ebook img

Geometric Modeling and Reasoning of Human-Centered Freeform Products PDF

230 Pages·2013·7.823 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Geometric Modeling and Reasoning of Human-Centered Freeform Products

Geometric Modeling and Reasoning of Human-Centered Freeform Products Charlie C. L. Wang Geometric Modeling and Reasoning of Human-Centered Freeform Products 123 Charlie C.L. Wang The ChineseUniversity ofHong Kong Hong Kong China ISBN 978-1-4471-4359-8 ISBN 978-1-4471-4360-4 (eBook) DOI 10.1007/978-1-4471-4360-4 SpringerLondonHeidelbergNewYorkDordrecht LibraryofCongressControlNumber:2012943377 (cid:2)Springer-VerlagLondon2013 Thisworkissubjecttocopyright.AllrightsarereservedbythePublisher,whetherthewholeorpartof the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,broadcasting,reproductiononmicrofilmsorinanyotherphysicalway,andtransmissionor informationstorageandretrieval,electronicadaptation,computersoftware,orbysimilarordissimilar methodology now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection with reviews or scholarly analysis or material supplied specifically for the purposeofbeingenteredandexecutedonacomputersystem,forexclusiveusebythepurchaserofthe work. Duplication of this publication or parts thereof is permitted only under the provisions of theCopyrightLawofthePublisher’slocation,initscurrentversion,andpermissionforusemustalways beobtainedfromSpringer.PermissionsforusemaybeobtainedthroughRightsLinkattheCopyright ClearanceCenter.ViolationsareliabletoprosecutionundertherespectiveCopyrightLaw. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publicationdoesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexempt fromtherelevantprotectivelawsandregulationsandthereforefreeforgeneraluse. While the advice and information in this book are believed to be true and accurate at the date of publication,neithertheauthorsnortheeditorsnorthepublishercanacceptanylegalresponsibilityfor anyerrorsoromissionsthatmaybemade.Thepublishermakesnowarranty,expressorimplied,with respecttothematerialcontainedherein. Printedonacid-freepaper SpringerispartofSpringerScience+BusinessMedia(www.springer.com) Dedicated to my family for their endless love, forbearance and encouragement Preface Thisbookcoversthecontentonusinggeometricapproachestodesignthefreeform shape of products that are worn by human bodies. The recent trend about user- customized product design requires that the shape of such products be automati- callyadjustedaccordingtothehumanbodies’shape,sothatpeoplewillfeelmore comfortable when wearing them. The motivation of this book is to introduce readers to the newly developed geometric solution for the design automation of customized freeform objects, whichcan greatlyimprovetheefficiencyofdesignprocessesinvariousindustries involving customized products (e.g., garment design, toy design, jewel design, shoe design, and design of medial devices, etc.). The products in the above industries are usually composed of very complex geometry shape (represented by free-form surfaces), and are not driven by a parameter table but a digital human model with freeform shapes or part of human bodies (e.g., wrist, foot, and head models). After carefully designing a product around one particular human model, itisdesirabletohaveanautomatedtoolfor‘‘grading’’thisproducttoothershape- changedhumanbodieswhileretainingtheoriginalspatialrelationshipbetweenthe product and human models. The techniques introduced in this book are based on myresearch conducted in this area in the past decade, which cover the algorithms of human body recon- struction, freeform product modeling, constraining and reconstructing freeform products, and shape optimization for improvingthe manufacturability offreeform products. Based on these techniques, the design automation problem for human- centeredfreeformproductscanbefundamentallysolved.Thisbookcanbeusedas areferencebookforresearchersanddevelopersworkingonproblemsofautomatic designing of products customized for individuals, and it can also be used as a referencebookforcoursesincomputer-aidedproductdesignatthegraduatelevel. My research conducted in this area was initiated during my graduate study. I would like to thank Prof. Matthew M. F. Yuen, Prof. Kai Tang, Prof. Shana Smith,Prof.QifuWang,Dr.JinFan,Dr.ZhuangWuandProf.JiansongDengfor their encouragement and valuable advice at the early stage of my work. Acknowledgments also go to my collaborators, students, and research staff, in vii viii Preface particular, my collaborators—Prof. Kin-Chuen Hui, Prof. Xiaogang Jin, Prof. Chih-Hsing Chu, Prof. Alexandre Kung and Dr. Terry Chang, my students and researchstaff—YunboZhang,Tsz-HoKwok,Siu-PingMok,ShengjunLiu,Yuwei Meng, Kwan-Chung Chan, Alan Yeung, Samuel Li, Hoi Sheung, Yuen-Shan Leung, and Ya-Tien Tsai, and all staff at the Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong (CUHK). The bulk of this research was supported by the Hong Kong Research Grants Council under grants CUHK/412405, CUHK/416307, and CUHK/417109, the Innovation and Technology Commission under the grant of Innovation Technol- ogyFundITS/026/07,theShunHingInstituteofAdvancedEngineering(SHIAE) undergrantCUHK/8115022,theindustrialsponsors—TPC(HK)LimitedandTak Wai Model Clothes Rack Co., and the direct research grants of CUHK. Shatin, Hong Kong, May 2012 Charlie C. L. Wang Contents 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1 Design Automation in Commercial CAD/CAM Systems . . . . . . 1 1.2 Human-Centered Freeform Products . . . . . . . . . . . . . . . . . . . . 2 1.3 Demanded New Technology for Design. . . . . . . . . . . . . . . . . . 4 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 2 Digital Human Bodies for Individuals. . . . . . . . . . . . . . . . . . . . . . 9 2.1 Reconstruction of Human Bodies for Individuals. . . . . . . . . . . . 9 2.1.1 Shape Acquisition. . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 2.1.2 Methods for Surface Reconstruction . . . . . . . . . . . . . . . 10 2.1.3 Orienting Unorganized Points for Surface Reconstruction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 2.1.4 Iterative Consolidation of Unorganized Points . . . . . . . . 19 2.2 Feature Point Extraction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 2.2.1 Problem Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 2.2.2 Rule-Based Extraction. . . . . . . . . . . . . . . . . . . . . . . . . 32 2.2.3 Bending-Invariant Matching Algorithm . . . . . . . . . . . . . 33 2.3 Optimal Cross-Parameterization . . . . . . . . . . . . . . . . . . . . . . . 42 2.3.1 Patch-Based Cross-Parameterization . . . . . . . . . . . . . . . 44 2.3.2 Construction of Common Base Domains . . . . . . . . . . . . 48 2.3.3 Optimization. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 2.4 Shape Space Analysis of Human Bodies . . . . . . . . . . . . . . . . . 73 2.4.1 Statistical Model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 2.4.2 Synthesis-Based Reconstruction . . . . . . . . . . . . . . . . . . 76 2.5 Parametric Design of 3D Human Body . . . . . . . . . . . . . . . . . . 77 2.5.1 Correlation with Semantic Parameters. . . . . . . . . . . . . . 79 2.5.2 Feasibility Check . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 2.5.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 ix x Contents 3 Geometry of Freeform Products. . . . . . . . . . . . . . . . . . . . . . . . . . 87 3.1 Non-Manifold Data Structure for Freeform Products . . . . . . . . . 87 3.1.1 Topology. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 3.1.2 Data Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 3.1.3 Topological Operators. . . . . . . . . . . . . . . . . . . . . . . . . 92 3.2 Constructive Design. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94 3.2.1 Feature Graph. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 3.2.2 Constraint Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96 3.2.3 Visible Geometry Specified by Sketch Input . . . . . . . . . 99 3.2.4 Shape Construction. . . . . . . . . . . . . . . . . . . . . . . . . . . 100 3.3 Interactive Design of Tight Products . . . . . . . . . . . . . . . . . . . . 101 3.3.1 Styling Design by Curve Drawing. . . . . . . . . . . . . . . . . 101 3.3.2 Trimming. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 4 Design Automation of Human-Centered Products. . . . . . . . . . . . . 107 4.1 Transformation of Style Design. . . . . . . . . . . . . . . . . . . . . . . . 107 4.2 Shape Warping Based on Free-Form Deformation. . . . . . . . . . . 108 4.2.1 Shape Encoding onto Human Bodies. . . . . . . . . . . . . . . 109 4.2.2 Decoding for Shape Reconstruction. . . . . . . . . . . . . . . . 111 4.3 Design Automation Based on Volumetric Parameterization . . . . 112 4.3.1 Rigid Body Transformation . . . . . . . . . . . . . . . . . . . . . 113 4.3.2 RBF-Based Elastic Function. . . . . . . . . . . . . . . . . . . . . 115 4.3.3 Surface Fitting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116 4.3.4 CSRBF Approach for Volumetric Parameterization. . . . . 118 4.3.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119 4.4 Realization of Flexible Shape Control . . . . . . . . . . . . . . . . . . . 120 4.4.1 Specifying Features on Product. . . . . . . . . . . . . . . . . . . 123 4.4.2 Shape Matching on Features. . . . . . . . . . . . . . . . . . . . . 124 4.4.3 Sampling and Construction of Local Support. . . . . . . . . 127 4.4.4 Local Shape Encoding. . . . . . . . . . . . . . . . . . . . . . . . . 128 4.4.5 Controlled Reconstruction . . . . . . . . . . . . . . . . . . . . . . 129 4.4.6 Examples. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131 5 Manufacturability of Products Fabricated by Planar Materials. . . 133 5.1 Manufacturability Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . 133 5.2 Surface Flattening Based on Energy Model . . . . . . . . . . . . . . . 134 5.2.1 Energy Function and Energy Release . . . . . . . . . . . . . . 135 5.2.2 Triangle Flattening . . . . . . . . . . . . . . . . . . . . . . . . . . . 138 5.2.3 Planar Mesh Deformation . . . . . . . . . . . . . . . . . . . . . . 140 5.3 Geometry Processing for Flattenable Mesh Surface. . . . . . . . . . 141 5.3.1 Flattenable Laplacian Meshes. . . . . . . . . . . . . . . . . . . . 141 5.3.2 Variational Subdivision of FL Meshes. . . . . . . . . . . . . . 149 Contents xi 5.3.3 Local Flattenable Perturbation . . . . . . . . . . . . . . . . . . . 151 5.3.4 Least-Norm Solution for FL Mesh Processing . . . . . . . . 154 5.4 Segmentation for Production. . . . . . . . . . . . . . . . . . . . . . . . . . 162 5.4.1 LPFB Computation. . . . . . . . . . . . . . . . . . . . . . . . . . . 164 5.4.2 Quasi-Developable Mesh Segmentation. . . . . . . . . . . . . 173 5.4.3 Discussion on Limitations . . . . . . . . . . . . . . . . . . . . . . 176 5.5 WireWarping: Surface Flattening with Length-Preserved Feature Curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177 5.5.1 Preliminary Definitions . . . . . . . . . . . . . . . . . . . . . . . . 178 5.5.2 Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180 5.5.3 LayingOutFeatureCurvesandInteriorMeshVertices. . . 181 5.5.4 Numerical Analysis and Least-Norm Solution . . . . . . . . 183 5.6 WireWarping++: Surface Flattening with Length Control. . . . . . 186 5.6.1 Multi-Loop Optimization Framework . . . . . . . . . . . . . . 187 5.6.2 Shape Error Function. . . . . . . . . . . . . . . . . . . . . . . . . . 189 5.6.3 Topology Processing. . . . . . . . . . . . . . . . . . . . . . . . . . 190 5.6.4 Case Study: Design and Manufacturing of Jeans. . . . . . . 192 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195 6 Compression Products Fabricated by Extensible Materials . . . . . . 199 6.1 Elastic Medical Braces. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199 6.1.1 Woven Model for Elastic Brace . . . . . . . . . . . . . . . . . . 200 6.1.2 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202 6.1.3 Algorithmic Details. . . . . . . . . . . . . . . . . . . . . . . . . . . 208 6.2 A Physical/Geometric Approach for Patterns of Compression Garment . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211 6.2.1 Physical Model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211 6.2.2 Geometric Constraints. . . . . . . . . . . . . . . . . . . . . . . . . 214 6.2.3 Numerical Solution. . . . . . . . . . . . . . . . . . . . . . . . . . . 215 6.2.4 Experimental Results and Verification. . . . . . . . . . . . . . 219 6.3 Material-Related Coefficients . . . . . . . . . . . . . . . . . . . . . . . . . 220 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223 Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225 Chapter 1 Introduction 1.1 DesignAutomationinCommercialCAD/CAMSystems As techniques developed since 1960s, computer-aided design and manufacturing (CAD/CAM)playsanimportantroleinproductdesignandmanufacturinginmany industries.CAD/CAMsystemshavebeendemandedbythedesignofnewaircrafts andautomobiles,whicharemainlyassembledfrommechanicalcomponents.Atthe beginning,CADsoftwarewasusedtoreplacetheconventionalengineeringdrawing board so that designers can modify drawings in an easier and more economical manner in the computer system. The later development of CAD techniques make a CAD system have components far beyond this primary function [7]. One of the major components is parametric modeling [1, 4, 5] (or called parametric design [8]),whichhelpsthedesignautomationofmanyindustrialproductslikemechanical partsandarchitecture. Parametricmodelingusesparameters(suchasdimensions)thatcanbemodified latertodefineamodel.Otherthanthedimensionstoconstructmodels,theconstraints betweengeometricentitiesarealsoexplicitlyspecifiedinmanycases.Forexample, planeAmustbeparalleltoplaneB,andthedistancebetweenthemshouldbegreater than 100mm. The constraints serve as bridges to link the dimensions of a model together;therefore,therelationshipsbetweenthemarespecified.Allthedimensions ofadesignedmodelcanthenbecoupledbythesegeometricconstraintstoafewkey parameters.Changingthevaluesoftheseparametersvariestheshapeofthedesigned model,whichleadstoafamilyofvariationalmodelsderivedfromtheoriginaldesign (suchasdescribedin[10]).Animportantfunctionofdesignautomationistoadjust the shape of a product automatically according to some design purposes (such as reducing the maximal stress in the product under a fixed loading). In many cases, theparametricmodelingisbasedonthetechniqueofconstraintsolver(see[3]for anexample). Figure1.1 shows the progressive steps to build a gear model in a commercial CAD/CAM system by parametric modeling, where the thickness and the number of teeth are chosen as key parameters. In the later phases of the design cycle, a C.C.L.Wang,GeometricModelingandReasoningofHuman-CenteredFreeform 1 Products,DOI:10.1007/978-1-4471-4360-4_1,©Springer-VerlagLondon2013

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.