ebook img

Geometric Harmonic Analysis I: A Sharp Divergence Theorem with Nontangential Pointwise Traces PDF

940 Pages·2022·10.004 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Geometric Harmonic Analysis I: A Sharp Divergence Theorem with Nontangential Pointwise Traces

Developments in Mathematics Dorina Mitrea Irina Mitrea Marius Mitrea Geometric Harmonic Analysis I A Sharp Divergence Theorem with Nontangential Pointwise Traces Developments in Mathematics Volume 72 SeriesEditors KrishnaswamiAlladi,DepartmentofMathematics,UniversityofFlorida, Gainesville,FL,USA PhamHuuTiep,DepartmentofMathematics,RutgersUniversity,Piscataway,NJ, USA LoringW.Tu,DepartmentofMathematics,TuftsUniversity,Medford,MA,USA AimsandScope TheDevelopmentsinMathematics(DEVM)bookseriesisdevotedtopublishing well-written monographs within the broad spectrum of pure and applied mathe- matics. Ideally, each book should be self-contained and fairly comprehensive in treating a particular subject. Topics in the forefront of mathematical research that present new results and/or a unique and engaging approach with a potential rela- tionship to other fields are most welcome. High-quality edited volumes conveying currentstate-of-the-artresearchwilloccasionallyalsobeconsideredforpublication. TheDEVMseriesappealstoavarietyofaudiencesincludingresearchers,postdocs, andadvancedgraduatestudents. · · Dorina Mitrea Irina Mitrea Marius Mitrea Geometric Harmonic Analysis I A Sharp Divergence Theorem with Nontangential Pointwise Traces DorinaMitrea IrinaMitrea DepartmentofMathematics DepartmentofMathematics BaylorUniversity TempleUniversity Waco,TX,USA Philadelphia,PA,USA MariusMitrea DepartmentofMathematics BaylorUniversity Waco,TX,USA ISSN 1389-2177 ISSN 2197-795X (electronic) DevelopmentsinMathematics ISBN 978-3-031-05949-0 ISBN 978-3-031-05950-6 (eBook) https://doi.org/10.1007/978-3-031-05950-6 MathematicsSubjectClassification: 26A16, 26A46, 26B20, 28A25, 28A75, 28A78, 28C15, 30G35, 31B10,31C12,42B25,42B37,49Q15,53B20,53C65,58A10,58C35 ©TheEditor(s)(ifapplicable)andTheAuthor(s),underexclusivelicensetoSpringerNature SwitzerlandAG2022 Thisworkissubjecttocopyright.AllrightsaresolelyandexclusivelylicensedbythePublisher,whether thewholeorpartofthematerialisconcerned,specificallytherightsoftranslation,reprinting,reuse ofillustrations,recitation,broadcasting,reproductiononmicrofilmsorinanyotherphysicalway,and transmissionorinformationstorageandretrieval,electronicadaptation,computersoftware,orbysimilar ordissimilarmethodologynowknownorhereafterdeveloped. Theuseofgeneraldescriptivenames,registerednames,trademarks,servicemarks,etc.inthispublication doesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfromtherelevant protectivelawsandregulationsandthereforefreeforgeneraluse. Thepublisher,theauthors,andtheeditorsaresafetoassumethattheadviceandinformationinthisbook arebelievedtobetrueandaccurateatthedateofpublication.Neitherthepublishernortheauthorsor theeditorsgiveawarranty,expressedorimplied,withrespecttothematerialcontainedhereinorforany errorsoromissionsthatmayhavebeenmade.Thepublisherremainsneutralwithregardtojurisdictional claimsinpublishedmapsandinstitutionalaffiliations. ThisSpringerimprintispublishedbytheregisteredcompanySpringerNatureSwitzerlandAG Theregisteredcompanyaddressis:Gewerbestrasse11,6330Cham,Switzerland Dedicatedwithlovetoourparents Prefacing the Full Series The current work is part of a series, comprised of five volumes. In broad terms, theprincipalaimistodeveloptoolsinRealandHarmonicAnalysis,ofgeometric measure theoretic flavor, capable of treating a broad spectrum of boundary value problemsformulatedinrathergeneralgeometricandanalyticsettings. InVolumeIweestablishasharpversionofDivergenceTheorem(akaFundamental Theorem of Calculus) which allows for an inclusive class of vector fields whose boundarytraceisonlyassumedtoexistinanontangentialpointwisesense. Volume II is concerned with function spaces measuring size and/or smooth- ness,suchasHardyspaces,Besovspaces,Triebel–Lizorkinspaces,Sobolevspaces, Morrey spaces, Morrey–Campanato spaces, and spaces of functions of Bounded Mean Oscillations, in general geometric settings. Work here also highlights the closeinterplaybetweendifferentiabilitypropertiesoffunctionsandsingularintegral operators. ThetopicofsingularintegraloperatorsisproperlyconsideredinVolumeIII,where wedevelopaversatileCalderón–Zygmundtheoryforsingularintegraloperatorsof convolutiontype(andwithvariablecoefficientkernels)onuniformlyrectifiablesets intheEuclideanambient,andthesettingofRiemannianmanifolds.Applicationsto scatteringbyroughobstaclesarealsodiscussedinthisvolume. InVolumeIVwefocusonsingularintegraloperatorsofboundarylayertypewhich enjoymorespecializedproperties(comparedwithgeneric,gardenvarietysingular integraloperatorstreatedearlierinVolumeIII).ApplicationstoComplexAnalysisin severalvariablesaresubsequentlypresented,startingfromtherealizationsthatmany natural integral operators in this setting, such as the Bochner–Martinelli operator, are actual particular cases of double layer potential operators associated with the complexLaplacian. InVolumeV,whereeverythingcomestogether,finerestimatesforacertainclass ofsingularintegraloperators(ofchord-dot-normaltype)areproducedinamanner whichindicateshowtheirsizeisaffectedbythe(infinitesimalandglobal)flatness of the “surfaces” on which they are defined. Among the library of double layer potential operators associated with a given second-order system, we then identify thosedoublelayerswhichfallunderthiscategoryofsingularintegraloperators.It vii viii PrefacingtheFullSeries is precisely for this subclass of double layer potentials that Fredholm theory may then be implemented assuming the underlying domain has a compact boundary, whichissufficientlyflatatinfinitesimalscales.Fordomainswithunboundedbound- aries,thisvery category ofdouble layer potentials may beoutrightinverted,using a Neumann series argument, assuming the “surface” in question is sufficiently flat globally. In turn, this opens the door for solving a large variety of boundary value problems for second-order systems (involving boundary data from Muckenhoupt weighted Lebesgue spaces, Lorentz spaces, Hardy spaces, Sobolev spaces, BMO, VMO, Morrey spaces, Hölder spaces, etc.) in a large class of domains which, for example,areallowedtohavespiralsingularities(hencemoregeneralthandomains locallydescribedasupper-graphsoffunctions).Intheoppositedirection,weshow thattheboundaryvalueproblemsformulatedforsystemslackingsuchspeciallayer potentialsmayfailtobeFredholmsolvableevenforreallytamedomains,likethe upper half-space, or the unit disk. Save for the announcement [184], all principal resultsappearhereinprintforthefirsttime. Weclosewithashortepilogue,attemptingtoplacetheworkundertakeninthis series into a broader picture. The main goal is to develop machinery of geometric harmonicanalysisflavorcapableofultimatelydealingwithboundaryvalueproblems ofaverygeneralnature.Oneoftheprincipaltools(indeed,thepiecèderésistance) inthisregardisanewandpowerfulversionoftheDivergenceTheorem,devisedin Volume I, whose very formulation has been motivated and shaped from the outset by its eventual applications to Harmonic Analysis, Partial Differential Equations, PotentialTheory,andComplexAnalysis.Thefactthatitsfootprintsmaybeclearly recognizedinthemakeupofsuchadiversebodyofresults,aspresentedinVolumes II–V,servesasatestamenttotheversatilityandpotencyofourbrandofDivergence Theorem.Alas,ourenterpriseismultifaceted,soitssuccessiscruciallydependent onmanyotherfactors.Foronething,itisnecessarytodeveloparobustCalderón– Zygmundtheoryforsingularintegralsofboundarylayertype(aswedoinVolumes III–IV),associatedwithgenericweaklyellipticsystems,capableofaccommodating alargevarietyoffunctionspacesofinterestconsideredinratherinclusivegeometric settings(ofthesortdiscussedinVolumeII).Thisrendersthese(boundary-to-domain) layerpotentialsusefulmechanismsforgeneratinglotsofnull-solutionsforthegiven systemofpartialdifferentialoperators,whoseformatiscompatiblewiththedemands in the very formulation of the boundary value problem we seek to solve. Next, in ordertobeabletosolvetheboundaryintegralequationtowhichmattersarereduced in this fashion, the success of employing Fredholm theory hinges on the ability to suitablyestimatetheessentialnormsofthe(boundary-to-boundary)layerpotentials. In this vein, we succeed in relating the distance from such layer potentials to the spaceofcompactoperatorstotheflatnessoftheboundaryofthedomaininquestion (measuredintermsofinfinitesimalmeanoscillationsoftheunitnormal)inadesirable mannerwhichshowsthat,inaprecisequantitativefashion,theflatterthedomain,the smallertheproximitytocompactoperators.Thissubtleandpowerfulresult,bridging betweenanalysisandgeometry,mayberegardedasafar-reachingextensionofthe pioneeringworkofRadonandCarlemanintheearly1900s. PrefacingtheFullSeries ix Ultimately, our work aligns itself with the program stemming from A. P. Calderón’s1978ICMplenaryaddressinwhichheadvocatestheuseoflayerpoten- tials“formuchmoregeneralellipticsystems[thantheLaplacian]”,see[36,p.90], andmayberegardedasanoptimalextensionofthepioneeringworkofE.B.Fabes, M.Jodeit,andN.M.Rivièrein[81](wherelayerpotentialmethodshavebeenfirst usedtosolveboundaryvalueproblemsfortheLaplacianinboundedC1domains).In thisendeavor,wehavebeenalsomotivatedbytheproblem1posedbyA.P.Calderón on[36,p.95],askingtoidentifythefunctionspacesonwhichsingularintegraloper- ators(ofboundarylayertype)arewell-definedandcontinuous.Thisisrelevantsince, asCalderónmentions,“Aclarificationofthisquestionwouldbeveryimportantin thestudyofboundaryvalueproblemsforellipticequations[inroughdomains].The methodsemployedsofarseemtobeinsufficientforthetreatmentoftheseproblems.” We also wish to mention that our work is also in line with the issue raised as an open problem by C. Kenig in [147, Problem 3.2.2, pp. 116–117], where he asked whetheroperatorsoflayerpotentialtypemaybeinvertedonappropriateLebesgue and Sobolev spaces in suitable subclasses on NTA domains with compact Ahlfors regularboundaries. Thetaskofmakinggeometryandanalysisworkinunisonisfraughtwithdiffi- culties, and only seldom can a two-way street be built on which to move between these two worlds without loss of information. Given this, it is actually surprising thatinmanyinstanceswecomeveryclosetohavingoptimalhypotheses,almostan accurateembodimentofthesloganifitmakessensetowriteit,thenit’strue. Waco,TX,USA DorinaMitrea Philadelphia,PA,USA IrinaMitrea Waco,TX,USA MariusMitrea March2022 1Inthelastsectionof[36],simplytitled“Problems,”Calderónsinglestwodirectionsforfurther study.Thefirstoneist(cid:2)hefamousquestion(cid:3)whetherthesmallnessconditionon(cid:2)a(cid:3)(cid:2)L∞(theLipschitz constantofthecurve (x,a(x)): x ∈R onwhichheprovedtheL2-boundednessoftheCauchy operator)mayberemoved(asiswellknown,thishasbeensolvedintheaffirmativebyCoifman, McIntosh,andMeyerin[53]).Wearereferringheretothesecond(andfinal)problemformulated byCalderónon[36,p.95]. Acknowledgements The authors gratefully acknowledge partial support from the Simons Foundation (throughgrants#426669,#318658,#616050,#637481),aswellasNSF(grant# 1900938).PortionsofthisworkhavebeencompletedatBaylorUniversityinWaco, Temple University in Philadelphia, the Institute for Advanced Study in Princeton, MSRIinBerkeley,andtheAmericanInstituteofMathematicsinSanJose.Wewish to thank these institutions for their generous hospitality. Last but not the least, we aregratefultoMichaelE.Taylorforgentlyyetpersistentlyencouragingusoverthe yearstocompletethisproject. xi Description of Volume I Whatsortofanalysiscanacertaingeometricenvironmentsupport2?Whatkindof geometryisrequiredtoensuretheveracityofaspecificanalyticalresult3?Thisseries, comprisedoffivevolumes,isajourneyintoGeometricHarmonicAnalysis,abrand ofharmonicanalysis4ofdefinitegeometricflavor,whoseultimategoalistobuildthe necessarymachinerycapableofdealingwithproblemsinvolvingPartialDifferential Equationsinverygeneralsettings.Thelinchpinofthisenterpriseisanew,powerful andadaptable,higher-dimensionalversionoftheFundamentalTheoremofCalculus. If we were to summarize the key message of Volume I in just a few words, it wouldsimplyread: it’stimetoredefinewhattheDivergenceTheoremcando! Itseemsfaintlymiraculousthatafterthreecenturiesofbeinginthelimelightthis remainsanactiveareaofresearch,buttherealityofthematteristhatthisisademand- drivensubject.Indeed,progressinacertainfieldoftenrequiresyetanew,andever morepotent,brandofDivergenceTheorem,whichcanaccommodatecertainspecific features. For example, to deal with Plateau’s problem, R. Caccioppoli and E. De Giorgi haveintroducedtheclassofsetsoflocallyfiniteperimeter,anenvironmentinwhich E.DeGiorgiandH.Federerhavesubsequentlyproducedamagnificentversionof the Divergence Theorem. Alas, the class of vector fields to which the De Giorgi– FedererDivergenceTheoremapplies,smoothandcompactlysupportedintheentire Euclideanspace(inparticular,completelyunrelatedtotheoriginaldomain),isfartoo 2IsthereaHardy–Littlewoodmaximalinequality,aPoincaréinequality,aFundamentalTheorem of Calculus, a rich function space theory, etc.? Also, in a given setting, how can one measure smoothness of functions, what sort of operators are natural to consider, what type of boundary valueproblemsarewell-posedorFredholmsolvable,etc.? 3For example, one may seek geometrical conditions guaranteeing that certain singular integral operators(ofboundarylayertype)arebounded,orFredholm,orinvertible,onavarietyoffunction spacesofinterest. 4Classicallyunderstoodasthebreakingupofawholeintoitspartsastoelucidatetheirnature. xiii

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.