ebook img

Geometric Complexity Theory, Tensor Rank, and Littlewood-Richardson Coefficients PDF

213 Pages·2013·2.104 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Geometric Complexity Theory, Tensor Rank, and Littlewood-Richardson Coefficients

Fakult¨at fu¨r Elektrotechnik, Informatik und Mathematik Institut fu¨r Mathematik 33098 Paderborn Geometric Complexity Theory, Tensor Rank, and Littlewood-Richardson Coefficients Dissertation zur Erlangung des Doktorgrades der Fakult¨at fu¨r Elektrotechnik, Informatik und Mathematik der Universit¨at Paderborn vorgelegt von Christian Ikenmeyer Paderborn, den 18. Oktober 2012 u¨berarbeitete Version vom 7. Januar 2013 Betreuer: Prof. Dr. Peter Bu¨rgisser Gutachter: Prof. Dr. Johannes Bl¨omer Prof. Dr. Peter Bu¨rgisser Prof. Dr. Joseph M. Landsberg iii Abstract WeprovideathoroughintroductiontoGeometricComplexityTheory,anapproach towards computational complexity lower bounds via methods from algebraic ge- ometry and representation theory. Then we focus on the relevant representation theoretic multiplicities, namely plethysm coefficients, Kronecker coefficients, and Littlewood-Richardsoncoefficients. Thesemultiplicitiescanbedescribedasdimen- sions of highest weight vector spaces for which explicit bases are known only in the Littlewood-Richardson case. By explicit construction of highest weight vectors we can show that the border rankof𝑚×𝑚matrixmultiplicationisaleast 3𝑚2−2andtheborderrankof2×2 2 matrix multiplication is exactly seven. The latter gives a new proof of a result by Landsberg (J. Amer. Math. Soc., 19:447–459, 2005). Moreover, we obtain new nonvanishing results for rectangular Kronecker coeffi- cientsandweproveaconjecturebyWeintraub(J.Algebra,129(1): 103–114,1990) about the nonvanishing of plethysm coefficients of even partitions. Ourin-depthstudyofLittlewood-Richardsoncoefficients𝑐𝜈 yieldsapolynomial 𝜆𝜇 timealgorithmfordeciding𝑐𝜈 ≥𝑡intimepolynomialin𝑛andquadraticin𝑡,where 𝜆𝜇 𝑛 denotes the number of parts of 𝜈. For 𝑡 = 1, i.e., for checking positivity of 𝑐𝜈 , 𝜆𝜇 we even obtain a running time of 𝑛3log𝜈 . 1 Moreover, our insights lead to a proof of a conjecture by King, Tollu, and Toumazet (CRM Proc. Lecture Notes, 34, Symmetry in Physics: 99–112), stat- ing that 𝑐𝜈 =2 implies 𝑐𝑀𝜈 =𝑀 +1 for all 𝑀 ∈N. 𝜆𝜇 𝑀𝜆𝑀𝜇 Zusammenfassung Diese Arbeit fu¨hrt gru¨ndlich in die Geometrische Komplexit¨atstheorie ein, ein Ansatz, um untere Berechnungskomplexit¨atsschranken mittels Methoden aus der algebraischen Geometrie und Darstellungstheorie zu finden. Danach konzentrie- ren wir uns auf die relevanten darstellungstheoretischen Multiplizit¨aten, und zwar auf Plethysmenkoeffizienten, Kronecker-Koeffizienten und Littlewood-Richardson- Koeffizienten. Diese Multiplizit¨aten haben eine Beschreibung als Dimensionen von H¨ochstgewichtsvektorr¨aumen, fu¨r welche konkrete Basen nur im Littlewood- Richardson-Fall bekannt sind. Durch explizite Konstruktion von H¨ochstgewichtsvektoren k¨onnen wir zeigen, dass der Grenzrang der 𝑚×𝑚 Matrixmultiplikation mindestens 3𝑚2−2 ist, und 2 der Grenzrang der 2×2 Matrixmultiplikation genau sieben ist. Dies liefert einen neuen Beweis fu¨r ein Ergebnis von Landsberg (J. Amer. Math. Soc., 19:447–459, 2005). Desweiteren erhalten wir Nichtverschwindungsresultate fu¨r rechteckige Kronecker-Koeffizienten und wir beweisen eine Vermutung von Weintraub (J.Algebra,129(1):103–114,1990)u¨berdasNicht-VerschwindenvonPlethysmen- koeffizienten von geraden Partitionen. Unsere eingehenden Untersuchungen zu Littlewood-Richardson-Koeffizien- ten 𝑐𝜈 ergeben einen Polynomialzeitalgorithmus zum Entscheiden von 𝑐𝜈 ≥ 𝑡 𝜆𝜇 𝜆𝜇 mit Laufzeit polynomiell in 𝑛 und quadratisch in 𝑡, wobei 𝑛 die Anzahl der Teile von 𝜈 ist. Fu¨r 𝑡=1, also zum Testen der Positivit¨at von 𝑐𝜈 , bekommen wir sogar 𝜆𝜇 eine Laufzeit von 𝑛3log𝜈 . 1 Daru¨berhinausfu¨hrenunsereEinsichtenzueinemBeweiseinerVermutungvon King, Tollu und Toumazet (CRM Proc. Lecture Notes, 34, Symmetry in Physics: 99–112), welche besagt, dass aus 𝑐𝜈 = 2 immer 𝑐𝑀𝜈 = 𝑀 +1 fu¨r alle 𝑀 ∈ N 𝜆𝜇 𝑀𝜆𝑀𝜇 folgt. v 2010MathematicsSubjectClassification. 05C21,20C30,20G05,68Q17,14L24. ACM Categories and Subject Descriptors F.2.1 [Analysis of Algorithms and Problem Complexity]: Numerical Algorithms and Problems – Computations on polyno- mials; F.1.3 [Computation by abstract devices]: Complexity Measures and Classes Key words and phrases. Geometric Complexity Theory, permanent versus deter- minant,tensorrank,matrixmultiplication,Kroneckercoefficients,Littlewood-Richardson coefficients, plethysm coefficients Acknowledgments First and foremost, I would like to express my deepest gratitude to my advisor Prof. Dr. Peter Bu¨rgisser without whose enduring support and constant advice this work would never have been possible. I benefitted tremendously from our long, intense, and invaluable discussions. I also want to thank Prof. Dr. Matthias Christandl very much, a quantum information theorist from whose pragmatic view on representation theory I benefitted greatly and with whom I had many very fruitfuldiscussions,whichresultedinjointpublications. Furthermore,IthankProf. Dr.JosephM.LandsbergandProf.Dr.EikeLaufortheircarefulreadingandtheir useful suggestions regarding Part I. I thank the Center for Computational Intractability in Princeton for organizing theworkshopinGeometricComplexityTheoryinthesummerof2010. Ialsothank the National Science Foundation for inviting me to participate in the Mathematics ResearchCommunity“GeometryandRepresentationTheoryRelatedtoGeometric ComplexityandOtherVariantsofPv.NP”inthesummerof2012. Bothworkshops were extremely stimulating and some of the results of this thesis were discussed there. I am also indebted to my colleagues Dr. Dennis Amelunxen, Jesko Hu¨ttenhain, and Stefan Mengel, not only for their enjoyable moral support, but also for all the long, deep and interesting mathematical discussions we shared. This work would not have been possible without the generous financial support (DFG-grants BU 1371/3-1 and BU 1371/3-2) of the Deutsche Forschungsgemein- schaft, to which I hereby express my gratitude. Last, but certainly not least, I want to say thank you to my parents, for their loving support in all areas of life. Eidesstattliche Erkl¨arung Hiermit versichere ich, dass ich die folgende Arbeit selbstst¨andigverfasstundkeineanderenalsdieangegebenenQuellenalsHilfsmittel benutzt sowie Zitate kenntlich gemacht habe. Paderborn, den 7.1.2013 Christian Ikenmeyer vii Wenn nicht der Herr das Haus baut, mu¨ht sich jeder umsonst, der daran baut. Ps. 127, 1 Contents 1 Introduction 1 1.1 Main Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.2 Outline and Further Results . . . . . . . . . . . . . . . . . . . . . . . 4 1.2(A) Part I: Geometric Complexity Theory . . . . . . . . . . . . 4 1.2(B) Part II: Littlewood-Richardson Coefficients . . . . . . . . . 5 I Geometric Complexity Theory 7 2 Preliminaries: Geometric Complexity Measures 9 2.1 Circuits and Algebraic Complexity Theory. . . . . . . . . . . . . . . 9 2.2 Completeness and Reduction . . . . . . . . . . . . . . . . . . . . . . 13 2.3 Approximating Polynomials . . . . . . . . . . . . . . . . . . . . . . . 15 2.4 Complexity of Bilinear Maps . . . . . . . . . . . . . . . . . . . . . . 17 2.5 Tensor Rank and Border Rank . . . . . . . . . . . . . . . . . . . . . 18 2.6 Summary and Unifying Notation . . . . . . . . . . . . . . . . . . . . 21 3 Preliminaries: The Flip via Obstructions 23 3.1 Classical Algebraic Geometry . . . . . . . . . . . . . . . . . . . . . . 23 3.2 Linear Algebraic Groups and Polynomial Obstructions . . . . . . . . 25 3.3 Representation Theoretic Obstructions . . . . . . . . . . . . . . . . . 27 3.4 Coordinate Rings of Orbits . . . . . . . . . . . . . . . . . . . . . . . 30 3.4(A) Geometric Invariant Theory . . . . . . . . . . . . . . . . . . 31 3.4(B) Peter-Weyl Theorem . . . . . . . . . . . . . . . . . . . . . . 32 4 Preliminaries: Classical Representation Theory 33 4.1 Young Tableaux . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 4.2 Explicit Highest Weight Vectors. . . . . . . . . . . . . . . . . . . . . 38 4.2(A) Polarization, Restitution, and Projections . . . . . . . . . . 39 4.2(B) Schur-Weyl Duality and Highest Weight Vectors . . . . . . 40 4.3 Plethysm Coefficients. . . . . . . . . . . . . . . . . . . . . . . . . . . 43 4.3(A) Plethysm Coefficients and Weight Spaces . . . . . . . . . . 44 4.4 Kronecker Coefficients . . . . . . . . . . . . . . . . . . . . . . . . . . 46 4.5 Littlewood-Richardson Coefficients . . . . . . . . . . . . . . . . . . . 50 5 Coordinate Rings of Orbits 55 5.1 Stabilizers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 5.1(A) Tensors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 5.1(B) Polynomials . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 5.2 Branching Rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 5.2(A) Unit Tensor . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 5.2(B) Determinant, Permanent and Matrix Multiplication . . . . 59 5.3 Inheritance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 ix x CONTENTS 5.3(A) Generic Tensors . . . . . . . . . . . . . . . . . . . . . . . . . 61 5.4 Stability and Exponent of Regularity . . . . . . . . . . . . . . . . . . 62 6 Representation Theoretic Results 65 6.1 Kernel of the Foulkes-Howe Map . . . . . . . . . . . . . . . . . . . . 65 6.2 Even Partitions in Plethysms . . . . . . . . . . . . . . . . . . . . . . 68 6.3 Nonvanishing of Symmetric Kronecker Coefficients . . . . . . . . . . 70 6.3(A) Moment Polytopes . . . . . . . . . . . . . . . . . . . . . . . 70 6.3(B) Asymptotic Result . . . . . . . . . . . . . . . . . . . . . . . 70 7 Obstruction Designs 75 7.1 Set Partitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 7.2 Obstruction Designs . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 7.3 Symmetric Obstruction Designs . . . . . . . . . . . . . . . . . . . . . 87 7.4 Reduced Kronecker Coefficients . . . . . . . . . . . . . . . . . . . . . 88 8 Explicit Obstructions 89 8.1 Some Computations . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 8.1(A) Orbit-wise Upper Bounds . . . . . . . . . . . . . . . . . . . 89 8.1(B) Regular Determinant Function . . . . . . . . . . . . . . . . 90 8.2 𝑚×𝑚 Matrix Multiplication . . . . . . . . . . . . . . . . . . . . . . 92 8.2(A) Vanishing on the Unit Tensor Orbit . . . . . . . . . . . . . 93 8.2(B) Evaluation at the Matrix Multiplication Tensor . . . . . . . 94 8.3 Further Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100 8.3(A) Orbit-wise Upper Bound Proof . . . . . . . . . . . . . . . . 100 8.3(B) 2×2 Matrix Multiplication . . . . . . . . . . . . . . . . . . 102 9 Some Negative Results 105 9.1 SL-obstructions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105 9.2 Cones and Saturated Semigroups . . . . . . . . . . . . . . . . . . . . 107 II Littlewood-Richardson coefficients 109 10 Hive Flows 113 10.1 Flow Description of LR Coefficients. . . . . . . . . . . . . . . . . . . 113 10.1(A) Flows on Digraphs . . . . . . . . . . . . . . . . . . . . . . . 113 10.1(B) Flows on the Honeycomb Graph 𝐺 . . . . . . . . . . . . . . 114 10.1(C) Hives and Hive Flows . . . . . . . . . . . . . . . . . . . . . 116 10.2 Properties of Hive Flows . . . . . . . . . . . . . . . . . . . . . . . . . 119 10.2(A) The Support of Flows on 𝐺 . . . . . . . . . . . . . . . . . . 119 10.2(B) The Graph of Capacity Achieving Integral Hive Flows . . . 120 10.3 The Residual Digraph . . . . . . . . . . . . . . . . . . . . . . . . . . 123 10.3(A) Turnpaths and Turncycles . . . . . . . . . . . . . . . . . . . 123 10.3(B) Flatspaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126 10.3(C) The Rerouting Theorem . . . . . . . . . . . . . . . . . . . . 129 11 Algorithms 133 11.1 A First Max-flow Algorithm . . . . . . . . . . . . . . . . . . . . . . . 133 11.2 A Polynomial Time Decision Algorithm . . . . . . . . . . . . . . . . 134 11.3 Enumerating Hive Flows . . . . . . . . . . . . . . . . . . . . . . . . . 137 11.4 The Neighbourhood Generator . . . . . . . . . . . . . . . . . . . . . 138 11.4(A) A First Approach . . . . . . . . . . . . . . . . . . . . . . . . 139 11.4(B) Bypassing the Secure Extension Problem . . . . . . . . . . 140

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.