateful to the organizers and participants of the 38th Schladming Winter School for the inspiring atmosphere! H. Gausterer, H. Grosse, and L. Pittner (Eds.): Proceedings 1999, LNP 543, pp. 1−24, 2000. (cid:211) Springer-Verlag Berlin Heidelberg 2000 2 AntonAlekseev 2 Localization Formulas InthisSectionwereviewthelocalization formuladuetoBerline-Vergne[BV] andAtiyah-Bott[AB].Itisthenusedtoderivetheexactstationaryphasefor- mula due to Duistermaat and Heckman [DH]. The presentation is illustrated at the elementary example of sphere S2. 2.1 Stationary Phase Method In this section we recall the stationary phase method. It applies when one is interested in the asymptotic behavior at large s of the integral (cid:90) 1 I(s)= dxeisf(x)g(x): (1) −1 Hereweassumethatfunctionsf(x)andg(x)arereal,andsu(cid:14)cientlysmooth. Atlarges>0theleadingcontributionintotheintegral(1)isgivenbythe neighborhoodofthecriticalpointsoff(x),whereitsderivativeinxvanishes. Let x be such a critical point. Then, one can approximate f(x) near x by 0 0 the (cid:12)rst two terms of the Taylor series, 1 f(x)=f(x )+ f00(x )(x−x )2+:::; 0 2 0 0 where ::: stand for the higher order terms. The leading contribution of the critical point x into the integral I(s) is 0 given by a simpler integral (cid:90) 1 I0(s)=g(x0)eisf(x0) dxe2isf(cid:48)(cid:48)(x0)(x−x0)2: −1 This integral is Gaussian, and can be computed explicitly, (cid:18) (cid:19) I0(s)=g(x0)ei(sf(x0)+επ4) sjf020((cid:25)x )j 12 0 Here " is the sign on the second derivative f00(x ). 0 A similar formula holds for multi-dimensional integrals, (cid:90) I(s)= dnxg(x)eisf(x): (2) Again, the leading contribution into the asymptotics at large s is given by thecriticalpointsoff(x),whereitsgradientvanishesrf =0.Atthecritical point x one can expand f(x) into the Taylor series, 0 1 (cid:88)n f(x)=f(x )+ f00(x )(x−x ) (x−x ) +:::; (3) 0 2 ij 0 0 i 0 j i,j=1 Notes on Equivariant Localization 3 where @2f f00 = : ij @x @x i j We assume that the critical point is non-degenerate, that is, the matrix f00 ij is invertible. Then, the leading contribution of x into the integral I(s) is of 0 the form, (cid:18) (cid:19) I0(s)=g(x0)eisf(x0) 2s(cid:25) n2 jdet(fei0σ0(π4x ))j1: (4) 0 2 Here (cid:27) =(cid:27) −(cid:27) is the signature of the matrixf00, (cid:27) and (cid:27) are numbers + − ij + − of positive and negative eigenvalues, respectively. In general, one can have several critical points. Then, on can add the leading contributions (4) to obtain the approximate answer for I(s), (cid:18) (cid:19) I(s)(cid:25) 2s(cid:25) n2 (cid:88)g(xi)eisf(xi) jdet(efiσ00i(πx4 ))j1 (5) i i 2 Ofcourse,thereisnoreasonfortherighthandsidetobetheexactanswerfor I(s).Butsometimesthisisthecase!Suchasituationiscalledexactstationary phase, and will be studied in these notes. Example: sphere S2 The simplest example of the exact stationary phase phenomenon is the computation of the following integral. Consider the unit sphere S2 de(cid:12)ned by equation x2+y2+z2 =1. We choose g(x;y;z)=1 and f(x;y;z)=z. Then, the integral I(s) is of the form, (cid:90) I(s)= dA eisz; (6) S2 (cid:82) where dA is the area element normalized in the standard way, dA=4(cid:25). S2 The critical points of the function f(x;y;z) = z are the North and the South poles of the sphere. At both points one can use x and y as local coordinates to obtain, 1 z (cid:25)1− (x2+y2) 2 near the North pole, and 1 z (cid:25)−1+ (x2+y2) 2 near the South pole. Thus, for the stationary phase approximation one ob- tains, 2(cid:25) sin(s) I(s)(cid:25) (−ieis+ie−is)=4(cid:25) : (7) s s HerewehaveusedthatatbothNorthandSouthpolesdet(f )=1,andthat ij (cid:27) =−2 and (cid:27) =2. N S

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.