ebook img

Geometric algebra computing: in engineering and computer science PDF

549 Pages·2010·18.42 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Geometric algebra computing: in engineering and computer science

Geometric Algebra Computing Eduardo Bayro-Corrochano (cid:2) Gerik Scheuermann Editors Geometric Algebra Computing in Engineering and Computer Science Editors Prof.EduardoBayro-Corrochano Prof.Dr.GerikScheuermann Dept.ElectricalEng.& Inst.Informatik ComputerScience UniversitätLeipzig CINVESTAV 04009Leipzig UnidadGuadalajara Germany Av.Científica1145 [email protected] 45015ColoniaelBajío, Zapopan,JAL Mexico [email protected] http://www.gdl.cinvestav.mx/edb ISBN978-1-84996-107-3 e-ISBN978-1-84996-108-0 DOI10.1007/978-1-84996-108-0 SpringerLondonDordrechtHeidelbergNewYork BritishLibraryCataloguinginPublicationData AcataloguerecordforthisbookisavailablefromtheBritishLibrary LibraryofCongressControlNumber:2010926690 ©Springer-VerlagLondonLimited2010 Apartfromanyfairdealingforthepurposesofresearchorprivatestudy,orcriticismorreview,asper- mittedundertheCopyright,DesignsandPatentsAct1988,thispublicationmayonlybereproduced, storedortransmitted,inanyformorbyanymeans,withthepriorpermissioninwritingofthepublish- ers,orinthecaseofreprographicreproductioninaccordancewiththetermsoflicensesissuedbythe CopyrightLicensingAgency.Enquiriesconcerningreproductionoutsidethosetermsshouldbesentto thepublishers. Theuseofregisterednames,trademarks,etc.,inthispublicationdoesnotimply,evenintheabsenceofa specificstatement,thatsuchnamesareexemptfromtherelevantlawsandregulationsandthereforefree forgeneraluse. Thepublishermakesnorepresentation,expressorimplied,withregardtotheaccuracyoftheinformation containedinthisbookandcannotacceptanylegalresponsibilityorliabilityforanyerrorsoromissions thatmaybemade. Printedonacid-freepaper SpringerispartofSpringerScience+BusinessMedia(www.springer.com) Preface Thisbookpresentsnewresultsonapplicationsofgeometricalgebra.Thetimewhen researchersandengineerswerestartingtorealizethepotentialofquaternionsforap- plicationsinelectrical,mechanic,andcontrolengineeringpassedalongtimeago. SincethepublicationofSpace-TimeAlgebrabyDavidHestenes(1966)andClifford AlgebratoGeometricCalculus:AUnifiedLanguageforMathematicsandPhysics by David Hestenes and Garret Sobczyk (1984), consistent progress in the appli- cations of geometric algebra has taken place. Particularly due to the great devel- opments in computer technology and the Internet, researchers have proposed new ideasandalgorithmstotackleavarietyofproblemsintheareasofcomputerscience andengineeringusingthepowerfullanguageofgeometricalgebra.Inthisprocess, pioneer groups started the conference series entitled “Applications of Geometric AlgebrainComputerScienceandEngineering”(AGACSE)inordertopromotethe research activity in the domain of the application of geometric algebra. The first conference, AGACSE’1999, organized by Eduardo Bayro-Corrochano and Garret Sobczyk, took place in Ixtapa-Zihuatanejo, Mexico, in July 1999. The contribu- tionswerepublishedinGeometricAlgebrawithApplicationsinScienceandEngi- neering,Birkhäuser,2001.Thesecondconference,ACACSE’2001,washeldinthe EngineeringDepartment of the CambridgeUniversity on 9–13 July 2001 and was organizedbyLeoDorst,ChrisDoran,andJoanLasenby.Thebestconferencecontri- butionsappearedasabookentitledApplicationsofGeometricAlgebrainComputer ScienceandEngineering,Birkhäuser,2002.Thethirdconference,AGACSE’2008, took place in August 2008 in Grimma, Leipzig, Germany. The conference chairs, EduardoBayro-CorrochanoandGerikSheuermann,editedthisbookusingselected contributionsthatwerepeer-reviewedbyatleasttworeviewers. In the history of science, theories would have not been developed at all with- outessentialmathematicalconcepts.Invariousperiodsofthehistoryofmathemat- ics and physics, there is clear evidence of stagnation, and it is only thanks to new mathematicaldevelopmentsthatastonishingprogresshastakenplace.Furthermore, researchers unavoidably cause fragmented knowledge in their various attempts to combine different mathematical systems. We realize that each mathematical sys- tembringsaboutsomepartsofgeometry;however,together,theyconstituteasys- tem that is highly redundant due to an unnecessary multiplicity of representations v vi Preface forgeometricconcepts.Incontrast,inthegeometricalgebralanguage,mostofthe standardmattertaughtinengineeringandcomputersciencecanbeadvantageously reformulatedwithoutredundanciesandinahighlycondensedfashion. Thisbookpresentsaselectionofarticlesaboutthetheoryandapplicationsofthe advancedmathematicallanguagegeometricalgebrawhichgreatlyhelpstoexpress theideasandconceptsandtodevelopalgorithmsinthebroaddomainsofcomputer scienceandengineering.Thecontributionsareorganizedinsevenparts. The first part presents screw theory in geometric algebra, the parameterization of3Dconformaltransformationsinconformalgeometricalgebra,andanoverview ofapplicationsofgeometricalgebra.Thesecondpartincludesthoroughstudieson Cliffor–Fourier transforms: the two-dimensional Clifford windowed Fourier trans- form; the cylindrical Fourier transform; applications of the 3D geometric algebra Fourier transform in graphics engineering; the 4D Clifford–Fourier transform for color image processing; and the use of the Hilbert transforms in Clifford analysis for signal processing. In the third part, self-organizing geometric neural networks areutilizedfor2Dcontourand3Dsurfacereconstructioninmedicalimageprocess- ing.Theclusteringandclassificationarehandledusinggeometricneuralnetworks and associative memories designed in the conformal geometric algebra. This part concludes with a retrospective of the quaternion wavelet transform, including an applicationforstereovision.Thefourthpartforcomputervisionstartswithanew cone-pixelcamera using a convexhull and twists in conformal geometric algebra. Thenextworkintroducesamodel-basedapproachforglobalself-localizationusing activestereovisionandGaussianspheres.Inthefifthpart,thegeometriccharacter- izationofM-conformalmappingsisdiscussed,andastudyoffluidflowproblems is carried out in depth using quaternionic analysis. The sixth part shows the im- pressive space group visualizer for all 230 3D groups using the software packet forgeometricalgebracomputationsCLUCalc.Thesecondauthorstudiesgeometric algebraformalismasanalternativetodistributedrepresentationmodels;herecon- volutions are replaced by geometric products, and, as a result, a natural language for visualization of higher concepts is proposed. Another author studies computa- tionalcomplexityreductionsusingCliffordalgebrasandshowsthatgraphproblems of complexity class NP are polynomial in the number of Clifford operations re- quired.Theseventhpartincludesnewdevelopmentsinefficientgeometricalgebra computing: The first author presents an efficient blade factorization algorithm to producefasterimplementationsoftheJoin;withthesoftwarepacketGALOOP,the second author symbolically reduces involved formulas of conformal geometric al- gebra,generatingsuitablecodeforcomputingusinghardwareaccelerators.Another chaptershowsapplicationsofGrobnerbasesinrobotics,formulatedinthelanguage of Clifford algebras, in engineering to the theory of curves, including Fermat and Beziercubics,andintheinterpolationoffunctionsusedinfiniteelementtheory. We are very thankful to all book contributors, who are working persistently to advancetheapplicationsofgeometricalgebra.Wedohopethatthereaderwillfind this collection of contributions in a broad scope of the areas of engineering and computer science very stimulating and encouraging. We hope that, as a result, we willseeourcommunitygrowingandbenefittingfromnewandpromisingscientific Preface vii contributions. Finally, we thank also for the support to this book project given by CINVESTAVUnidadGuadalajaraandCONACYTProject2007-182084. CINVESTAV,Guadalajara,México EduardoBayro-Corrochano UniversitätLeipzig, GerikSheuermann InstitutfürInformatik,Germany Contents PartI GeometricAlgebra NewToolsforComputationalGeometryandRejuvenationofScrew Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 DavidHestenes 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 2 UniversalGeometricAlgebra . . . . . . . . . . . . . . . . . . . . 4 3 GroupTheorywithGeometricAlgebra . . . . . . . . . . . . . . . 6 4 EuclideanGeometrywithConformalGA . . . . . . . . . . . . . . 8 5 InvariantEuclideanGeometry . . . . . . . . . . . . . . . . . . . . 10 6 ProjectiveGeometry . . . . . . . . . . . . . . . . . . . . . . . . . 13 7 CovariantEuclideanGeometrywithConformalSplits . . . . . . . 14 8 RigidDisplacements . . . . . . . . . . . . . . . . . . . . . . . . . 18 9 FramingaRigidBody . . . . . . . . . . . . . . . . . . . . . . . . 20 10 RigidBodyKinematics . . . . . . . . . . . . . . . . . . . . . . . 22 11 RigidBodyDynamics . . . . . . . . . . . . . . . . . . . . . . . . 24 12 ScrewTheory . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 13 ConformalSplitandMatrixRepresentation . . . . . . . . . . . . . 28 14 LinkedRigidBodies&Robotics . . . . . . . . . . . . . . . . . . 31 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 Tutorial:Structure-PreservingRepresentationofEuclideanMotions ThroughConformalGeometricAlgebra . . . . . . . . . . . . . . . . 35 LeoDorst 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 2 ConformalGeometricAlgebra . . . . . . . . . . . . . . . . . . . 36 2.1 Trick1:RepresentingEuclideanPointsinMinkowskiSpace 36 2.2 Trick 2: Orthogonal Transformations as Multiple ReflectionsinaSandwichingRepresentation . . . . . . . . 39 2.3 Trick3:ConstructingElementsbyAnti-Symmetry . . . . . 42 2.4 Trick4:DualSpecificationofElementsPermitsIntersection 43 ix

Description:
Geometric algebra provides a rich and general mathematical framework for the development of solutions, concepts and computer algorithms without losing geometric insight into the problem in question. Many current mathematical subjects can be treated in an unified manner without abandoning the mathema
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.