Geometric Algebra Computing Eduardo Bayro-Corrochano (cid:2) Gerik Scheuermann Editors Geometric Algebra Computing in Engineering and Computer Science Editors Prof.EduardoBayro-Corrochano Prof.Dr.GerikScheuermann Dept.ElectricalEng.& Inst.Informatik ComputerScience UniversitätLeipzig CINVESTAV 04009Leipzig UnidadGuadalajara Germany Av.Científica1145 [email protected] 45015ColoniaelBajío, Zapopan,JAL Mexico [email protected] http://www.gdl.cinvestav.mx/edb ISBN978-1-84996-107-3 e-ISBN978-1-84996-108-0 DOI10.1007/978-1-84996-108-0 SpringerLondonDordrechtHeidelbergNewYork BritishLibraryCataloguinginPublicationData AcataloguerecordforthisbookisavailablefromtheBritishLibrary LibraryofCongressControlNumber:2010926690 ©Springer-VerlagLondonLimited2010 Apartfromanyfairdealingforthepurposesofresearchorprivatestudy,orcriticismorreview,asper- mittedundertheCopyright,DesignsandPatentsAct1988,thispublicationmayonlybereproduced, storedortransmitted,inanyformorbyanymeans,withthepriorpermissioninwritingofthepublish- ers,orinthecaseofreprographicreproductioninaccordancewiththetermsoflicensesissuedbythe CopyrightLicensingAgency.Enquiriesconcerningreproductionoutsidethosetermsshouldbesentto thepublishers. Theuseofregisterednames,trademarks,etc.,inthispublicationdoesnotimply,evenintheabsenceofa specificstatement,thatsuchnamesareexemptfromtherelevantlawsandregulationsandthereforefree forgeneraluse. Thepublishermakesnorepresentation,expressorimplied,withregardtotheaccuracyoftheinformation containedinthisbookandcannotacceptanylegalresponsibilityorliabilityforanyerrorsoromissions thatmaybemade. Printedonacid-freepaper SpringerispartofSpringerScience+BusinessMedia(www.springer.com) Preface Thisbookpresentsnewresultsonapplicationsofgeometricalgebra.Thetimewhen researchersandengineerswerestartingtorealizethepotentialofquaternionsforap- plicationsinelectrical,mechanic,andcontrolengineeringpassedalongtimeago. SincethepublicationofSpace-TimeAlgebrabyDavidHestenes(1966)andClifford AlgebratoGeometricCalculus:AUnifiedLanguageforMathematicsandPhysics by David Hestenes and Garret Sobczyk (1984), consistent progress in the appli- cations of geometric algebra has taken place. Particularly due to the great devel- opments in computer technology and the Internet, researchers have proposed new ideasandalgorithmstotackleavarietyofproblemsintheareasofcomputerscience andengineeringusingthepowerfullanguageofgeometricalgebra.Inthisprocess, pioneer groups started the conference series entitled “Applications of Geometric AlgebrainComputerScienceandEngineering”(AGACSE)inordertopromotethe research activity in the domain of the application of geometric algebra. The first conference, AGACSE’1999, organized by Eduardo Bayro-Corrochano and Garret Sobczyk, took place in Ixtapa-Zihuatanejo, Mexico, in July 1999. The contribu- tionswerepublishedinGeometricAlgebrawithApplicationsinScienceandEngi- neering,Birkhäuser,2001.Thesecondconference,ACACSE’2001,washeldinthe EngineeringDepartment of the CambridgeUniversity on 9–13 July 2001 and was organizedbyLeoDorst,ChrisDoran,andJoanLasenby.Thebestconferencecontri- butionsappearedasabookentitledApplicationsofGeometricAlgebrainComputer ScienceandEngineering,Birkhäuser,2002.Thethirdconference,AGACSE’2008, took place in August 2008 in Grimma, Leipzig, Germany. The conference chairs, EduardoBayro-CorrochanoandGerikSheuermann,editedthisbookusingselected contributionsthatwerepeer-reviewedbyatleasttworeviewers. In the history of science, theories would have not been developed at all with- outessentialmathematicalconcepts.Invariousperiodsofthehistoryofmathemat- ics and physics, there is clear evidence of stagnation, and it is only thanks to new mathematicaldevelopmentsthatastonishingprogresshastakenplace.Furthermore, researchers unavoidably cause fragmented knowledge in their various attempts to combine different mathematical systems. We realize that each mathematical sys- tembringsaboutsomepartsofgeometry;however,together,theyconstituteasys- tem that is highly redundant due to an unnecessary multiplicity of representations v vi Preface forgeometricconcepts.Incontrast,inthegeometricalgebralanguage,mostofthe standardmattertaughtinengineeringandcomputersciencecanbeadvantageously reformulatedwithoutredundanciesandinahighlycondensedfashion. Thisbookpresentsaselectionofarticlesaboutthetheoryandapplicationsofthe advancedmathematicallanguagegeometricalgebrawhichgreatlyhelpstoexpress theideasandconceptsandtodevelopalgorithmsinthebroaddomainsofcomputer scienceandengineering.Thecontributionsareorganizedinsevenparts. The first part presents screw theory in geometric algebra, the parameterization of3Dconformaltransformationsinconformalgeometricalgebra,andanoverview ofapplicationsofgeometricalgebra.Thesecondpartincludesthoroughstudieson Cliffor–Fourier transforms: the two-dimensional Clifford windowed Fourier trans- form; the cylindrical Fourier transform; applications of the 3D geometric algebra Fourier transform in graphics engineering; the 4D Clifford–Fourier transform for color image processing; and the use of the Hilbert transforms in Clifford analysis for signal processing. In the third part, self-organizing geometric neural networks areutilizedfor2Dcontourand3Dsurfacereconstructioninmedicalimageprocess- ing.Theclusteringandclassificationarehandledusinggeometricneuralnetworks and associative memories designed in the conformal geometric algebra. This part concludes with a retrospective of the quaternion wavelet transform, including an applicationforstereovision.Thefourthpartforcomputervisionstartswithanew cone-pixelcamera using a convexhull and twists in conformal geometric algebra. Thenextworkintroducesamodel-basedapproachforglobalself-localizationusing activestereovisionandGaussianspheres.Inthefifthpart,thegeometriccharacter- izationofM-conformalmappingsisdiscussed,andastudyoffluidflowproblems is carried out in depth using quaternionic analysis. The sixth part shows the im- pressive space group visualizer for all 230 3D groups using the software packet forgeometricalgebracomputationsCLUCalc.Thesecondauthorstudiesgeometric algebraformalismasanalternativetodistributedrepresentationmodels;herecon- volutions are replaced by geometric products, and, as a result, a natural language for visualization of higher concepts is proposed. Another author studies computa- tionalcomplexityreductionsusingCliffordalgebrasandshowsthatgraphproblems of complexity class NP are polynomial in the number of Clifford operations re- quired.Theseventhpartincludesnewdevelopmentsinefficientgeometricalgebra computing: The first author presents an efficient blade factorization algorithm to producefasterimplementationsoftheJoin;withthesoftwarepacketGALOOP,the second author symbolically reduces involved formulas of conformal geometric al- gebra,generatingsuitablecodeforcomputingusinghardwareaccelerators.Another chaptershowsapplicationsofGrobnerbasesinrobotics,formulatedinthelanguage of Clifford algebras, in engineering to the theory of curves, including Fermat and Beziercubics,andintheinterpolationoffunctionsusedinfiniteelementtheory. We are very thankful to all book contributors, who are working persistently to advancetheapplicationsofgeometricalgebra.Wedohopethatthereaderwillfind this collection of contributions in a broad scope of the areas of engineering and computer science very stimulating and encouraging. We hope that, as a result, we willseeourcommunitygrowingandbenefittingfromnewandpromisingscientific Preface vii contributions. Finally, we thank also for the support to this book project given by CINVESTAVUnidadGuadalajaraandCONACYTProject2007-182084. CINVESTAV,Guadalajara,México EduardoBayro-Corrochano UniversitätLeipzig, GerikSheuermann InstitutfürInformatik,Germany Contents PartI GeometricAlgebra NewToolsforComputationalGeometryandRejuvenationofScrew Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 DavidHestenes 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 2 UniversalGeometricAlgebra . . . . . . . . . . . . . . . . . . . . 4 3 GroupTheorywithGeometricAlgebra . . . . . . . . . . . . . . . 6 4 EuclideanGeometrywithConformalGA . . . . . . . . . . . . . . 8 5 InvariantEuclideanGeometry . . . . . . . . . . . . . . . . . . . . 10 6 ProjectiveGeometry . . . . . . . . . . . . . . . . . . . . . . . . . 13 7 CovariantEuclideanGeometrywithConformalSplits . . . . . . . 14 8 RigidDisplacements . . . . . . . . . . . . . . . . . . . . . . . . . 18 9 FramingaRigidBody . . . . . . . . . . . . . . . . . . . . . . . . 20 10 RigidBodyKinematics . . . . . . . . . . . . . . . . . . . . . . . 22 11 RigidBodyDynamics . . . . . . . . . . . . . . . . . . . . . . . . 24 12 ScrewTheory . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 13 ConformalSplitandMatrixRepresentation . . . . . . . . . . . . . 28 14 LinkedRigidBodies&Robotics . . . . . . . . . . . . . . . . . . 31 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 Tutorial:Structure-PreservingRepresentationofEuclideanMotions ThroughConformalGeometricAlgebra . . . . . . . . . . . . . . . . 35 LeoDorst 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 2 ConformalGeometricAlgebra . . . . . . . . . . . . . . . . . . . 36 2.1 Trick1:RepresentingEuclideanPointsinMinkowskiSpace 36 2.2 Trick 2: Orthogonal Transformations as Multiple ReflectionsinaSandwichingRepresentation . . . . . . . . 39 2.3 Trick3:ConstructingElementsbyAnti-Symmetry . . . . . 42 2.4 Trick4:DualSpecificationofElementsPermitsIntersection 43 ix
Description: