ebook img

Geometric and Topological Mesh Feature Extraction for 3D Shape Analysis PDF

190 Pages·2020·11.041 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Geometric and Topological Mesh Feature Extraction for 3D Shape Analysis

Geometric and Topological Mesh Feature Extraction for 3D Shape Analysis Geometric Modeling and Applications Set coordinated by Marc Daniel Volume 3 Geometric and Topological Mesh Feature Extraction for 3D Shape Analysis Jean-Luc Mari Franck Hétroy-Wheeler Gérard Subsol First published 2019 in Great Britain and the United States by ISTE Ltd and John Wiley & Sons, Inc. Apart from any fair dealing for the purposes of research or private study, or criticism or review, as permitted under the Copyright, Designs and Patents Act 1988, this publication may only be reproduced, stored or transmitted, in any form or by any means, with the prior permission in writing of the publishers, or in the case of reprographic reproduction in accordance with the terms and licenses issued by the CLA. Enquiries concerning reproduction outside these terms should be sent to the publishers at the undermentioned address: ISTE Ltd John Wiley & Sons, Inc. 27-37 St George’s Road 111 River Street London SW19 4EU Hoboken, NJ 07030 UK USA www.iste.co.uk www.wiley.com © ISTE Ltd 2019 The rights of Jean-Luc Mari, Franck Hétroy-Wheeler and Gérard Subsol to be identified as the authors of this work have been asserted by them in accordance with the Copyright, Designs and Patents Act 1988. Library of Congress Control Number: 2019946683 British Library Cataloguing-in-Publication Data A CIP record for this book is available from the British Library ISBN 978-1-78630-041-6 Contents Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi Chapter 1. Geometric Features based on Curvatures . . . . . . 1 1.1.Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2.Somemathematicalremindersofthedifferentialgeometry ofsurfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.2.1.Fundamentalformsandnormalcurvature . . . . . . . . . . . 2 1.2.2.Principalcurvaturesandshapeindex . . . . . . . . . . . . . 5 1.2.3.Principaldirectionsandlinesofcurvature . . . . . . . . . . 6 1.2.4.Weingartenequationsandshapeoperator . . . . . . . . . . . 9 1.2.5.Practicalcomputationofdifferentialparameters . . . . . . . 12 1.2.6.Euler’stheorem . . . . . . . . . . . . . . . . . . . . . . . . . 13 1.2.7.Meusnier’stheorem . . . . . . . . . . . . . . . . . . . . . . . 15 1.2.8.Localapproximationofthesurface . . . . . . . . . . . . . . 16 1.2.9.Focalsurfaces . . . . . . . . . . . . . . . . . . . . . . . . . . 17 1.3.Computationofdifferentialparametersonadiscrete 3Dmesh . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 1.3.1.Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 1.3.2.Somenotations. . . . . . . . . . . . . . . . . . . . . . . . . . 19 1.3.3.Computingnormalvectors . . . . . . . . . . . . . . . . . . . 20 1.3.4.Locallyfittingaparametricsurface . . . . . . . . . . . . . . 22 1.3.5.Discretedifferentialgeometryoperators . . . . . . . . . . . 22 1.3.6.Integrating2Dcurvatures . . . . . . . . . . . . . . . . . . . . 28 vi GeometricandTopologicalMeshFeatureExtractionfor3DShapeAnalysis 1.3.7.Tensorofcurvature: Taubin’sformula . . . . . . . . . . . . . 28 1.3.8.Tensorofcurvaturebasedonthenormalcycle theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 1.3.9.Integralestimators . . . . . . . . . . . . . . . . . . . . . . . . 34 1.3.10.Processingunstructured3Dpointclouds . . . . . . . . . . 38 1.3.11.Discussionofthemethods. . . . . . . . . . . . . . . . . . . 38 1.4.Featurelineextraction . . . . . . . . . . . . . . . . . . . . . . . . 46 1.4.1.Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 1.4.2.Linesofcurvature . . . . . . . . . . . . . . . . . . . . . . . . 47 1.4.3.Crest/ridgelines . . . . . . . . . . . . . . . . . . . . . . . . . 55 1.4.4.Featurelinesbasedonhomotopicthinning . . . . . . . . . . 79 1.5.Region-basedapproaches . . . . . . . . . . . . . . . . . . . . . . 84 1.5.1.Meshsegmentation . . . . . . . . . . . . . . . . . . . . . . . 84 1.5.2.Shapedescriptionbasedongraphs. . . . . . . . . . . . . . . 87 1.6.Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98 Chapter 2. Topological Features . . . . . . . . . . . . . . . . . . . 99 2.1.Mathematicalbackground . . . . . . . . . . . . . . . . . . . . . 99 2.1.1.Atopologicalviewonsurfaces . . . . . . . . . . . . . . . . . 100 2.1.2.Algebraictopology . . . . . . . . . . . . . . . . . . . . . . . 103 2.2.Computationofglobaltopologicalfeatures . . . . . . . . . . . . 106 2.2.1.Connectedcomponentsandgenus . . . . . . . . . . . . . . . 106 2.2.2.Homologygroups . . . . . . . . . . . . . . . . . . . . . . . . 107 2.3.Combininggeometricandtopologicalfeatures . . . . . . . . . . 111 2.3.1.Persistenthomology . . . . . . . . . . . . . . . . . . . . . . . 112 2.3.2.ReebgraphandMorse–Smalecomplex . . . . . . . . . . . . 115 2.3.3.Homologygenerators . . . . . . . . . . . . . . . . . . . . . . 118 2.3.4.Measuringholes . . . . . . . . . . . . . . . . . . . . . . . . . 121 2.4.Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128 Chapter 3. Applications . . . . . . . . . . . . . . . . . . . . . . . . . 131 3.1.Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131 3.2.Medicine: linesofcurvatureforpolypdetectioninvirtual colonoscopy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131 3.3.Paleo-anthropology: crest/ridgelinesforshapeanalysisof humanfossils . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133 3.4.Geology: extractionoffracturelinesonvirtualoutcrops . . . . 137 Contents vii 3.5.Planetaryscience: detectionoffeaturelinesfortheextraction ofimpactcratersonasteroidsandrockyplanets . . . . . . . . . . . . 140 3.6.Botany: persistenthomologytorecoverthebranching structureofplants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149 Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169 Preface Three-dimensional surface meshes, composed of collections of planar polygons, are the most common discrete representation of the surface of a virtual shape. These 3D surface meshes need to be inspected in order to understand or evaluate their overall structure or some details. This can be done by extracting relevant geometric or topological features. Such shape characteristics can simplify the way the object is looked at, can help recognitionandcandescribeandcategorizeitaccordingtospecificcriteria. Shape characteristics can be defined in many ways. This book takes the point of view of discrete mathematics, which aims to propose discrete counterparts to concepts mathematically defined in continuous terms. More specifically, in this book, we review how standard geometric and topological notions of surfaces can be defined and computed for a 3D surface mesh, as well as their use for shape analysis. In particular, recent methods are described to extract feature lines having a meaning related to either geometry or topology. Differential estimators such as discrete principal curvatures are detailedastheyplayacriticalroleinthecomputationofsalientstructures.An emphasis is then placed on topology since the global structure and the connectivity of features play an important role in the understanding of a shape. Several applications are finally developed, showing that each of them needs specific adjustments to generic approaches. These applications are relatedtomedicine,geology,botanyandothersciences. Focusing on shape features, the topic of this book is narrower but more detailed than other shape analysis books, which do not, or only briefly, refer to feature definition and computation. It is intended not only for students, x GeometricandTopologicalMeshFeatureExtractionfor3DShapeAnalysis researchers and engineers in computer science and shape analysis, but also numerical geologists, anthropologists, biologists and other scientists looking for practical solutions to their shape analysis, understanding or recognition problems. Wehope that our book will be a useful review of existingwork for allofthem. Finally, we would like to thank Marc Daniel for giving us the opportunity towritethisbookandAldoGonzalez-Lorenzoforhisreadingofchapter2and forhisconstructiveremarks. Jean-LucMARI FranckHÉTROY-WHEELER GérardSUBSOL August2019 Introduction I.1. Context: 3D shape analysis Shapes, whether from the natural world or manufactured, are more and more often digitized for visualization or measurement purposes, among others. This process generally results in 3D surface meshes, which are composed of collections of planar polygons. Such meshes nowadays are the most common discrete representation of the surface of a virtual shape. These meshes are automatically, or sometimes interactively, examined, in order to understand, evaluate or match their overall structure or some details. This process is called 3D shape analysis and can be done by extracting relevant geometricortopological features.Suchshapecharacteristicscansimplifythe way the object is looked at, can help recognition and can describe and categorize it according to specific criteria. In this book, we will review various mathematical definitions of mesh features and some algorithms to compute them. We will then give a few application examples where these featuresareusedtogloballyorlocallyanalyzea3Dshape. It is important to note that this book is not about 3D shape analysis, but only about feature definition and computation. 3D shape analysis has a wider spectrum than feature detection. Among concepts that will not be tackled in this book are global shape descriptor/signature definition and spectral shape analysis.Theinterestedreadercanreferto[BIA14]or[LÉV10]tolearnmore aboutthesenotions. Before going into details about surface features from a mathematical and computationalpointofview,anddetailingsomeapplicationsinChapters1–3,

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.