ebook img

Geometry and analysis of control-affine systems: motion planning, heat and Schrödinger evolution PDF

127 Pages·2017·1.99 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Geometry and analysis of control-affine systems: motion planning, heat and Schrödinger evolution

Geometry and analysis of control-affine systems: motion planning, heat and Schrödinger evolution Dario Prandi To cite this version: DarioPrandi. Geometryandanalysisofcontrol-affinesystems: motionplanning,heatandSchrödinger evolution. Optimization and Control [math.OC]. Ecole Polytechnique X, 2013. English. ￿NNT: ￿. ￿pastel-00878567￿ HAL Id: pastel-00878567 https://pastel.archives-ouvertes.fr/pastel-00878567 Submitted on 30 Oct 2013 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. E´cole doctorale de l’E´cole Polytechnique Geometry and analysis of control-affine systems: motion planning, heat and Schro¨dinger evolution ` THESE DE DOCTORAT pr´esent´ee et soutenue publiquement le 23 octobre 2013 pour l’obtention du diplˆome de ´ Docteur de l’Ecole Polytechnique (sp´ecialit´e math´ematiques appliqu´ees) par Dario Prandi Composition du jury Directeurs: Ugo Boscain Fr´ed´eric Jean Mario Sigalotti Rapporteurs: Richard Montgomery Pierre Rouchon Examinateurs: St´ephane Gaubert Jean-Paul Laumond Pierre Pansu Centre de Math´ematiques Appliqu´ees — UMR 7641 To Meg. Knowledge and ability were tools, not things to show off. – Haruki Murakami, 1Q84 Cette th`ese traite de deux probl`emes qui ont leur origine dans la th´eorie du contrˆole g´eom´etrique, et qui concernent les syst`emes de contrˆole avec d´erive, c’est-`a-dire de la forme q˙ = f (q)+ m u f (q). Dans la premi`ere partie de la th`ese, on g´en´eralise le 0 j=1 j j concept de complexit´e de courbes non-admissibles, d´ej`a bien compris pour les syst`emes (cid:80) sous-riemanniens, au cas des syst`emes de contrˆole avec d´erive, et on donne des estima- tionsasymptotiquesdecesquantit´es. Ensuite, dansladeuxi`emepartie, onconsid`ereune famille de syst`emes de contrˆole sans d´erive en dimension 2 et on s’int´eresse `a l’operateur de Laplace-Beltrami associ´e et `a l’´evolution de la chaleur et des particules quantiques qu’il d´efinit. On ´etudie plus particuli`erement l’effet qu’a l’ensemble ou` les champs de vecteurs contrˆol´es deviennent colin´eaires sur ces ´evolutions. This thesis is dedicated to two problems arising from geometric control theory, re- garding control-affine systems q˙ = f (q)+ m u f (q), where f is called the drift. In 0 j=1 j j 0 the first part we extend the concept of complexity of non-admissible trajectories, well (cid:80) understood for sub-Riemannian systems, to this more general case, and find asymptotic estimates. Then, in the second part of the thesis, we consider a family of 2-dimensional driftless control systems. For these, we study how the set where the control vector fields become collinear affects the evolution of the heat and of a quantum particle with respect to the associated Laplace-Beltrami operator. Acknowledgements First and foremost, I would like to thank my advisor, without whom this thesis would have never saw the light. Ugo, thank you for the trust, for all the opportunities you gave me, for having taught me what does it mean to do research and how it can be done literally everywhere. I could not have hoped for a better advisor. I would like to thank my co-advisors, Fr´ederic Jean and Mario Sigalotti, for their patience and perseverance. Fred, you taught me a lot all the while showing me that it is possible to commit to mathematics without letting it devour you. Mario, thank you for having always been willing to help and to give me advices. Also, your proofreading taught me the meaning of precision. IamdeeplyindebitedwithProf. RichardMontgomeryandwithProf. PierreRouchon for having reviewed this thesis, giving me useful insights. My grateful thanks are also extended to Prof. Pierre Pansu and to DR St´ephane Gaubert for giving me the honor of being members of this jury. A special thanks goes to my family, for still being unconditionally supportive after 8 long years as they were when I was a freshman. I could never have gotten this far without you. I am also grateful to Davide Barilari, for being a collegue, a friend, and somewhat of a mentor. To Mauricio Godoy Molina, for the endless discussions on mathematics and everything else. To Petri Kokkonen, that always made me feel at home no matter where or when. And to Marco Penna, for his unconditioned help and friendship. I want to thank everyone else who helped me taking the best out from these three years, making of them a special and unforgettable experience. Athena, Cesare, Cosimo, Daniela, Diana, Fabio, Francesco, Gaspard, Giovanni, Giulio, Mattia, Mauro, Micon, Miquel, Lucas, Polo, Riccardo(s), Sri, Stefano, Tudor, a big hug to you and to all the others I could not fit here. Finally, Margherita, thank you for having always been there. Thank you for having non stoppingly encouraged me and stood by my side, even when it felt like hell. Thank you for everything. Contents I. Preliminaries 1 1. Introduction 3 1.1. Sub-Riemannian geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 1.1.1. Metric properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 1.1.2. Complexity and motion planning . . . . . . . . . . . . . . . . . . . 8 1.1.3. The sub-Laplacian . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 1.1.4. The Laplace-Beltrami operator in almost-Riemannian geometry . . 12 1.2. Control-affine systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 1.2.1. H¨older continuity of the value function . . . . . . . . . . . . . . . . 14 1.2.2. Complexity and motion planning . . . . . . . . . . . . . . . . . . . 16 1.3. The Laplace-Beltrami operator on conic and anti-conic surfaces . . . . . . 19 1.3.1. Passage through the singularity . . . . . . . . . . . . . . . . . . . . 21 1.3.2. Stochastic completeness . . . . . . . . . . . . . . . . . . . . . . . . 22 1.4. Perspectives and open problems . . . . . . . . . . . . . . . . . . . . . . . . 24 1.4.1. Complexity of non-admissible trajectories . . . . . . . . . . . . . . 24 1.4.2. Singular diffusions . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 Bibliography 27 II. Papers 33 2. H¨older continuity of the value function for control-affine systems 35 3. Complexity of control-affine motion planning 57 4. The heat and Schr¨odinger equations on conic and anticonic surfaces 83 III. Abstracts 111 5. Abstract 113 6. Resum´e 115

Description:
Introduction. Dynamics, from how a car moves up to the evolution of a quantum particle, are modelled in general by differential equations. Control theory . Sub-Riemannian geometry can be thought of as a generalization of Riemannian geome- It is called explosive if it is not stochastically complete
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.