ebook img

Geometries and transformations PDF

472 Pages·2018·4.42 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Geometries and transformations

GeometriesandTransformations Euclideanandothergeometriesaredistinguishedbythetransformations that preserve their essential properties. Using linear algebra and trans- formationgroups,thisbookprovidesareadableexpositionofhowthese classical geometries are both differentiated and connected. Following CayleyandKlein,thebookbuildsonprojectiveandinversivegeometry to construct “linear” and “circular” geometries, including classical real metric spaces like Euclidean, hyperbolic, elliptic, and spherical, as well as their unitary counterparts. The first part of the book deals with the foundations and general properties of the various kinds of geometries. The latter part studies discrete-geometric structures and their symme- tries in various spaces. Written for graduate students, the book includes numerous exercises and covers both classical results and new research in the field. An understanding of analytic geometry, linear algebra, and elementarygrouptheoryisassumed. NormanW.JohnsonwasProfessorEmeritusofMathematicsatWheaton College, Massachusetts. Johnson authored and coauthored numerous journal articles on geometry and algebra, and his 1966 paper ‘Convey PolyhedrawithRegularFaces’enumeratedwhathavecometobecalled the Johnson solids. He was a frequent participant in international con- ferences and a member of the American Mathematical Society and the MathematicalAssociationofAmerica. NormanJohnson:AnAppreciation byThomasBanchoff Norman Johnson passed away on July 13, 2017, just a few months short ofthescheduledappearanceofhismagnumopus,GeometriesandTrans- formations. It was just over fifty years ago in 1966 that his most famous publication appeared in the Canadian Journal of Mathematics: “Convex PolyhedrawithRegularFaces,”presentingthecompletelistofninety-two examples of what are now universally known as Johnson Solids. He not only described all of the symmetry groups of the solids; he also devised names for each of them, containing enough information to exhibit their constituentelementsandthewaytheywerearranged. Now,asaresultofthisnewvolume,hewillbefurtherappreciatedfor his compendium of all the major geometric theories together with their fullgroupsoftransformationsthatpreservetheiressentialcharacteristic features.Inthisprocess,hefollowsthespiritofFelixKleinandhisErlan- gen Program, first enunciated in 1870. Once again, a specific personal contribution to this achievement is his facility for providing descriptive namesforeachofthetypesoftransformationsthatcharacterizeagiven geometry.Hisbookwillbeaninstantclassic,givinganoverviewthatwill serveasanintroductiontonewsubjectsaswellasanauthoritativerefer- enceforestablishedtheories.Inthelastfewchapters,heincludesasimilar treatment of finite symmetry groups in the tradition of his advisor and mentor,H.S.M.Coxeter. Itisfittingthatthecoverimageandtheformalannouncementofthe forthcoming book were first released by Cambridge University Press at theannualsummerMathFestoftheMathematicalAssociationofAmer- ica.NormanJohnsonwasaregularparticipantintheMathFestmeetings, andin2016hewashonoredasthepersontherewhohadbeenamember oftheMAAforthelongesttime,atsixty-threeyears.Hisfriendsandcol- leaguesaresaddenedtolearnofhispassingevenaswelookforwardto hisnewgeometricalmasterwork. GEOMETRIES AND TRANSFORMATIONS Norman W. Johnson UniversityPrintingHouse,CambridgeCB28BS,UnitedKingdom OneLibertyPlaza,20thFloor,NewYork,NY10006,USA 477WilliamstownRoad,PortMelbourne,VIC3207,Australia 314–321,3rdFloor,Plot3,SplendorForum,JasolaDistrictCentre, NewDelhi–110025,India 79AnsonRoad,#06–04/06,Singapore079906 CambridgeUniversityPressispartoftheUniversityofCambridge. ItfurtherstheUniversity’smissionbydisseminatingknowledgeinthepursuitof education,learning,andresearchatthehighestinternationallevelsofexcellence. www.cambridge.org Informationonthistitle:www.cambridge.org/9781107103405 ©NormanW.Johnson2018 Thispublicationisincopyright.Subjecttostatutoryexception andtotheprovisionsofrelevantcollectivelicensingagreements, noreproductionofanypartmaytakeplacewithoutthewritten permissionofCambridgeUniversityPress. Firstpublished2018 PrintedintheUnitedStatesofAmericabySheridanBooks,Inc. AcataloguerecordforthispublicationisavailablefromtheBritishLibrary. LibraryofCongressCataloging-in-PublicationData Names:Johnson,NormanW.,1930–2017author. Title:Geometriesandtransformations/NormanW.Johnson, WheatonCollege. Description:Cambridge,UnitedKingdom: CambridgeUniversityPress,2017.| Includesbibliographicalreferencesandindex. Identifiers:LCCN2017009670|ISBN9781107103405(hardback) Subjects:LCSH:Geometry–Textbooks.|BISAC:MATHEMATICS/Topology. Classification:LCCQA445.J642017|DDC516–dc23 LCrecordavailableathttps://lccn.loc.gov/2017009670 ISBN978-1-107-10340-5Hardback CambridgeUniversityPresshasnoresponsibilityforthepersistenceoraccuracy ofURLsforexternalorthird-partyInternetWebsitesreferredtointhispublication anddoesnotguaranteethatanycontentonsuchWebsitesis,orwillremain, accurateorappropriate. ToEva CONTENTS Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . pagexi Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1 Homogeneous Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 1.1 RealMetricSpaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 1.2 Isometries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 1.3 UnitarySpaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 2 Linear Geometries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 2.1 ProjectivePlanes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 2.2 Projectiven-Space . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 2.3 EllipticandEuclideanGeometry. . . . . . . . . . . . . . . . . . 46 2.4 HyperbolicGeometry . . . . . . . . . . . . . . . . . . . . . . . . . . 50 3 Circular Geometries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 3.1 InversiveandSphericalGeometry. . . . . . . . . . . . . . . . . 57 3.2 PseudosphericalGeometry . . . . . . . . . . . . . . . . . . . . . . 61 3.3 ConformalModels . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 3.4 TrianglesandTrigonometry. . . . . . . . . . . . . . . . . . . . . . 74 3.5 Non-EuclideanCircles . . . . . . . . . . . . . . . . . . . . . . . . . 81 3.6 SummaryofRealSpaces. . . . . . . . . . . . . . . . . . . . . . . . 86 4 Real Collineation Groups . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 4.1 LinearTransformations. . . . . . . . . . . . . . . . . . . . . . . . . 87 4.2 AffineCollineations . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 4.3 HomogeneousCoordinates . . . . . . . . . . . . . . . . . . . . . . 96 4.4 ProjectiveCollineations . . . . . . . . . . . . . . . . . . . . . . . . 102 vii viii Contents 4.5 ProjectiveCorrelations . . . . . . . . . . . . . . . . . . . . . . . . . 106 4.6 SubgroupsandQuotientGroups . . . . . . . . . . . . . . . . . . 110 5 Equiareal Collineations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113 5.1 TheRealAffinePlane. . . . . . . . . . . . . . . . . . . . . . . . . . 113 5.2 OrtholinearTransformations. . . . . . . . . . . . . . . . . . . . . 117 5.3 ParalinearTransformations . . . . . . . . . . . . . . . . . . . . . . 121 5.4 MetalinearTransformations . . . . . . . . . . . . . . . . . . . . . 125 5.5 SummaryofEquiaffinities. . . . . . . . . . . . . . . . . . . . . . . 129 5.6 SymplecticGeometry . . . . . . . . . . . . . . . . . . . . . . . . . . 132 6 Real Isometry Groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138 6.1 SphericalandEllipticIsometries . . . . . . . . . . . . . . . . . . 138 6.2 EuclideanTransformations . . . . . . . . . . . . . . . . . . . . . . 143 6.3 HyperbolicIsometries. . . . . . . . . . . . . . . . . . . . . . . . . . 151 7 Complex Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157 7.1 AntilinearGeometries . . . . . . . . . . . . . . . . . . . . . . . . . 157 7.2 AnticircularGeometries . . . . . . . . . . . . . . . . . . . . . . . . 162 7.3 SummaryofComplexSpaces . . . . . . . . . . . . . . . . . . . . 166 8 Complex Collineation Groups. . . . . . . . . . . . . . . . . . . . . . . . 168 8.1 LinearandAffineTransformations . . . . . . . . . . . . . . . . 168 8.2 ProjectiveTransformations . . . . . . . . . . . . . . . . . . . . . . 175 8.3 AntiprojectiveTransformations. . . . . . . . . . . . . . . . . . . 178 8.4 SubgroupsandQuotientGroups . . . . . . . . . . . . . . . . . . 180 9 CircularitiesandConcatenations . . . . . . . . . . . . . . . . . . . . . . 183 9.1 TheParabolicn-Sphere. . . . . . . . . . . . . . . . . . . . . . . . . 183 9.2 TheRealInversiveSphere . . . . . . . . . . . . . . . . . . . . . . 186 9.3 TheComplexProjectiveLine . . . . . . . . . . . . . . . . . . . . 194 9.4 InversiveUnitaryGeometry . . . . . . . . . . . . . . . . . . . . . 199 10 Unitary Isometry Groups . . . . . . . . . . . . . . . . . . . . . . . . . . . 203 10.1 UnitaryTransformations . . . . . . . . . . . . . . . . . . . . . . . . 203 10.2 TransunitaryTransformations . . . . . . . . . . . . . . . . . . . . 206 10.3 Pseudo-unitaryTransformations . . . . . . . . . . . . . . . . . . 209 10.4 QuaternionsandRelatedSystems . . . . . . . . . . . . . . . . . 211 11 Finite Symmetry Groups. . . . . . . . . . . . . . . . . . . . . . . . . . . . 223 11.1 PolytopesandHoneycombs. . . . . . . . . . . . . . . . . . . . . . 223 11.2 PolygonalGroups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226 11.3 Pyramids,Prisms,andAntiprisms . . . . . . . . . . . . . . . . . 231

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.