ebook img

Geometry and Discrete Mathematics: A Selection of Highlights PDF

364 Pages·2022·6.286 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Geometry and Discrete Mathematics: A Selection of Highlights

BenjaminFine,AnjaMoldenhauer,GerhardRosenberger,AnnikaSchürenberg, LeonardWienke GeometryandDiscreteMathematics Also of Interest AlgebraandNumberTheory.ASelectionofHighlights BenjaminFine,AnthonyGaglione,AnjaMoldenhauer,Gerhard Rosenberger,DennisSpellman,2017 ISBN978-3-11-051584-8,e-ISBN(PDF)978-3-11-051614-2, e-ISBN(EPUB)978-3-11-051626-5 2ndeditionisplanned! GeneralTopology.AnIntroduction TomRichmond,2020 ISBN978-3-11-068656-2,e-ISBN(PDF)978-3-11-068657-9, e-ISBN(EPUB)978-3-11-068672-2 APrimerinCombinatorics AlexanderKheyfits,2021 ISBN978-3-11-075117-8,e-ISBN(PDF)978-3-11-075118-5, e-ISBN(EPUB)978-3-11-075124-6 Discrete-TimeApproximationsandLimitTheorems.InApplicationsto FinancialMarkets YuliyaMishura,KostiantynRalchenko,2021 ISBN978-3-11-065279-6,e-ISBN(PDF)978-3-11-065424-0, e-ISBN(EPUB)978-3-11-065299-4 DiscreteAlgebraicMethods.Arithmetic,Cryptography,Automataand Groups VolkerDiekert,ManfredKufleitner,GerhardRosenberger,Ulrich Hertrampf,2016 ISBN978-3-11-041332-8,e-ISBN(PDF)978-3-11-041333-5, e-ISBN(EPUB)978-3-11-041632-9 Benjamin Fine, Anja Moldenhauer, Gerhard Rosenberger, Annika Schürenberg, Leonard Wienke Geometry and Discrete Mathematics | A Selection of Highlights 2nd edition MathematicsSubjectClassification2010 Primary:00-01,05-01,06-01,51-01,60-01;Secondary:03G05,05A10,05A15,06A06,20H10,20H15, 51F15,53A04,55U05,60A10,94C15 Authors Prof.Dr.BenjaminFine AnnikaSchürenberg FairfieldUniversity GrundschuleHoheluft DepartmentofMathematics Wrangelstr.80 1073NorthBensonRoad 20253Hamburg Fairfield,CT06430 Germany USA LeonardWienke Dr.AnjaMoldenhauer UniversityofBremen 20535Hamburg DepartmentofMathematics Germany Bibliothekstr.5 28359Bremen Prof.Dr.GerhardRosenberger Germany UniversityofHamburg DepartmentofMathematics Bundesstr.55 20146Hamburg Germany ISBN978-3-11-074077-6 e-ISBN(PDF)978-3-11-074078-3 e-ISBN(EPUB)978-3-11-074093-6 LibraryofCongressControlNumber:2022934378 BibliographicinformationpublishedbytheDeutscheNationalbibliothek TheDeutscheNationalbibliothekliststhispublicationintheDeutscheNationalbibliografie; detailedbibliographicdataareavailableontheInternetathttp://dnb.dnb.de. ©2022WalterdeGruyterGmbH,Berlin/Boston Coverimage:GerhardRosenberger Typesetting:VTeXUAB,Lithuania Printingandbinding:CPIbooksGmbH,Leck www.degruyter.com Preface Tomanystudents,aswellastomanyteachers,mathematicsmayseemlikeamun- dane discipline, filled with rules and algorithms and devoid of beauty, culture and art.However,theworldofmathematicsispopulatedwithtruegemsandresultsthat astound.InourseriesHighlightsinMathematicsweintroduceandexaminemanyof thesemathematicalhighlights,thoroughlydevelopingwhatevermathematicalresults andtechniquesweneedalongtheway. WeregardourHighlightsasbooksforgraduatestudiesandplannedittobeused incoursesforteachersandforgeneralmathematicallyinterested,soitissomewhat betweenatextbookandacollectionofresults.Weassumethatthereaderisfamiliar withbasicknowledgeinalgebra,geometryandcalculus,aswellassomeknowledge ofmatricesandlinearequations.Beyondthesethebookisself-contained.Thechap- tersofthebookarelargelyindependent,andweinvitethereadertochooseareasto concentrateon. Westructureourbookin11chaptersthatarearrangedinthreeparts:Inthefirst seven chapters we examine results which are related to geometry. In Chapter 8 we giveaconnectionofgeometricideasandcombinatoricallydefinedobjects.Inthelast threechapterswefurtherinvestigatetopicsincombinatorics,discussaglimpseoffi- niteprobabilitytheoryandendourbookwithBooleanalgebrasandBooleanlattices. In Chapter 1 we look at general geometric ideas and techniques. In the second editionweaddedaprimeroncurvesintherealspaceℝ3tothischaptertogivealittle insightintotherichnessofdifferentialgeometry. InChapter2wediscusstheisometriesinEuclideanvectorspacesandtheirclassi- ficationinℝn.WerealizethatthestudyofplanarEuclideangeometrydependsupon theknowledgeofthegroupofallisometriesoftheEuclideanplaneandhencedevote asectiontothem.Thestudyofgeometryusingisometriesandgroupsofisometries wasdevelopedbyF.Klein,andthisapproachisfundamentalinthemodernapplica- tiontogeometry.AfirstapplicationisinChapter3wherewegiveaclassificationand ageometricdescriptionoftheconicsections. InChapter4wedescribecertainspecialgroupsofplanarisometries,morepre- cisely,wedescribethefixedpointgroupsandclassifythefriezegroupsandthepla- narcrystallographicgroups.Thisespeciallyleadstoaclassificationoftheregulartes- sellationsoftheplane.Inthissecondeditionweincludedabeautifulnon-periodic tessellationoftherealplaneℝ2,thePenrosetilingwhichgetsalongwithonlytwo prototiles. InChapter5wepresentgraphtheoryandgraphtheoreticalproblems.Inpartic- ular,wediscusscolorings,matchings,EulerlinesandHamiltonianlinesalongwith theirrichandcurrentapplicationssuchasthemarriageproblemandthetravelling salesmanproblem.Incontrasttothefirsteditionofthisbookthechapterongraph theoryisnowanextendedstand-alonechapterandthediscussionofsphericalgeom- etryandthePlatonicsolidstakesplaceinanewChapter6. https://doi.org/10.1515/9783110740783-201 VI | Preface There,wediscussthePlatonicsolidswhichhistoricallyhaveplayedanoutsider’s roleinourviewoftheuniverse.ForthedescriptionandtheclassificationofthePla- tonicsolidsweuseEuler’sformulaforplanar,connectedgraphsandthesphericalge- ometryofthesphereS2.InChapter7wecompletethediscussionofplanargeometries withtheintroductionofamodelforahyperbolicplaneandalookatthedevelopment andpropertiesofhyperbolicgeometry. In the second edition we added a new Chapter 8 on simplicial complexes and topologicaldataanalysis–twoimportantconceptsfromtheemergingfieldofapplied topology. Chapter9givesadetailedpaththroughcombinatorics,combinatorialproblems andgeneratingfunctions.Finiteprobabilitytheoryisheavilydependentoncombina- toricsandcombinatorialtechniques.HenceinChapter10weexaminefiniteprobabil- itytheorywithaspecialfocusontheBayesiananalysis. Finally,inChapter11weconsiderBooleanalgebrasandBooleanlatticesandgive aproofofthecelebratedtheoremofM.StonewhichsaysthataBooleanlatticeislattice isomorphictoaBooleansetlattice.Hence,BooleanalgebrasandBooleanlatticesare crucialinbothpuremathematics,especiallydiscretemathematics,anddigitalcom- puting. Wewouldliketothankthemanypeoplewhowereinvolvedinthepreparationof themanuscriptaswellasthosewhohaveusedthefirsteditioninclassesandseminars fortheirhelpfulsuggestions.Inparticular,wehavetomentionAnjaRosenbergerfor herdedicatedparticipationintranslatingandproofreading.WethankYannickLilie forprovidinguswithexcellentdiagramsandpictures.Thosemathematical,stylistic, andorthographicerrorsthatundoubtedlyremainshallbechargedtotheauthors.Last butnotleast,wethankDeGruyterforpublishingourbook.Wehopethatourreaders, oldandnew,willfindpleasureinthisreviewedandextendededition. BenjaminFine AnjaMoldenhauer GerhardRosenberger AnnikaSchürenberg LeonardWienke Contents Preface|V 1 GeometryandGeometricIdeas|1 1.1 GeometricNotions,ModelsandGeometricSpaces|1 1.1.1 GeometricNotions|3 1.2 OverviewofEuclid’sMethodandApproachestoGeometry|3 1.2.1 IncidenceGeometries–AffineGeometries,FiniteGeometries,Projective Geometries|6 1.3 EuclideanGeometry|7 1.3.1 Birkhoff’sAxiomsforEuclideanGeometry|9 1.4 NeutralorAbsoluteGeometry|9 1.5 EuclideanandHyperbolicGeometry|12 1.5.1 ConsistencyofHyperbolicGeometry|13 1.6 EllipticGeometry|14 1.7 DifferentialGeometry|14 1.7.1 SomeSpecialCurves|22 1.7.2 TheFundamentalExistenceandUniquenessTheorem|24 1.7.3 ComputingFormulasfortheCurvature,theTorsionandtheComponents ofAcceleration|25 1.7.4 IntegrationofPlanarCurves|27 2 IsometriesinEuclideanVectorSpacesandtheirClassificationinℝn|31 2.1 IsometriesandKlein’sErlangenProgram|31 2.2 TheIsometriesoftheEuclideanPlaneℝ2|42 2.3 TheIsometriesoftheEuclideanSpaceℝ3|54 2.4 TheGeneralCaseℝnwithn≥2|61 3 TheConicSectionsintheEuclideanPlane|69 3.1 TheConicSections|69 3.2 Ellipse|77 3.3 Hyperbola|79 3.4 Parabola|81 3.5 ThePrincipalAxisTransformation|82 4 SpecialGroupsofPlanarIsometries|87 4.1 RegularPolygons|91 4.2 RegularTessellationsofthePlane|93 4.3 GroupsofTranslationsinthePlaneℝ2|98 4.4 GroupsofIsometriesofthePlanewithTrivialTranslation Subgroup|100 VIII | Contents 4.5 FriezeGroups|101 4.6 PlanarCrystallographicGroups|103 4.7 ANon-PeriodicTessellationofthePlaneℝ2|117 5 GraphTheoryandGraphTheoreticalProblems|127 5.1 GraphTheory|127 5.2 ColoringofPlanarGraphs|139 5.3 TheMarriageTheorem|140 5.4 StableMarriageProblem|142 5.5 EulerLine|144 5.6 HamiltonianLine|148 5.7 TheTravelingSalesmanProblem|151 6 SphericalGeometryandPlatonicSolids|159 6.1 StereographicProjection|159 6.2 PlatonicSolids|161 6.2.1 Cube(C)|163 6.2.2 Tetrahedron(T)|163 6.2.3 Octahedron(O)|164 6.2.4 Icosahedron(I)|165 6.2.5 Dodecahedron(D)|166 6.3 TheSphericalGeometryoftheSphereS2|167 6.4 ClassificationofthePlatonicSolids|170 7 LinearFractionalTransformationandPlanarHyperbolicGeometry|177 7.1 LinearFractionalTransformations|177 7.2 AModelforaPlanarHyperbolicGeometry|185 ℍ 7.3 The(Planar)HyperbolicTheoremofPythagorasin |189 7.4 TheHyperbolicAreaofaHyperbolicPolygon|190 8 SimplicialComplexesandTopologicalDataAnalysis|205 8.1 SimplicialComplexes|205 8.2 Sperner’sLemma|209 8.3 SimplicialHomology|211 8.4 PersistentHomology|217 9 CombinatoricsandCombinatorialProblems|223 9.1 Combinatorics|223 9.2 BasicTechniquesandtheMultiplicationPrinciple|223 9.3 SizesofFiniteSetsandtheSamplingProblem|228 9.3.1 TheBinomialCoefficients|233 9.3.2 TheOccupancyProblem|236 Contents | IX 9.3.3 SomeFurtherComments|237 9.4 MultinomialCoefficients|239 9.5 SizesofFiniteSetsandtheInclusion–ExclusionPrinciple|241 9.6 PartitionsandRecurrenceRelations|248 9.7 DecompositionsofNaturalsNumbers,PartitionFunction|255 9.8 CatalanNumbers|257 9.9 GeneratingFunctions|259 9.9.1 OrdinaryGeneratingFunctions|259 9.9.2 ExponentialGeneratingFunctions|269 10 FiniteProbabilityTheoryandBayesianAnalysis|277 10.1 ProbabilitiesandProbabilitySpaces|277 10.2 SomeExamplesofFiniteProbabilities|279 10.3 RandomVariables,DistributionFunctionsandExpectation|281 10.4 TheLawofLargeNumbers|285 10.5 ConditionalProbabilities|288 10.6 TheGoatorMontyHallProblem|295 10.7 BayesNets|296 11 BooleanLattices,BooleanAlgebrasandStone’sTheorem|311 11.1 BooleanAlgebrasandtheAlgebraofSets|311 11.2 TheAlgebraofSetsandPartialOrders|311 11.3 Lattices|318 11.4 DistributiveandModularLattices|324 11.5 BooleanLatticesandStone’sTheorem|328 11.6 ConstructionofBooleanLatticesvia0–1Sequences|335 11.7 BooleanRings|338 11.8 TheGeneralTheoremofStone|341 Bibliography|347 Index|349

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.