ebook img

Geometric morphometric analysis of wing shape variation in ten European populations of Calopteryx splendens (Harris, 1782) (Zygoptera: Calopterygidae) PDF

2009·3.9 MB·English
by  SadeghiS
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Geometric morphometric analysis of wing shape variation in ten European populations of Calopteryx splendens (Harris, 1782) (Zygoptera: Calopterygidae)

Odonatologica38(4):341-357 December 1,2009 Geometric morphometricanalysis of wing shape variationin ten Europeanpopulationsof Calopteryxsplendens(Harris, 1782) (Zygoptera: Calopterygidae) S.Sadeghi D.Adriaens and H.J. Dumont ¹, BiologyDepartment,FacultyofSciences,StateUniversityofGent,Ledeganckstraat35, B-9000Gent,Belgium ReceivedApril7,2009 /ReviewedandAcceptedMay6, 2009 Thewingsof 10C.splendenspopulationswereexaminedbylandmark-based geo- metricmorphometricanalysis. Subspecifictaxain thisgroup arecurrently basedon wingspotsizein <S6.Here,thevariation inwingshapeandsizeisevaluated,totest whethershapeisdifferentatapopulationlevel,and whetherthis has implicationsat ataxonomiclevel.ItwasfoundthatGeometricMorphometriessuccessfullydiscrimi- natespopulations:overallwingshapesignificantlydiffered betweenpopulationsbut theresultswereonlypartlycompatiblewithtaxonomicstudiesbasedonwingspotsize. Irrespectiveofwingspot, allpopulationsshowed differentiation inwingshapeeven thoughnotinwingsize;4groupswererecognizedbased onwingshape:(1)Turkish! population;(2)Spanish,Finnish,RussianandTurkish2populations;(3)Italian,Ger- manandFrenchpopulations;(4)GreekandAlbanian populations.Ordination ofthe populationsbasedonconsensusdataandclusteranalysisphenogramconfirmed such apattern.The Spanishpopulation(C. xanthostoma),didnotshow astrong identity, whiletheTurkish 1(C.s. waterstoni)wasquiteisolated.The Italianpopulation(C. s. caprai)showed morerelation totheFrench (C.s. faivrei)and German populations than toAlbanian and Greekpopulations. INTRODUCTION Calopteryxsplendens isawidespread damselfly, foundinmostofEurope, large partsofSiberiaandmuchof westernandcentralAsia(MERTENS etal., 1992). Thereisgreatvariationamongmalesinwingcoloration(seeSIVA-JOTHY, 1999). Atsexualmaturity,theamountofpigmentation becomesfixed(HOOPER etal., 1 Present address: Biology Department,Faculty ofSciences, Shiraz University, Shiraz, Iran; — [email protected] 342 S.Sadeghi,D.Adriaens & H.J.Dumont 1999;CORDOBA-AGUILAR, 1993).Traditionally subspecific taxa havebeen distinguished by thesizeandposition ofthe pigmented wing spot,and by(mat- ing) behavior (MERTENS et al„ 1992; DUMONT etah, 2005). About a doz- en ofsubspecies havebeen recognized. C. s. splendens occurs fromBritainand southernScandinaviaovermostofnorthernandwestern Europe; C. s. xanthos- toma(often consideredagood species) livesinsouthernFrance, northernItaly, western andsouthernSwitzerland,the IberianPeninsulaand NorthAfrica; C. s. caprai is in centralItaly and possibly MediterraneanFrance; C. s. balcanica inhabitseastern MediterraneanEurope (ASKEW, 2004). Variousothernames, such as 'C. s. intermedia, C. s.faivrei, C. s. taurica, C. s. tschaldirica, C. s. water- stoni, C. s. cartvelica, C. s. amasina, C. s. erevanense, C. s. mingrelica refertopu- tativesubspecies, all ofwhichare moreorlessgeographically confined, butoften withoverlapping rangesand strongvariationinwing spotsize. Fewauthorsdenyacorrelationbetweendegreeofwingpigmentation andmale mating orterritorialsuccess (HOPEMAN& ABRAMSON,2005); mostresults suggestthat wing pigmentation is areliable signal ofmalequalityand plays a rolein materecognition by females(GRETHER. 1996;TYNKKYNEN,2004; HOPEMAN, 2005). Thus, visual discriminationbasedon wing pigmentation is a majorcomponent ofreproductive isolationin Calopteryx species (WAAGE, 1975).Size and density of wing pigmentation isalso correlatedwithresistance against disease and immunological condition(RANTALA et ah, 2000; SIVA- -JOTHY,2000;CORDOBA-AGUILAR,2002; KOSKIMAKI etah, 2004). Inspiteoftheseindications, the questionarises whethervariationinwingspot isreally ataxonomically validdiscriminator.Thedelimitationofmany subspe- cies is indeedfuzzy, anddinesare common(DUMONT etah, 1993). Moreover, even ifvaluable,itwouldstill be meaningful totry andreinforceitby additional markers. Here,weattempt translating morphological traitsin unambiguous nu- merical data,andconfronttheresults withtraditionaltaxonomy. Geometricmorphometries isarelatively newtechnique thathasgenerated val- uableresults in manyfields of classic morphometry. A major advantage ofthe geometric frameworkis acomprehensive use ofinformationabout shape, avail- able from a set of landmarks(BOOKSTEIN, 1996). Variationsin body shape (and wings as part of the body) haveimportant fitness consequencesbecause they canaffecttheability tooccupy habitatssuccessfully (GATZ, 1979;LOSOS & S1NERVO, 1989), to prevail in predator-prey interactions(WALKER. 1997; NAGEL&SCHLUTER, 1998),andtoreproduce successfully. So, wecanexpect selection to actuponwingphenotype. Insect wings havebeenthe subject of geometricmorphometricanalysis inthe past (ROHLF& SLICE, 1990; BAYLAC&DAUFRESNE. 1996); they are es- pecially attractive because they can be treated with biological realism in only two dimensions. Wing morphometries can help to characterize populations withinaspecies, asshownby theanalysis of geographic variationin populations Wingshapevariation in EuropeanCalopteryxsplendens 343 ofDrosophila lummei(HAAS & TOLLEY, 1998), Drosophila serrata (HOFF- MAN& SHIRRIFS, 2002) andScythrisobscurella(Lepidoptera) (ROGGERO & d’ENTREVES, 2005). Wings also proved useful to study complexes of spe- cies, forexample in Diptera (DE LARIVA et al.,2001), orexamine theeffects of hybridization, such as inApis meliferasubspecies (SMITH etah, 1997).The wingvenationpatternofOdonata(like thatofmostotherflyinginsects) haslong provided studentsofOdonatawitha rich source of diagnostic characters atall taxonomiclevels(REHN, 2003). In this study we use landmark-basedgeometric morphometries methodto quantifyand analyze wingmorphological featuresinten European andAnato- lianC. splendens populations. Thecentralaimof ourstudywas toevaluate wing shape variation, testing thepossible useof wingshape patternsforintraspecific taxonomy, andattemptingto distinguisheffectsoflocal adaptation fromtaxon- linkedmorphological differences. MATERIALANDMETHODS Specimensweredriedorpreservedin70%ethyl alcohol.Sincethenumber ofspecimensfromone location wasnotenoughforastrongstatisticalresult,in somecasesweused twogeographicallyvery close adjacentpopulationswith nosignificant dilferencebetween the means(F&T test,p>0.1)as asinglepopulation(Tab.I,Fig. 2).Inall,weused 344specimens from 10Europeanlocalities. For simplicitywenamedthepopulationsaftertheircountryoforigin. TableI Number ofspecimens andsamplinglocalities Population No. Localities (country) Albania 29 - MesopotamneartoDelvine,5-VI-1993,(39:59N, 20:04E) 27 -Tirana,Albania,6-VI-1993,(41:20N, 19:49 E) France 16 - Sissonne,9-V-1993,(49:34N,03:53 E) 20 -Canal aubord duRhone, Gard, 12-VII-2004 Greece 25 - Saulopoulo,loaninna,13-VI-1993,(39:44N,20:53 E) 13 - Eleftheri,Thesprotia,Greece,25-V-1998,(39:18N,20:25E) Spain 15 - Cuenca,14-VII-1988,(40:04N,02:08W) 9 -Alcaniz,20-VI1I-1991,(41:03N,00:09 W) Turkey 1 22 - Derecik,nearTrabzon,Turkey, 19-VIII-1988,(41:00N,39:43 E) 7 - Besikduzu,WTrabzon,Turkey,20-VI1I-1988,(41:02N, 39:13 E) Finland 27 - Kitee,SEFinland,13-VIII-2004,(62:10N, 30:08 E) Germany 32 - Gerlenhofen,Ulm,Germany,31-VIII-1993,(48:20N, 10:04E) Italy 16 - Casteldi Sangero,Italy,30-V-1993,(41:47N, 14:07 E) 16 - Gildone-Campobasso,Italy,01-VI-1993,(41:33N, 14:39E) Russia 31 - IsmaylowskyPark,Moscow, 12-VII-1989,(57:44N, 37:37E) Turkey 2 19 - Golderesi-kemer,Fethiye,Mugla,21-VII-87, (36:39N, 29:22 E) 20 - 9km.WestofSeki,Mugla,21-VII-87,(36:24N,29:13 E) 344 S.Sadeghi, D.Adriaens &H.J.Dumont Theanteriorleftwingofeachmalespecimenwasscannedonaflatbedtablescanner(AgfaSNAP- SCAN 1236)asadigitalRGBcolorimagewith400dpiresolution. Beforescanning,driedspecimens weresoaked in 70%ethylalcohol for 20minutes andwereleft to dryatroom temperatureto gain flexibilityforhandling.Damagedwingswereexcluded fromanalysis. WINGSTRUCTURE. - Wingvenationincalopterygidsisdense,withnumerousantenodal and postnodalcross-veins and ananal fieldthat iscomposedofvariable number ofcells. A dense and variable venation,alongwith darkandshinymetalliccoloronwingsin Calopteryxsplendens(male), restrictsourchoices forlandmarkingandmakesitdifficulttofindidentical landmark placesonwing pictures. We collected 19homologouslandmarks on the nodes of wingvenation (Fig. 1) usingtpsDig2 (ROHLF,2006).Thelandmarks representedwingshape,and included allthose thatcould reliably beidentified.Theywerechosenattheintersection ofwingveins inthehyalinepart ofthewingand/ oratthe wingedge.Hence, 18landmarks canbeconsidered astypeIlandmarks and one(LM4)as atypeII(BOOKSTEIN, 1991).Thefollowinglandmarks wereused(seeFig. 1):(1)costa- subcosta connection,(2)nodus,(3)radius2 - wingmarginconnection,(4)distal tipofthewing,(5)medius- wingmarginconnection,(6)cubitus1 -wingmarginconnection,(7)cubitus2-wingmarginconnec- tion,(8)ventraltipofanaltriangle,(9)proximalapexofanaltriangle,(10, 11& 12)distalanglesof arculus, (13)originofmedius,(14)originofcubitusl,(15)distal angleofanaltriangle,(16)origin ofcubitus2,(17)Ru+Rsand R+M connection,(18) originofIR3 (thirdinterradial),(19)originof radiusl. Thenomenclature ofthewingvenationusedfollows DUMONT(1991). Toestimatethedigitizationerroranddefiningthoselandmarks thatcanbedigitizedwiththehigh- estaccuracy, weusedprotocolbyAdriaens,http://www.fun-morph.ugent.be/Research/Methodology/ Morphometrics.pdf). Thisprotocol allows quantifyingtheextent ofdigitization (andorientation) errorwith respecttothevariation observed inthepopulations(basedonasubsample).Aftertesting, approximately11.6%oftheobservedvariation was duetodigitization(andorientation)error (due tonatureofthewingsandtheapproachfollowed here,orientationerrorcanbeconsidered tobe ab- Fig. 1.C. splendenswaterstoni:(a)nomenclature ofwingveins; — (b)landmarksposition Wingshapevariation inEuropeanCalopleryxsplendens 345 sent).We alsocompareddifferentcombinations of24and20landmarks in twoseparatepilotstud- iestoselectthe combinationwith thehighestnumber oflandmarks thatshowedthelowest amount ofnoise. Assuch, these 19landmarks werethebestcombination. AGeneralized Procrustesanalysis(GPA)wasperformedtosuperimposelandmark configurations usingleast-squaresestimatesfortranslation androtation parameters(ADAMSetal.,2004).GPA is animportantprocedurebecauseitremovesvariation duetodifferences intranslation,orientation, and size, and superimposestheobjectsin acommoncoordinate system.Shapedistances between GPAalignedspecimensin Kendall shapespacearesubsequentlyprojectedintoaEuclidean space that istangenttothisKendall’s shapespace(ROHLF, 1999;SLICE,2001). Tovisualize wingshape differenceswegeneratedthin-platesplinedeformationgrids(ROHLF,2004). STATISTICALANALYSIS.— Correlationsbetween theProcrustesandtangentshapedistances werecalculated usingtpsSmallsoftware (ROHLF, 1998),toensurethatthe amountofshapevari- ation intheoriginaldata setwasadequatelyrepresentedafterprojectioninthe tangentspace. The sampleshowedperfectlycorrelated distances (RA2= 1.000),allowingfurtherstatistical testingusing theprojecteddataset (seeROHLF, 1998). Asameasureofoverallsizevariation ofthewings,thecentroid size (thesquarerootofthesum ofthesquaredinterlandmark distances)wascalculated foreachpopulation(Fig.3)(BOOKSTEIN, 1991; 1996, SLICE et al., 2007;ZELDITCH, 2004). Centroid size wascalculated usingtpsRelw (ROHLF,2007)andtestedfornormalityusingtheShapiro-Wilktest.Allpopulationswerenormally distributed (p>0.05).Leven’stest wasused totest forhomogeneityofthevariance (MILLIKEN& JOHNSON, 1984).Aone-wayANOVAwasconductedonwhole datasettotestsignificantcentroid size differences between and within populationsand apost hoctest (Tukey’s test)defined pairwise differencesincentroidsizeofpopulations(SOKAL&ROHLF, 1995). Foranalyzingwingshapevariation within andamongpopulations,principalcomponentanalysis Fig. 2.Distribution mapofthepopulationsstudied andthumbnailpicturesoftheiranteriorleftwing. Mapsource:http://z.about.com/d/geography/l/0/2/L/eurasia.jpg 346 S.Sadeghi,D.Adriaens&H.J. Dumont (PCA)and canonical variates analysis(CVA) wereconducted onthe landmark coordinates dataset, PCAasatool forexploringpatternsofvariation within populationusingvariance-covariance ma- trixand CVAforanalyzingand testingdifferencesbetween populations. AMANOVAandtwo-grouppermutationtests(2000permutations)wereperformed,withsquared Mahalanobis distancecalculated onthelandmark coordinates data setusingPAST(HAMMER& HARPER,2007)todeterminewhether geographicallyseparatedpopulationsfrom different coun- triesdifferin wingshape.Inthisanalysisthecriteria Wilk'slambdaisusedand whenthe MANOVA showed significantoveralldifference between groups, theanalysis proceededbypair-wisecompari- sons(post-hoc)bypairwise Hotelling’stests. We alsoperformedtwo-grouppermutationtest (2000 permutations)andextracted squaredMahalanobis distance foreverytwopopulations. We also measured consensus shapedata (mean shape)of the separatepopulationstoillustrate ordination ofthe shapes’consensusby arelativewarp ordination plotusingtpsSmaland tpsRelw (ROHLF,2003,2007). Inall figures,theconsensuslandmark configurations(i.e. theconfiguration thatisobtainedbyaveragingspecimenlandmarkcoordinates inthegeneralizedprocrustesanalysis) areusedasareference,with thesubtledifferences betweenpopulationsshownasathreetimesexag- geratedtransformation grid. Pheneticrelationshipsbetweenthetenpopulationswerealsoinvestigatedthroughaclusteranalysis usingthe matrixofprocrustes distancesbetween pair-wise populationconsensusconfigurations. A UPGMA(Unweightedpair-groupmethodwith arithmetic means)waschosenastheyled toaphe- nogramwith thelargestcopheneticcorrelationstotheoriginalprocrustes distancematrix (ROHLF, 2002). All statistical analyseswereperformedin PAST(PaleontologicalStatistics) version 1.57(HAM- MER,2007)and SPSS(version 15.0.1,2006).Graphicaldepictionsofwing-shapetransformations in tpsSplin(ROHLF, 2004)and IMP(SHEETS,2000)and of thephenogramsweregeneratedin NTSYSpc(Version2.1,ROHLF,2000). Fig. 3.MeancentroidsizeoftenEuropeanpopulations.Abbreviation ofpopulations:Al:Albanian; Fi:Finnish;Fr:French;Ge: German;Gr:Greek;It:Italian;Ru: Russian;Sp:Spanish;TI:TurkishI: T2:Turkish2 populations. Wingshapevariation in EuropeanCalopteryx splendens 347 RESULTS WINGSIZEVARIATION Themeancentroidsizeofthepopulations singled outtheGreekandAlbanian populations as thosewiththe largest, and the Spanish population as thatwith smallest wingsize (Fig. 3). AShapiro-Wilk testrevealedanormaldistributionofallpopulations (p>0.05) and Levene’s testshowed significant homogeneity of variances (p<0.05) based on means. A one-way ANOVA ofmean centroidsizes showedsignificant dif- ferences betweeninter-andintera-population variations(F =63.47,p=0.000). TheresultsofTukey HSD as apost hoc teston centroidsizes are summarizedin TableIIas pair-wisedifferences.Theresultof homogeneous subsetsof centroid sizesextracted fromTukey HSD identifiedfourgroups withsignificantly differ- ent centroidsize; theGreekandAlbanianpopulations (first group) hadthebig- gestsize, theSpanish, Turkish1 andTurkish2populations werethesmallest(sec- ondgroup). TheItalian, FrenchandGermanpopulations (group 3)hadmedium wingcentroidsize, andtheFinnishandRussianpopulations (fourth group)were situatedbetweenthe largest andmediumsize groups(Fig. 3). Nosignificant differenceincentroidsize was foundamongmembersofeach group.Wefoundthatgroupone(Albania andGreece) was highly significant in differencewithotherpopulations in meancentroidsize. WINGSHAPEVARIATION PCAorrelativewarpanalysisofallspecimens explained 65.7%ofshape vari- ation withinsamples by thetwo firstPCAaxes extractedfromthe variance-cov- TableII ResultsofTukeyHSD(post-hoc)test onwingcentroidsize, insignificantvaluesbolded — *<0.05; - **<0,01 Country A1 Fr Gr Sp T1 Fi Ge It Ru T2 A1 - Fr 48.54" - Gr 3.26 51.80" - Sp 71.06" 22.52" 74.33" - T1 62.40" 13.86 65.67" 8.66 - Fi 40.07” 8.46 43.34** 30.98” 22.32" - Ge 52.82" 4.28 56.09" 18.24** 9.58 12.74 - It 51.04" 2.50 54.31" 20.02* 11.36 10.96 1.78 - Ru 36.98" 11.56 40.24" 34.08" 25.42** 3.10 15.84 14.07 - T2 65.6" 17.10* 68.91** 5.42 3.24 25.56** 12.82 14.60 28.67** - 348 S.Sadeghi,D.Adriaens&H.J.Dumont ariancematrix(PC1 explains 50.5%andPC2,15.2%). Atotalofuptoseven axes wererequiredto covermorethan90%oftheshape variation.AtfirstglancePC1 vsPC2scatterplot showedanoverlap ofmostpopulations andtheirdistribution onthis plot (Fig. 4) did not correspond with geographical differencesbetween populations. However, PCA weakly showed some population shape variation (Turkish 1 population from Albanian, Spanish, Russian, andTurkish2 popula- tions). Furthermore, through PCI the vectors on landmarksshows inclination of landmarks3and 4to posteriorand landmarks5,6, 7 toanteriorpartof the wingwhichleadsto increasedistancebetweenlandmarks2and3inonesideand between4and 5 inotherside. Through PC2the landmarks3to8 inclineto the centralpartofthewingwhichleadsto adeclineinlength andwidthofthewing (see Appendix 2). Theselandmarks referto connecting point of Radius2 with posterior wing margin, distaltipof thewing,andconnectionof Medius, Cubi- tus1 andCubitus2 and anal triangle tip with ventral wing margin respectively (Fig. 1). MANOVAfoundasignificant overalldifferencebetweenpopulations [Wilk's lambda. 0.0076, F: 6.47, p =0.0000). Hotelling’s pair-wise comparisons [post- hoc)showedhighly significantdifferencesbetweenallpopulations exceptbetween FrenchandGermanpopulations whichwere atalowsignificance level(p<0.05). Squared Mahalanobisdistanceofpopulations confirmedtheseresults(Tab. III). Fig. 4.PCIvs PC2screenplot.For abbreviations seeFigure 3. Wingshapevariation in EuropeanCalopteryxsplendens 349 TableIII Hotelling’spair-wisecomparisons(F-scores andpvalues)and Mahalanobis distances andpvalues for 10populationsonupperand lowerdiagonalrespectively - *<0.05; - ** <0.01 Country Al Fr Or Sp Tl Fi Ge It Ru T2 Al 0 11.4** 3.0** 14.8** 30.6** od «* 10.6** 9.7** 8.3** 13.1** Fr 0.408** 0 13.8** 6.8*» 14.7** 2.6** 1.8* 3.5** 3.5** 5.9** Or 0.302** 0.586** 0 12.8** 38.1** 14.7** 11.7** 16.7** 10.1** 14.3** Sp 0.661** 0.828** 0.821** 0 15.7** 9.4** 7.1** 9.2** 8.8** 6.6** Tl 0.952** 1.129** 1.397** 1.548** 0 10.3** 8.5** 13.7** 15.6** 15.1** Fi 0.696** 0.539** 1.01** 1.237** 1.271** 0 3.1** 6.0** 3.7** 6.5** Ge 0.519** 0.415* 0.703** 0.763** 0.973** 0.583* 0 2.9** 8.0** 4.8** It 0.537** 0.466** 0.860** 1.313** 1.19** 0.804** 0.498** 0 7.2** 6.9** Ru 0.455** 0.552** 0.598** 1.014** 1.28** 0.680* 0.815** 0.801** 0 5.8** T2 0.519** 0.562** 0.467*• 0.718** 0.971** 0.707** 0.547** 0.617** 0.558** 0 Everycoupleofpopulations significantly differed(/?<0.05) insquared Mahalano- bis distances. Differences betweenpopulations were not well illustrated by a CVA plot. A scatter plot ofCV1 (eigenvalue 3.206) vs. CV2(eigenvalue 1.455)showedagen- eralpatternsimilarto PCAbutwithlessoverlap. CV1 revealedTurkish 1 promi- nently, AlbanianandGreek(together),and Italianpopulations moreor lessdif- fered inwingshape fromothers(Fig. 5). Moreover,considering CV2, ItalianandGermanpopulations separated inshape fromRussian, Spanish andTurkish2(together) populations. Otherpopulations moreor lessoverlapped eachother(Fig. 5). Therewere seven distinctCVs (Ap- pendix 1)andotherCVAplotsalso showedgood separation fromotherpopula- tions. Cvl vs CV4welldefinedshape differencesbetweenSpanish andTurkish2 and CV2 vs. CV3 (eigenvalue 0.8595) and CV4 (eigenvalue 0.6239) plots (not shownhere)showedgooddifferencesbetweenFinnishandRussianpopulations, and between Turkish2 and Finnish, Spanish and French, Italianand Russian populations. Therewas a high correlationbetweenCV1 and PC2 (Spearman’s rho corre- lation=0.65). Thiscorrelationrefers to landmarkssituated in themiddlepart of the wing, that show anexpansion between landmarks2, 7,8, and 16 anda contractionbetweenlandmarks 10-18intheanteriorpart, apartofthewing in- formativein taxonomicstudies. UPGMAclusteranalyses andalso relativewarpordinationofshape consensus showedthesamepopulation relationships (Figs6,7).Inarelativewarpordination plot,GreekandAlbanian(together), Italian,Turkish1 andTurkish2populations showed thelargest differences, whileSpanish, Russian and, Finnishpopulations on theone handand, FrenchandGermanpopulations ontheotherhandwere close toeach other. TheAlbanianpopulation was closerto Greek population, 350 S.Sadeghi, D.Adriaens& H.J,Dumont and theFrench population fell betweenthe Spanish and Germanpopulations. Russian, Finnish, Turkish2 andSpanish populations andFrench, Germanand Italianpopulations areclosely related. AlbanianandGreek populations as third andTurkish1 population as fourthgroupsettledat twoextremesofthe X-axis. These relationships are quitecompatible withthe UPGMA dendrogram, esti- matedfromProcrustesdistances. The wing shape transformationgrids adjacent to the dendrogram depicted shape similaritiesand differences between populations. Theseillustrated trans- formationsofthewing landmarkswhichled to such aclustering. DISCUSSION Geographic variationinwide-rangingspecies isubiquitous(MAYR, 1963)and oftenreflectsadaptations ofapopulation tolocalenvironmentsand bioticfactors (RICKLEFS& MILES, 1994;McPEEK, 1990);suchadaptations areexpected to endupin(sub)speciation, butitis not alwayseasy to determinewhenthisproc- esshastakenplace. One difficultyis thechoiceof charactersuponwhichtobase sucha decision. Manyaspects offlightperformance correlatedto fitnessdirectly or indirectly, are determinedbywing form.Apropercomprehensive analysis of wing shapemay thusprovideaninsight in phenotypic variationrelated toflight Fig,5.CVA plot,CV1 (eigenvalue3.434)vsCV2(eigenvalue1.925),For abbreviations seeFigure3,

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.