HOME | SEARCH | PACS & MSC | JOURNALS | ABOUT | CONTACT US Geography of resonances and Arnold diffusion in a priori unstable Hamiltonian systems This article has been downloaded from IOPscience. Please scroll down to see the full text article. 2009 Nonlinearity 22 1997 (http://iopscience.iop.org/0951-7715/22/8/013) The Table of Contents and more related content is available Download details: IP Address: 147.83.133.146 The article was downloaded on 08/10/2009 at 10:29 Please note that terms and conditions apply. IOPPUBLISHING NONLINEARITY Nonlinearity22(2009)1997–2077 doi:10.1088/0951-7715/22/8/013 Geography of resonances and Arnold diffusion in a priori unstable Hamiltonian systems AmadeuDelshams1andGemmaHuguet2 1DepartamentdeMatema`ticaAplicadaI,UniversitatPolite`cnicadeCatalunya,Diagonal647, 08028Barcelona,Spain 2CentredeRecercaMatema`tica,Apartat50,08193Bellaterra(Barcelona),Spain E-mail:[email protected]@upc.edu Received4December2008,infinalform3June2009 Published20July2009 Onlineatstacks.iop.org/Non/22/1997 RecommendedbyC-QCheng Abstract In this paper we consider the case of a general Cr+2 perturbation, for r large enough, of an a priori unstable Hamiltonian system of 2 + 1/2 degrees of freedom, and we provide explicit conditions on it, which turn out to be C2 genericandareverifiableinconcreteexamples,whichguaranteetheexistence ofArnolddiffusion. This is a generalization of the result in Delshams et al (2006 Mem. Am. Math. Soc.) wherethecaseofaperturbationwithafinitenumberofharmonics intheangularvariableswasconsidered. The method of proof is based on a careful analysis of the geography of resonancescreatedbyagenericperturbationanditcontainsadeepquantitative description of the invariant objects generated by the resonances therein. The scattering map is used as an essential tool to construct transition chains of objectsofdifferenttopology. Thecombinationofquantitativeexpressionsfor boththegeographyofresonancesandthescatteringmapprovides,inanatural way,explicitcomputableconditionsforinstability. MathematicsSubjectClassification: 37J40,37C29,35B34,34C29,37C50 (Somefiguresinthisarticleareincolouronlyintheelectronicversion) 1. Introduction The goal of this paper is to present a generalization of the geometric mechanism for global instability (popularly known as Arnold diffusion) in a priori unstable Hamiltonian systems introduced in [DLS06a]. That paper developed an argument to prove the existence of 0951-7715/09/081997+81$30.00 ©2009IOPPublishingLtdandLondonMathematicalSociety PrintedintheUK 1997 1998 ADelshamsandGHuguet globalinstabilityinaprioriunstablenearlyintegrableHamiltoniansystems(theunperturbed Hamiltonian presents hyperbolicity, so that it cannot be expressed globally in action-angle variables)andappliedittoamodelwhichpresentedtheso-calledlargegapproblem. However, in that case, the perturbation was assumed to be a trigonometric polynomial in the angular variables. InthispaperweperformanaccurateprocessoftruncationoftheFourierseriesof theperturbationandwepresentadeeperstudyofthegeographyofresonances. Usingthis,we areabletoextendandsimplifysomeoftheresultsin[DLS06a]andapplythemtoanapriori unstableHamiltoniansystemwithagenericperturbation. ThephenomenonofglobalinstabilityinHamiltoniansystemshasattractedtheattention ofbothmathematiciansandphysicistsinthelastyearsduetoitsremarkableimportancefor theapplications. Itdeals,essentially,withthequestionofwhatistheeffectonthedynamics whenanautonomousmechanicalsystemissubmittedtoasmallperiodicperturbation. More precisely,whethertheseperturbationsaccumulateovertimegivingrisetoalongtermeffect orwhethertheseeffectsaverageout. The instability problem was formulated first by Arnold in 1964. In his celebrated paper[Arn64],Arnoldconstructedanexampleforwhichheprovedtheexistenceoftrajectories that avoided the obstacles of KAM tori and performed long excursions. The mechanism is basedontheexistenceoftransitionchainsoftransitionwhiskeredtori, thatis, sequencesof toriwithtransitivedynamicsgivenbyaquasi-periodicflow,suchthattheunstablemanifold (whisker)ofoneofthesetoriintersectstransversallythestablemanifold(whisker)ofthenext one. Byanobstructionargument,thereisanorbitthatfollowsthistransitionchain,givingrise toanunstableorbit. Theexampleproposedin[Arn64]turnsouttoberatherartificialbecausetheperturbation was chosen in such a way that it preserved exactly the complete foliation of invariant tori existinginth√eunperturbedsystem. However,agenericperturbationofsizeεcreatesgapsat mostofsize εinthefoliationofthepersistingKAMtori,whereasitmovesthewhiskersonly byanamountε. TheseKAMtori, whicharejustacontinuationoftheonesthatexistedfor theintegrablesystem(ε =0)arecommonlyknownasprimarytori. Thegapsinthefoliation oftheprimarytoriarecentredaroundresonances,thatis,resonanttorithataredestroyedby the perturbation. This is what is known in the literature as the large gap problem (see, for instance,[Moe96]foradiscussionaboutthelargegapproblemand,indeed,oftheproblemof diffusion). In the last ten years there has been a notable progress in the comprehension of the mechanisms that give rise to the phenomenon of instability and a variety of methods has been suggested. As an example of this, we will mention that the large gap problem has been solved simultaneously by a variety of techniques: different geometrical methods [DLS00,DLS06a,DLS06b](scatteringmap)and[Tre04,PT07](separatrixmap);topological methods [GL06b,GL06a] and variational methods [CY04,CY09]. For more information regardingtheproblemofArnolddiffusionintheabsenceofgapsaswellastimeestimates,the readerisreferredto[DGLS08]. Ofparticularinterestforthispaperare[DLS00,DLS06a,DLS06b]. Thestrategyinthe mentionedpapersisbasedonincorporatinginthetransitionchainnewinvariantobjects,created bytheresonances,likesecondarytori,whichareinvariantKAMtoricontractibletoaperiodic orbit, aswellasthestableandunstablemanifoldsoflowerdimensionaltori. Thescattering map,introducedbythesameauthors(see[DLS08]forageometricstudy),istheessentialtool fortheheteroclinicconnectionsbetweeninvariantobjectsofdifferenttopology. Inthispaperweextendthegeometricmechanismintroducedinthementionedpaperstoa widerclassofmodelsystemsforwhichtheperturbationdoesnotneedtohaveafinitenumber ofharmonicsintheangularvariables. Inparticular,theHamiltonianstudiedinthispaperhas GeographyofresonancesandArnolddiffusion 1999 thefollowingform: (cid:1) (cid:2) H (p,q,I,ϕ,t)=± 1p2+V(q) + 1I2+εh(p,q,I,ϕ,t;ε), (1) ε 2 2 wherep ∈(−p0,p0)⊂R,I ∈(I−,I+)⊂Rand(q,ϕ,t)∈T3. The main result of this paper is theorem 2.1, stated in section 2.2 with the concrete hypothesesforHamiltonian(1),fromwhichwecandeducethefollowingshortversion: Theorem1.1. ConsidertheHamiltonian(1)andassumethatV andhareCr+2functionswhich areC2generic,withr >r ,largeenough. Thenthereisε∗ >0suchthatfor0<|ε|<ε∗and 0 foranyinterval[I−∗,I+∗]∈(I−,I+),thereexistsatrajectoryx˜(t)ofthesystemwithHamiltonian (1)suchthatforsomeT >0 I(x˜(0))(cid:1)I∗; I(x˜(T))(cid:2)I∗. − + Remark1.2. Avalueofr whichfollowsfromourargumentisr =242(seeremark2.3). 0 0 Our strategy for the proof follows the geometric mechanism proposed in [DLS06a]. Indeed, in order to organize the different invariant objects that we will use to construct a transition chain, we will first identify the normally hyperbolic invariant manifold (NHIM) presentinthesystem. ThisNHIMwillhaveassociatedstableandunstableinvariantmanifolds that,generically,intersecttransversally. Therefore,wecanassociatewiththisobjecttwotypes ofdynamics:theinnerandtheouter. Theouterdynamicstakesintoaccounttheasymptotic motionstotheNHIMandisdescribedbythescatteringmap. Theinnerdynamicsistheone restrictedtotheNHIMandcontainsCantorfamiliesofprimaryandsecondaryKAMtori. Since genericallythesefamiliesofKAMtori,invariantfortheinnerdynamics,arenotinvariantfor theouterdynamics,thecombinationofbothdynamicswillallowustoconstructatransition chain. Theresultsin[DLS06a]canbeappliedstraightforwardlyforthepersistenceoftheNHIM andthetransversalityofitsassociatedstableandunstablemanifolds. Theargumentspresented inthispaperfocusontheinnerdynamicsandthestudyoftheinvariantobjectspresentinthe NHIM. ForHamiltonian(1),resonancescorrespondtotheplaceswherethefrequencyI =−l/k for (k,l) ∈ Z2 is rational and the associated Fourier coefficient h of the perturbation h is k,l non-zero. Ontheseresonances,thefoliationofKAMtoriintheNHIMisdestroyedandgaps betweentheCantorfamilyofinvarianttoriintheNHIMofsizeO(ε1/2|h |1/2)arecreated, k0,l0 for(k ,l )suchthatl/k = l /k andgcd(k ,l ) = 1(seeequation(88)). Foraperturbation 0 0 0 0 0 0 h which is a Cr+2 function and C2 generic, when we restrict it to the NHIM and we write it in adequate coordinates we are left with a Cr perturbation (see the subsection ‘restriction to NHIM’ in section 2.3.3), so that |h | ∼ |(k,l)|−r, and therefore the above gaps are of k,l size O(ε1/2|(k ,l )|−r/2). Moreover, other invariant objects, like secondary tori and lower 0 0 dimensionaltori,arecreatedinsidethegap. Theycorrespondtoinvariantobjectsofdifferent topologythatwerenotpresentintheunperturbedsystembutaregeneratedbytheresonances. In order to study their existence and give an approximate expression for them we will combinemstepsofaveragingplusaKAMtheorem. Notethatinourcase,sincetheperturbation is generic, we will have an infinite number of resonances. Our approach for this study will be to consider an adequate truncation up to some order M, depending on ε, of the Fourier seriesoftheperturbationhinsuchawaythatwedealonlywithafinitenumberofharmonics |(k,l)|(cid:1)M andthereforeofresonances. Anotherremarkabledifferencewithrespecttotheresultsobtainedin[DLS06a]isthatin that case the size of the gaps created in the foliation of invariant tori was uniform, whereas in our case, since the size is O(ε1/2|(k ,l )|−r/2), we have a heterogeneous sea of gaps of 0 0 2000 ADelshamsandGHuguet different sizes. Among them, we will distinguish between small gaps and big gaps, which are strongly related to the mentioned large gap problem. Indeed, big gaps are those of size biggerthanorequaltoεandthereforetheyaregeneratedbyresonances−l /k oforderone, 0 0 suchthat|(k ,l )|<ε−1/r or,equivalently,|(k ,l )|−r/2 (cid:2)ε1/2 (seesection3.3.3forprecise 0 0 0 0 results). Fromamoretechnicalpointofview(seesection3.2fordetails),wewouldliketoremark that the main difficulties arise from the fact that in order to perform a resonant averaging procedure, we need to isolate resonances corresponding to |(k,l)| (cid:1) M, for M depending onε. Consequently,thewidthLoftheresonantdomaincannotbechosenindependentlyofε, aswasthecasein[DLS06a]. Moreover,alongtheaveragingprocedureweneedtokeeptrack of the C(cid:3) norms of the averaged terms and the remainders, and these blow up as a negative powerofL. Hence,wewillseethatagoodchoiceforLaroundaresonanceI = −l/k will be L = L ∼ ε1/n/|k| (see hypotheses of theorem 3.11), where n is the required regularity k toapplyKAMtheoremaftertheaveragingprocedure. NotethatLisnotuniformalongthe resonancesbutdependsonthevalue|k|oftheresonance. Finally, after m steps of averaging, we will show that the remainder tail, that is, the Fourier coefficients h such that |(k,l)| > M can be neglected. This will be ensured by a k,l fastenoughdecreasingrateofthecoefficientsandthereforealargeenoughregularityr ofthe perturbation. Thus,therequiredregularityr willbedeterminedaccordingtothenumbermof stepsofaveragingperformed,aswellastheneededregularityntoapplyKAMtheoremafter theaveragingprocedure. WeareusingaversionoftheKAMtheoremthatrequirestohavetheHamiltoniansystem writteninactionanglevariables. Sinceneartheresonancesweapproximatethesystembythe onewhichisclosetoapendulum,theactionvariablebecomessingularontheseparatrix. This fact, together with the requirement to have the invariant objects close enough (at a distance smallerthanε),impliesthattheperturbationoftheaveragedHamiltonianhastobeextremely small in the resonant regions. The immediate consequence of this fact is that, in the case wearestudying, onehastoperformatleast m = 10 stepsofaveraging(seetheorem 3.28). TheneededregularityntoapplyKAMtheoremaftermaveragingstepsisn = 2m+6(see proposition3.24). Sincetheregularityr requiredtoensurethattheremaindertailissmaller thantheaveragingremainderturnsouttober > (n−2)m+2,seeremark3.20,onehasto imposer >r =242. 0 We do not claim that this is an optimal result. Actually, another version of the KAM theoremthatallowedustoavoidthechangeintoaction-anglevariableslike[LGJV05,FLS09] couldimprovetheresultsintermsoftheneededregularity(seealso[HLS09]foranumerical implementation). However,itisworthmentioningthatwemanagedtodecreasetherequired stepsofaveragingintheresonantdomainswithrespecttotheresultsin[DLS06a]. Sincein the resonances the behaviour of KAM tori is different depending on how close they are to the separatrix (tori are flatter as they are further from the separatrix), we consider different regions where we perform different scalings. This strategy, which was already introduced in [DLS06a], has been improved in this paper introducing a new sequence of domains in theorem3.30. Whenappliedtothecasewithafinitenumberofresonancesasin[DLS06a], m=9stepsofaveragingandr (cid:2)26areenough(seeremark3.32). Thisclearlyimprovesthe neededregularityr whichwasr (cid:2)60in[DLS06a]becausemwaschosenasm=26. Sections 3.3.3, 3.3.4 and 3.3.5 contain a quantitative description of the geography of resonances and a detailed study of the invariant objects generated by the resonances. The effectoftheresonancesinasystemconstitutesafundamentalproblemnotonlyfordiffusion butalsoformanyotherphysicalapplicationsandithasbeenanimportantobjectofstudyin the physical literature, see for instance [Chi79,Ten82]. The study performed in this paper GeographyofresonancesandArnolddiffusion 2001 contributes to a better understanding of the different types of resonances and the geometric objectsthatonecanfindthereinunderanarbitrarilysmallvalueoftheperturbationparameter ε. Therefore,thisstudycanbeveryhelpfulinmanyphysicalproblems,althoughinconcrete problems,thesizeofεisnotnecessarilyverysmall,andotherdiffusionmechanismscantake place,likeChirikov’soverlappingofresonances[Chi79]. Moreover, we think that this study can be extended to a class of models that presents multipleresonances,see[DLS07]. We would like to emphasize that in our case, and this is different from the results in [DLS06a], only the resonances of order 1, that is the ones that appear at the first step ofaveraging,createbiggaps;whereasin[DLS06a],bothresonancesoforders1and2could generatebiggaps. Thisisbecausewearedealingwithaperturbationthatgenericallywillhave alltheharmonicsdifferentfromzero. Thismeansthattheeffectoftheresonancesassociated with the biggest Fourier coefficients (low frequencies) will be detected at the first step of averaging. Sincethesizeofthegapdependsonboththeorderoftheresonanceandthesizeof theFouriercoefficientassociatedwiththatresonance,theonesthatappearatthesecondstep ofaveragingalreadycorrespondtosmallFouriercoefficientsandthesizeoftheirgapwillbe smallerthanε. Theimmediateconsequenceofthisfactisthatintheforthcomingtheorem2.1 wecangiveallconditionsexplicitlyintermsoftheoriginalperturbationh. The paper is organized in the following way. In section 2 we state theorem 2.1, which establishes the existence of diffusing orbits for the model considered under precise conditions. SincetherequiredhypothesesarecheckedtobeC2 generic,theorem1.1follows straightforwardly. The proof of theorem 2.1 is given in section 2, except for two technical results,theorem3.1andproposition4.1,whicharepostponedtothefollowingsections. Thus, in section 3 we prove theorem 3.1, which provides a quantitative existence of invariantobjectsfortheinnerdynamicsintheNHIMfollowingthestepsindicatedinsection2. In section 4, we use the scattering map to prove proposition 4.1 about the existence of heteroclinicconnectionsbetweentheinvariantobjectsobtainedintheprevioussection. We would like to remark that, in contrast to [DLS06a], and thanks to the new results about the scattering map obtained in [DLS08], we use the Hamiltonian function generating thedeformationofthescatteringmapinsteadofthescatteringmapitself,inordertocompute theimagesoftheleavesofacertainfoliationunderthescatteringmap. Finally,insection5wehaveincludedforillustrationaconcreteexample,forwhichwe sketch how the hypotheses of theorem 2.1 can be checked. We plan to come back to this exampleinafuturepaperforamoredetaileddescriptionofthemechanism. Intheappendix, wehavebroughtsometechnicalresultsusedinthepaper. 2. Statementofresults Beforestatingthemainresultinthispaperweneedtointroducesomenotation. 2.1. Notationandpreliminaries Let r be a positive integer and D ⊂ Rn a compact set with non-empty interior D˚. We will denotethesetofCr functionsfromD˚ toRmandcontinuousonDbyCr(D,Rm). Whenm=1, wesimplywriteCr(D)insteadofCr(D,Rm). Givenf ∈Cr(D,Rm),weconsiderthestandard Cr norm, (cid:3)m (cid:3)r (cid:3) |Dαf (x)| |f|Cr(D) = sup i , (2) i=1 (cid:3)=0|α|=(cid:3)x∈D α! 2002 ADelshamsandGHuguet wheref denotestheithcomponentofthefunctionf,fori =1,...,m. Weomitthedomain i inthenotationwhenitdoesnotleadtoconfusion. We use the standard multi-index notation: if α = (α ,...,α ) ∈ Nn and x = 1 n (x ,...,x )∈Rnonesets 1 n |α|=α +···+α , 1 n α!=α !α !···α !, 1 2 n ∂|α| Dα = . ∂xα1...∂xαn 1 n Inthecasethatthefunctionf dependsonlyonafewofthevariables,wewilldenoteitin thesameway,thatis|f|Cr =|f|Cr(D),andconsideritasafunctionofmorevariablesdefined intheappropriatedomain. Notethatwedenote|f|C0 =supx∈D|f(x)|,whichisthestandardsupremumnorm,sothe |·|Cr(D)normcanbeexpressed,equivalently,as |f|Cr(D) :=(cid:3)m (cid:3)r (cid:3) |Dαfi|C0(D). α! i=1 (cid:3)=0|α|=(cid:3) ThespaceofCr(D)functionsendowedwiththeCrnormisaBanachalgebra(see[Con90]), thatisitisaBanachspacewiththepropertythatgivenanytwofunctionsf,ginCr(D),they satisfy |fg| (cid:1)|f| |g| . Cr Cr Cr Since we will also deal with Cr functions defined on a compact domain D = I ×Tn, whereI ⊂ Rn isacompactsetwithnon-emptyinterior,wecanalsoconsiderthefollowing seminorm,thattakesintoaccountthedifferentregularitiesandtheestimatesforthederivatives ineachtypeofvariable: (cid:4) (cid:4) |f|(cid:3)1,(cid:3)2 :=m(cid:3)1(cid:3)=10m(cid:3)2(cid:3)=20|α1|=α1m,(cid:3)α12,|∈α2N|n=m2 α1!1α2!(Is,ϕu)p∈D(cid:4)(cid:4)(cid:4)∂m∂1+Imα21f∂ϕ(Iα,2ϕ)(cid:4)(cid:4)(cid:4), (3) for0(cid:1)(cid:3)1+(cid:3)2 (cid:1)r. (cid:5) Notethat|f|C(cid:3) = (cid:3)m=0|f|m,(cid:3)−m,for0(cid:1)(cid:3)(cid:1)r. Wewillusethefollowingnotation,whichisratherusual. Givenα =α(ε)andβ =β(ε), wewillwriteα (cid:6) β andalsoα = O(β)ifthereexistε andaconstantC independentofε, 0 such that |α(ε)| (cid:1) C|β(ε)|, for |ε| (cid:1) ε . When we have α (cid:6) β and β (cid:6) α we will write 0 α ∼β. However,insomeinformaldiscussionswewillabusenotationandwewillsaythatα isoforderεp ifandonlyifα ∼εp. Wewillsaythatafunctionf =OCr(D)(β)when |f| (cid:6)β. Cr(D) 2.2. Setupandmainresult We consider a 2π-periodic in time perturbation of a pendulum and a rotor described by the non-autonomousHamiltonian(1), H (p,q,I,ϕ,t)=H (p,q,I)+εh(p,q,I,ϕ,t;ε) ε 0 =P±(p,q)+ 1I2+εh(p,q,I,ϕ,t;ε), (4) 2 GeographyofresonancesandArnolddiffusion 2003 where (cid:1) (cid:2) P±(p,q)=± 1p2+V(q) (5) 2 andV(q)isa2π-periodicfunction. WewillrefertoP±(p,q)asthependulum. Theterm 1I2describesarotorandthefinaltermεhistheperturbationtermanddepends 2 periodicallyontime,sothathcanbeexpressedviaitsFourierseriesinthevariables(ϕ,t): (cid:3) h(p,q,I,ϕ,t;ε)= h (p,q,I;ε)ei(kϕ+lt). (6) k,l (k,l)∈Z2 Itwillbeconvenienttoconsidertheautonomoussystembyintroducingtheextravariables (A,s): H˜ (p,q,I,ϕ,A,s)=A+H (p,q,I)+εh(p,q,I,ϕ,s;ε) ε 0 =A+P±(p,q)+ 1I2+εh(p,q,I,ϕ,s;ε) (7) 2 where the pairs (p,q) ∈ R×T, (I,ϕ) ∈ R×T and (A,s) ∈ R×T are symplectically conjugate. The extra variable A does not play any dynamical role and it simply makes the system autonomous. So,weareonlyinterestedinstudyingthedynamicsofvariables(p,q,I,ϕ,s) givenbythefollowingsystemofequations: ∂h p˙ =∓V(cid:8)(p)−ε (p,q,I,ϕ,s;ε), ∂q ∂h q˙ =±p+ε (p,q,I,ϕ,s;ε), ∂p ∂h I˙=−ε (p,q,I,ϕ,s;ε), (8) ∂ϕ ∂h ϕ˙ =I +ε (p,q,I,ϕ,s;ε), ∂I s˙ =1. Thedomainofdefinitionweconsiderisacompactsetoftype D :=S×[I−,I+]×T2×[−ε0,ε0], whereS ⊂R×Tisaneighbourhoodoftheseparatrix(P−1(0))ofthependulum. ± Then,themaintheoremofthispaperis Theorem2.1. Consider a Hamiltonian of the form (1) where V and h are Cr+2 in D, with r >r ,sufficientlylarge. Assumealsothat 0 H1 The potential V : T → R has a unique global maximum, say at q = 0, which is non-degenerate(i.e.V(cid:8)(cid:8)(0) < 0). Wedenoteby(p (t),q (t))anorbitofthependulum 0 0 P±(p,q)in(1),homoclinicto(0,0). H2 Consider the Poincare´ function, also called Melnikov potential, associated with h (and withthehomoclinicorbit(p ,q )): 0 0 (cid:6) +∞ L(I,ϕ,s)= − (h(p (σ),q (σ),I,ϕ+Iσ,s+σ;0) 0 0 −∞ −h(0,0,I,ϕ+Iσ,s+σ;0))dσ (9) 2004 ADelshamsandGHuguet H2(cid:8) GivenrealnumbersI− <I+,assumethat,foranyvalueofI ∈(I−,I+),thereexists anopensetJ ∈T2,withthepropertythatwhen(I,ϕ,s)∈H,where I (cid:7) H = {I}×JI ⊂(I−,I+)×T2, (10) I∈(I−,I+) themap τ ∈R(cid:11)→L(I,ϕ−Iτ,s−τ) hasanon-degeneratecriticalpointτ whichislocallygivenbytheimplicitfunction theoremintheformτ =τ∗(I,ϕ,s),withτ∗asmoothfunction. H2(cid:8)(cid:8) IntroducethereducedPoincare´ functionL∗definedby L∗(I,ϕ):=L(I,ϕ−Iτ∗(I,ϕ,0),−τ∗(I,ϕ,0)), (11) on (cid:7) H∗ ={(I,θ˜):θ˜ =ϕ−Is,(I,ϕ,s)∈H}= {I}×J∗, (12) I I∈(I−,I+) and assume that there exists an open set J∗+ ⊆ J∗ (respectively J∗− ⊆ J∗), such I I I I thatforθ˜ =ϕ−Is ∈J∗+,thefunction I θ˜ (cid:11)→ ∂L∗(I,θ˜) (13) ˜ ∂θ isnon-constantandpositive(respectivelynegative). Wedenote (cid:7) H∗ = {I}×J∗+ (14) + I (cid:8)I∈(I−,I+) (respectively,H∗ = {I}×J∗−). − I∈(I−,I+) I H3 Fix 1/(r/6 − 1) < ν (cid:1) 1/16, for any 0 < ε < 1 and for any (k ,l ) ∈ Z2 0 0 with gcd(k ,l ) = 1 and |(k ,l )| < M , where |(k ,l )| = max(|k |,|l |) and 0 0 0 0 BG 0 0 0 0 M =ε−(1+ν)/r,introducethe2π-periodicfunction BG (cid:3) Uk0,l0(θ)= htk0,tl0(0,0,−l0/k0;0)eitθ, t∈Z−{0}, |t||(k0,l0)|<M whereθ =k ϕ+l s andM =ε−1/(26+δ),for0<δ <1/10,forwhichweassume 0 0 H3(cid:8) ThefunctionUk0,l0 hasanon-degenerateglobalmaximum. H3(cid:8)(cid:8) For |(k ,l )| < C ε−1/r, where C is given explicitly in (153), we assume that the 0 0 1 1 2πk -periodicfunctionf givenby 0 (cid:9) (cid:10) (cid:9) (cid:10) f(θ)= k0U(cid:8)k0,l0(θ)∂∂Lθ˜∗ −k0l0,kθ0 (cid:9)+2Uk0(cid:10),l0(θ)∂∂2θL˜2∗ −k0l0,kθ0 (15) 2∂2L∗ −l0, θ ∂θ˜2 k0 k0 isnon-constantforθ/k ∈J∗ . 0 −l0/k0 H3(cid:8)(cid:8)(cid:8) ForC ε−1/r (cid:1) |(k ,l )| (cid:1) C ε−1/r,whereC andC aregivenexplicitlyin(153) 1 0 0 2 1 2 and(155)respectively,weassumethenon-degeneracyconditionstatedexplicitlyin equation(156). Then, there exists ε∗ > 0 such that for 0 < |ε| < ε∗ and for any interval [I∗,I∗] ∈ − + (I−,I+),thereexistsatrajectoryx˜(t)ofthesystem(1)suchthatforsomeT >0 I(x˜(0))(cid:1)I∗; I(x˜(T))(cid:2)I∗. − + (respectively, I(x˜(0))(cid:2)I∗; I(x˜(T))(cid:1)I∗). + − GeographyofresonancesandArnolddiffusion 2005 Remark2.2. Asamatteroffact,theonlyrestrictionneededfordiffusioninH2(cid:8)(cid:8) isthatthe function θ˜ (cid:11)→ L∗(I,θ˜) has to be non-constant. Typically, when it is non-constant there are somedomainsH+ andH− whereitsderivativeispositiveandnegative,respectively. These ∗ ∗ arethesetschosentohaveanincreasinganddecreasingdiffusioninI,respectively. Remark2.3. r depends on the number m of some averaging steps performed in the proof: 0 r = 2(m+1)2 and m (cid:2) 10 (see hypotheses of theorem 3.1 in section 3). If we take just 0 m=10thenr =242isenough. 0 Remark2.4. ThetruncationorderM inhypothesesH3dependsontheregularitynrequired fortheapplicationoftheKAMtheoremalongtheproof:M = ε−1/(n+δ),forn = 2m+6and 0 < δ < 1/m,wheremisthenumberofaveragingstepsperformedintheproofandissuch thatm (cid:2) 10(seehypothesesoftheorems3.11and3.1andremark3.20). Hence,wechoose m=10andthereforeM =ε−1/(26+δ)inhypothesesH3. Remark2.5. NotethatforeveryfixedεwehaveoneconditionH3forevery(k ,l )suchthat 0 0 |(k ,l )| < M , that depends explicitly on (k ,l ). Hence, the number of non-degeneracy 0 0 BG 0 0 conditionsH3isfinitebutgrowswithε. Remark2.6. Notethatbythedefinitionofτ∗(I,ϕ,s),thefunction f(I,ϕ,s)=L(I,ϕ−Iτ∗(I,ϕ,s),s−τ∗(I,ϕ,s)) satisfiestheequation I∂ f(I,ϕ,s)+∂ f(I,ϕ,s)=0. ϕ s Thereforeitisoftheformf(I,ϕ,s)=L∗(I,ϕ−Is),sowecanalternativelydefine L∗(I,ϕ−Is)=L(I,ϕ−Iτ∗(I,ϕ,s),s−τ∗(I,ϕ,s)). Remark2.7. Themainfeatureoftheorem2.1,asalreadysaidintheintroduction,isthathis notrequiredtobeatrigonometricpolynomialinthevariables(ϕ,s),whichisanon-generic assumption,aswasthecasein[DLS06a]. Beforeprovingtheorem2.1letusseethattheorem1.1statedintheintroductionisjusta consequenceoftheorem2.1. Indeed, foreveryfixedε, conditionsH1andH2areopenand dense,thatistheyholdforanopenanddensesetofHamiltoniansintheC2 topology. For every fixed ε, the number of non-degeneracy conditions H3 is finite but grows with ε (the number of conditions depends on (k ,l ) ∈ Z2 such that gcd(k ,l ) = 1 and 0 0 0 0 |(k ,l )| (cid:6) ε−1/r). Whenε tendsto0wehaveacountablenumberofconditionsintermsof 0 0 thefunctions (cid:3) U∞k0,l0(θ)= htk0,tl0(0,0,−l0/k0;0)eitθ, t∈Z−{0} which are the same as those in hypotheses H3 but without any truncation. This countable number of conditions involve only derivatives up to order 2 of the Hamiltonian. Hence the set of Hamiltonians satisfying them is a residual set in the C2 topology, that is a countable intersectionofopenanddensesetsintheC2 topology. Therefore the hypotheses of the theorem are C2 generic in the set of Cr+2 Hamiltonians oftheform(1). So,theshortversionoftheorem2.1statedintheorem1.1intheintroduction followsstraightforwardly.
Description: