Springer Proceedings in Mathematics & Statistics Editors Amir Akbary · Sanoli Gun Geometry, Algebra, Number Theory, and Their Information Technology Applications Toronto, Canada, June 2016, and Kozhikode, India, August 2016 Springer Proceedings in Mathematics & Statistics Volume 251 Springer Proceedings in Mathematics & Statistics This book series features volumes composed of selected contributions from workshops and conferences in all areas of current research in mathematics and statistics, including operation research and optimization. In addition to an overall evaluation of the interest, scientific quality, and timeliness of each proposal at the hands of the publisher, individual contributions are all refereed to the high quality standards of leading journals in the field. Thus, this series provides the research community with well-edited, authoritative reports on developments in the most exciting areas of mathematical and statistical research today. More information about this series at http://www.springer.com/series/10533 Amir Akbary Sanoli Gun (cid:129) Editors Geometry, Algebra, Number Theory, and Their Information Technology Applications Toronto, Canada, June 2016, and Kozhikode, India, August 2016 123 Editors Amir Akbary Sanoli Gun Department ofMathematics Institute of Mathematical Sciences andComputer Science Chennai, Tamil Nadu,India University of Lethbridge Lethbridge, AB,Canada ISSN 2194-1009 ISSN 2194-1017 (electronic) SpringerProceedings in Mathematics& Statistics ISBN978-3-319-97378-4 ISBN978-3-319-97379-1 (eBook) https://doi.org/10.1007/978-3-319-97379-1 LibraryofCongressControlNumber:2018949894 MathematicsSubjectClassification(2010): 11G10,11R45,11F67,11N36,14G50,94A60 ©SpringerNatureSwitzerlandAG2018 Thisworkissubjecttocopyright.AllrightsarereservedbythePublisher,whetherthewholeorpart of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission orinformationstorageandretrieval,electronicadaptation,computersoftware,orbysimilarordissimilar methodologynowknownorhereafterdeveloped. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publicationdoesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfrom therelevantprotectivelawsandregulationsandthereforefreeforgeneraluse. The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authorsortheeditorsgiveawarranty,expressorimplied,withrespecttothematerialcontainedhereinor for any errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictionalclaimsinpublishedmapsandinstitutionalaffiliations. ThisSpringerimprintispublishedbytheregisteredcompanySpringerNatureSwitzerlandAG Theregisteredcompanyaddressis:Gewerbestrasse11,6330Cham,Switzerland Contents Overview of the Work of Kumar Murty . . . . . . . . . . . . . . . . . . . . . . . . 1 Amir Akbary, Sanoli Gun and M. Ram Murty On the Average Value of a Function of the Residual Index . . . . . . . . . . 19 Amir Akbary and Adam Tyler Felix Applications of the Square Sieve to a Conjecture of Lang and Trotter for a Pair of Elliptic Curves Over the Rationals. . . . . . . . . 39 S. Baier and Vijay M. Patankar R-Group and Multiplicity in Restriction for Unitary Principal Series of GSpin and Spin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 Dubravka Ban, Kwangho Choiy and David Goldberg pffiffiffiffiffiffiffiffiffiffiffiffiffiffi The 2-Class Tower of Qð (cid:2)5460Þ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 Nigel Boston and Jiuya Wang On the Bad Reduction of Certain U(2, 1) Shimura Varieties . . . . . . . . . 81 Ehud de Shalit and Eyal Z. Goren Density Modulo 1 of a Sequence Associated with a Multiplicative Function Evaluated at Polynomial Arguments . . . . . . . . . . . . . . . . . . . . 153 Jean-Marc Deshouillers and Mohammad Nasiri-Zare Uniqueness Results for a Class of L-Functions. . . . . . . . . . . . . . . . . . . . 163 Anup B. Dixit Quadratic Periods of Meromorphic Forms on Punctured Riemann Surfaces. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183 Payman Eskandari On the Local Coefficients Matrix for Coverings of SL . . . . . . . . . . . . . 207 2 Fan Gao, Freydoon Shahidi and Dani Szpruch v vi Contents Eisenstein Series of Weight One, q-Averages of the 0-Logarithm and Periods of Elliptic Curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 245 Daniel R. Grayson and Dinakar Ramakrishnan On Zeros of Certain Cusp Forms of Integral Weight for Full Modular Group. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 267 Murugesan Manickam and E. M. Sandeep A Note on Burgess Bound . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 273 Ritabrata Munshi A Smooth Selberg Sieve and Applications . . . . . . . . . . . . . . . . . . . . . . . 291 M. Ram Murty and Akshaa Vatwani Explicit Arithmetic on Abelian Varieties . . . . . . . . . . . . . . . . . . . . . . . . 317 V. Kumar Murty and Pramathanath Sastry Derived Categories of Moduli Spaces of Vector Bundles on Curves II. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 375 M. S. Narasimhan Representations of an Integer by Some Quaternary and Octonary Quadratic Forms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 383 B. Ramakrishnan, Brundaban Sahu and Anup Kumar Singh A Topological Realization of the Congruence Subgroup Kernel. . . . . . . 411 John Scherk Fine Selmer Groups and Isogeny Invariance . . . . . . . . . . . . . . . . . . . . . 419 R. Sujatha and M. Witte Distribution of a Subset of Non-residues Modulo p . . . . . . . . . . . . . . . . 445 R. Thangadurai and Veekesh Kumar On Solving a Generalized Chinese Remainder Theorem in the Presence of Remainder Errors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 461 Guangwu Xu Endomorphism Algebras of Abelian Varieties with Special Reference to Superelliptic Jacobians . . . . . . . . . . . . . . . . . . . . . . . . . . . 477 Yuri G. Zarhin Overview of the Work of Kumar Murty AmirAkbary,SanoliGunandM.RamMurty · · · · 2010 Mathematics Subject Classification 11G10 11R45 11F67 11N36 14G50 1 Introduction Theroleofthescholarinsocietyisfoundationalforthegrowthofhumancivilization. In fact, one could argue that without the scholar, civilizations crumble. The trans- missionofknowledgefromgenerationtogeneration,totakewhatisessentialfrom the past, to transform it into a new shape and arrangement relevant to the present andtostimulatefuturestudentstoaddtothisknowledgeistheprimaryroleofthe teacher.Spanningmorethanfourdecades,KumarMurtyhasbeenthemodelteacher andresearcher,workingindiverseareasofnumbertheoryandarithmeticgeometry, expanding his contributions to meet the challenges of the digital age and training anarmyofstudentsandpostdoctoralfellowswhowillteachthefuturegenerations. Ontopofthis,hehasalsogivenseriousattentiontohowmathematicsandmathe- maticalthoughtcanbeappliedtodealingwithlarge-scaleeconomicproblemsand theemergenceof“smartvillages”.Wewillnotdiscussthislatterworkhere,norhis A.Akbary DepartmentofMathematicsandComputerScience,UniversityofLethbridge, Lethbridge,AB,Canada e-mail:[email protected] S.Gun InstituteforMathematicalSciences,Chennai,India e-mail:[email protected] B M.R.Murty( ) DepartmentofMathematicsandStatistics,Queen’sUniversity,Kingston,ON,Canada e-mail:[email protected] ©SpringerNatureSwitzerlandAG2018 1 A.AkbaryandS.Gun(eds.),Geometry,Algebra,NumberTheory, andTheirInformationTechnologyApplications,SpringerProceedings inMathematics&Statistics251,https://doi.org/10.1007/978-3-319-97379-1_1 2 A.Akbaryetal. Fig.1 Kumarin2016(PhotoCredit:ChrisThomaidis) otherworkinthefieldofIndianphilosophy.Wewillonlyfocusongivingasynoptic overviewofhismajorcontributionstomathematics. KumarcompletedhisPhDatHarvardUniversityin1982underthedirectionof JohnTate.AfterayearattheInstituteforAdvancedStudyinPrinceton,andanother yearattheTataInstituteforFundamentalResearchinMumbai,India,heaccepted apositionatConcordia UniversityinMontreal,Canada. In1987,hemoved tothe University of Toronto as an associate professor and quickly advanced to full pro- fessorandlaterasDepartmentHead.Hehaswrittenmorethan100researchpapers and three books and supervised more than a dozen doctoral students and postdoc- toral fellows. His first book, “Introduction to Abelian Varieties”, published by the AmericanMathematicalSocietyin1993providesagentleinitiationintothestudy of this important topic in arithmetic geometry. His second book, “Non-vanishing of L-functions and applications” published by Birkhauser and written jointly with M. Ram Murty, won the 1996 Balaguer Prize. His third book, “The Mathematical LegacyofSrinivasaRamanujan”(alsowrittenwithM.RamMurty)andpublished bySpringer,hasbeenpraisedforitspanoramicoverviewofRamanujan’sworkmak- ing it accessible to non-specialists even outside of mathematics. In 1991, he was awardedtheCoxeter–JamesPrizebytheCanadianMathematicalSociety.In1995, he was awarded the E.W.R. Steacie Fellowship by the Natural Sciences and Engi- neeringResearchCouncilofCanadaandwaselectedtotheRoyalSocietyofCanada. OverviewoftheWorkofKumarMurty 3 Fig.2 TouchingbasewithKung-FuPanda(PhotoCredit:JasbirChahal) He also holds adjunct professorships at various universities in India that allow him to maintain academic contacts that foster the growth of mathematics there (Figs.1and2).