ebook img

Geometric Aspects of Dwork Theory. Volumes 1 and 2 PDF

1150 Pages·2004·5.902 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Geometric Aspects of Dwork Theory. Volumes 1 and 2

Geometric Aspects of Dwork Theory, Volumes I and II Editors Alan Adolphson et al. Walter de Gruyter Geometric Aspects of Dwork Theory Volume I Bernie in Erice, October 1994 Bernard M.Dwork 1923(cid:18)1998 Geometric Aspects of Dwork Theory Editors Alan Adolphson, Francesco Baldassarri, Pierre Berthelot, Nicholas Katz, and Franc¸ois Loeser Volume I ≥ Walter de Gruyter · Berlin · New York Editors AlanAdolphson FrancescoBaldassarri PierreBerthelot DepartmentofMathematics DipartimentodiMatematica IRMAR OklahomaStateUniversity Universita`diPadova Universite´deRennes1 Stillwater,OK74078 ViaBelzoni7 CampusdeBeaulieu USA 35131Padova 35042Rennescedex e-mail:[email protected] Italy France e-mail:[email protected] e-mail:[email protected] NicholasKatz Franc¸oisLoeser DepartmentofMathematics E´coleNormaleSupe´rieure PrincetonUniversity De´partementdemathe´matiquesetapplications Princeton,NJ08544-1000 UMR8553duCNRS USA 45rued’Ulm e-mail:[email protected] 75230ParisCedex05 France e-mail:[email protected] MathematicsSubjectClassification2000: 14-06;14Fxx,14Gxx,11Gxx,11Lxx Keywords: p-adiccohomologies,zetafunctions,p-adicmodularforms,D-modules EPPrintedonacid-freepaperwhichfallswithintheguidelinesofthe ANSItoensurepermanenceanddurability. LibraryofCongressCataloging-in-PublicationData Geometric aspects of Dwork theory / edited by Alan Adolph- son…[etal.]. p. cm. Includesbibliographicalreferences. ISBN3-11-017478-2(cloth:alk.paper) 1. Geometry, Algebraic. 2. Number theory. 3. p-adic analysis. I.Adolphson,Alan,1951(cid:18) QA564.G47 2004 516.315(cid:18)dc22 2004011345 ISBN 3-11-017478-2 BibliographicinformationpublishedbyDieDeutscheBibliothek DieDeutscheBibliothekliststhispublicationintheDeutscheNationalbibliografie; detailedbibliographicdataisavailableintheInternetat(cid:12)http://dnb.ddb.de(cid:14). ”Copyright2004byWalterdeGruyterGmbH&Co.KG,10785Berlin,Germany. All rights reserved, including those of translationinto foreign languages. No part of this book may be reproduced or transmitted in any form or by any means, electronic or mechanical, includingphotocopy,recordingoranyinformationstorageandretrievalsystem,withoutpermis- sioninwritingfromthepublisher. PrintedinGermany. Coverdesign:ThomasBonnie,Hamburg. Typesetusingtheauthors’T Xfiles:I.Zimmermann,Freiburg. E Printingandbinding:Hubert&Co.GmbH&Co.KG,Göttingen. Preface Bernard Dwork (New York 5/27/1923–Princeton 5/9/1998) stunned the algebro- geometricworldin1958withhisproofofrationalityofthezetafunctionofanalgebraic varietyoverafinitefieldandwiththep-adicmethodsheintroducedinhisproof. He thenwentontocreateacompletelynewp-adiccohomologytheoryforhypersurfaces of characteristic p > 0, and to study the p-adic variation, in families, of the zeta function,creatingoutofwholeclothap-adictheoryofPicard–Fuchsequationsand theirrelationtozetafunctions. Heestablishedageneraltheoryofp-adicdifferential equationsanddeepresultsontherelationbetweentheHodgeandslopefiltrationsof Picard–Fuchsequations. Inthecourseofthiswork,heintroducedideasthathavebeenfundamentalinthe development of p-adic arithmetic geometry as it presently stands. Among these are thenotionsofFrobeniusstructureforp-adicdifferentialequations, andoftheslope and growth filtrations on their solution spaces. Equally fundamental has been his insistenceontheroleofmonodromyofPicard–Fuchsequationsaroundsupersingular points,andonthestillmysteriousnotionofexcellentliftingofFrobenius. In order to explore and clarify the intrinsic geometric content of Dwork’s arith- meticresultsandhisp-adicanalyticmethodsagroupofDwork’smathematicalheirs organizedanextendedcycleofconferenceswhichwasentitled“TheDworkTrimester inItaly”byreasonofitsdurationandvenue. Moreover,duringthisintensivetrimester newdevelopmentswerepresentedviaaseriesofmini-coursesdedicatedtosomeof themostsalientaspectsofDwork’stheory. The Dwork Trimester took place from May to July of 2001. The principal site wasattheUniversityofPadova. Therewerealsotwoone-weekspecialconferences. The first, on p-adic modular forms, p-adic L-functions and p-adic integration, was organizedbyM.Bertolini,andheldattheVillaMonasteroinVarennaonLakeComo from June 3 to June 9, 2001. The second, which comprised the final week of the DworkTrimester,washeldatthemountainresortBressanonefromJuly1toJuly7, 2001. The Dwork Trimester brought together over a hundred mathematicians from many countries to pay a fitting scientific and personal homage to the remarkable mathematicianandmanwhowasBernardM.Dwork. TheorganizersoftheDworkTrimesterwishtoextendtheirheartfeltthankstothe IstitutoNazionalediAltaMatematica(INdAM),Rome,andtotheEuropeanNetwork “ArithmeticAlgebraic Geometry” which co-sponsored the events, as well as to the Dipartimento di Matematica Pura ed Applicata of the Università di Padova, to the staffsofVillaMonasteroinVarennaandtheScuolaEstivaoftheUniversitàdiPadova atBressanonewhoseunstintingcooperationmadepossibletheDworkTrimester. AsonemightinferfromthefactthattheDworkTrimestertookplaceinnorthern Italy, Bernie had strong and enduring ties with Italy. Already in the fall of 1966 he vi Preface hadacceptedaninvitationfromFrancescoGherardellitobeavisitingprofessoratthe University of Florence. It was an eventful year: early November rains brought the ArnotohistoricallyunprecedentedlevelswhileBernie,Shirleyandtheirthreechildren werevisitingRomeforaverywetAllSaintsholiday. Theheavyrainsandfloodinghad blockedtheroadsbacktoFlorence,thusforcingthefamilytomakeanovernightstop inCortona. FromthereBerniesenthisbrotherLeoamemorabletwo-wordtelegram (“Glug glug”), clearly showing both that the family was safe, and that his sense of humorwasintact. (Hisbrothersentatwowordreply: “UseListerine”.) Thehavoc produced by the flood made a return to Florence by car unthinkable. Following the family’sreturntoRomethethreatoftyphoidfeverinFlorenceruledouteventhetrain triptoFlorencethatBernieandhissonAndrewhadplanned,hopingtoretrievewarm clothingforthefamily. TheplannedsabbaticalinItalyseemedruined. TheDworks were on the verge of returning to the United States, but the timely efforts of Aldo AndreottienabledBernieandhisfamilytomovetotheUniversityofPisafortherest oftheacademicyear. Inthefallof1975FrancescoBaldassarri,recently“laureato”attheUniversityof PadovaunderthedirectionofI.Barsotti,wenttoPrincetonUniversityasapostdoctoral fellow. Dwork soon became his mentor, and a lasting collaboration and friendship ensued. AfewyearslateranotheryoungmathematicianfromPadova,BrunoChiarel- lotto, also went to Princeton to study with Dwork. As a result, both Bernie and ShirleyDworkbecamefrequentvisitorstoPadovaintheyearsthatfollowed. During theirmanyvisitsthroughoutthe1980stheyestablishedfirmfriendshipsbothwithin themathematicalcommunityatPadovaandalsobeyondit. Thus,itwasnatural(al- thoughbynomeansbureaucraticallytrivial)thatwhenBernieretiredfromPrinceton Universityhewas“called”totheUniversityofPadovawhereheservedas“Professore perChiaraFama”from1992untilhisdeathin1998. Duringthisperiodhisinfluence onmathematicsinPadovawasvibrantanddeep. Amonghisotherstudentsandcol- laboratorsfromthisperiodareMaurizioCailotto, LuciaDiVizio, GiovanniGerotto, FrankSullivan,andFrancescaTovena. ButBernie’sinterestinItalywasnotlimited toitsmathematicians. Indeed, BerniehadakeeninterestinItalianlife, culture, and politics. His openness and joie de vivre won him, throughout his life, close friend- shipsinmanyplaces, andItalywasnoexception. HisfriendsinItalywerehonored toorganizeamathematicaltrimesterdedicatedtothedevelopmentswhichcameout ofhisworkandoutofthetoolsheinvented. Theresultofthattrimesteristhepresent publication. April2004 A.Adolphson,F.Baldassarri, P.Berthelot,N.Katz,andF.Loeser Table of Contents of Volume I Preface v TableofContentsofVolumeII ix TheMathematicalPublicationsofBernardDwork xi AlanAdolphson Exponentialsumsandgeneralizedhypergeometricfunctions. I:CohomologyspacesandFrobeniusaction 1 AlanAdolphsonandStevenSperber Exponentialsumsandfreehyperplanearrangements 43 YvesAndré Surlaconjecturedesp-courburesdeGrothendieck–Katz etunproblèmedeDwork 55 FabrizioAndreattaandEyalZ.Goren Hilbertmodularvarietiesoflowdimension 113 FrancescoBaldassarriandPierreBerthelot OnDworkcohomologyforsingularhypersurfaces 177 FrancescoBaldassarriandAndreaD’Agnolo OnDworkcohomologyandalgebraicD-modules 245 LaurentBerger Anintroductiontothetheoryofp-adicrepresentations 255 VladimirG.Berkovich Smoothp-adicanalyticspacesarelocallycontractible. II 293 Jean-BenoîtBost Germsofanalyticvarietiesinalgebraicvarieties: canonicalmetrics andarithmeticalgebraizationtheorems 371 GillesChristol Thirtyyearslater 419 RobertF.ColemanandWilliamA.Stein Approximationofeigenformsofinfiniteslopebyeigenformsoffiniteslope 437 viii TableofContentsofVolumeI RichardCrew Crystallinecohomologyofsingularvarieties 451 AndreaD’AgnoloandPietroPolesello Stacksoftwistedmodulesandintegraltransforms 463 JanDenefandFrançoisLoeser Onsomerationalgeneratingseriesoccuringinarithmeticgeometry 509 MladenDimitrov CompactificationsarithmétiquesdesvariétésdeHilbert etformesmodulairesdeHilbertpour(cid:1) (c,n) 527 1 Table of Contents of Volume II MladenDimitrovandJacquesTilouine VariétésetformesmodulairesdeHilbertarithmétiquespour(cid:1) (c,n) 555 1 LuciaDiVizio Introductiontop-adicq-differenceequations 615 MatthewEmertonandMarkKisin AnintroductiontotheRiemann–HilbertcorrespondenceforunitF-crystals 677 Jean-YvesEtesse IntroductiontoL-functionsofF-isocrystals 701 OferGabber Notesonsomet-structures 711 HaruzoHida Non-vanishingmodulopofHeckeL-values 735 LucIllusie Onsemistablereductionandthecalculationofnearbycycles 785 NicholasM.KatzandRahulPandharipande InequalitiesrelatedtoLefschetzpencilsandintegralsofChernclasses 805 KiranS.Kedlaya FullfaithfulnessforoverconvergentF-isocrystals 819 BernardLeStum Frobeniusaction,F-isocrystalsandslopefiltration 837 ShigekiMatsuda ConjectureonAbbes–SaitofiltrationandChristol–Mebkhoutfiltration 845 ChristineNoot-Huyghe TransformationdeFourierdesD-modulesarithmétiquesI 857 TomohideTerasoma BoyarskyprincipleforD-modulesandLoeser’sconjecture 909 NobuoTsuzuki Cohomologicaldescentinrigidcohomology 931

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.