UUnniivveerrssiittyy ooff WWoolllloonnggoonngg RReesseeaarrcchh OOnnlliinnee Faculty of Science, Medicine & Health - Honours University of Wollongong Thesis Collections Theses 2012 GGeeoocchheemmiissttrryy && MMiinneerraallooggyy ooff FFlluuvviiaall SSeeddiimmeennttss iinn tthhee SSoouutthheerrnn AAllppss,, NNeeww ZZeeaallaanndd Emma Marie Kiekebosch‐Fitt University of Wollongong Follow this and additional works at: https://ro.uow.edu.au/thsci UUnniivveerrssiittyy ooff WWoolllloonnggoonngg CCooppyyrriigghhtt WWaarrnniinngg You may print or download ONE copy of this document for the purpose of your own research or study. The University does not authorise you to copy, communicate or otherwise make available electronically to any other person any copyright material contained on this site. You are reminded of the following: This work is copyright. Apart from any use permitted under the Copyright Act 1968, no part of this work may be reproduced by any process, nor may any other exclusive right be exercised, without the permission of the author. Copyright owners are entitled to take legal action against persons who infringe their copyright. A reproduction of material that is protected by copyright may be a copyright infringement. A court may impose penalties and award damages in relation to offences and infringements relating to copyright material. Higher penalties may apply, and higher damages may be awarded, for offences and infringements involving the conversion of material into digital or electronic form. UUnnlleessss ootthheerrwwiissee iinnddiiccaatteedd,, tthhee vviieewwss eexxpprreesssseedd iinn tthhiiss tthheessiiss aarree tthhoossee ooff tthhee aauutthhoorr aanndd ddoo nnoott nneecceessssaarriillyy rreepprreesseenntt tthhee vviieewwss ooff tthhee UUnniivveerrssiittyy ooff WWoolllloonnggoonngg.. RReeccoommmmeennddeedd CCiittaattiioonn Kiekebosch‐Fitt, Emma Marie, Geochemistry & Mineralogy of Fluvial Sediments in the Southern Alps, New Zealand, Bachelor of Science (Honours), School of Earth & Environmental Science, University of Wollongong, 2012. https://ro.uow.edu.au/thsci/32 Research Online is the open access institutional repository for the University of Wollongong. For further information contact the UOW Library: [email protected] GGeeoocchheemmiissttrryy && MMiinneerraallooggyy ooff FFlluuvviiaall SSeeddiimmeennttss iinn tthhee SSoouutthheerrnn AAllppss,, NNeeww ZZeeaallaanndd AAbbssttrraacctt Silicate weathering acts as a global sink for the greenhouse gas carbon dioxide. In order to understand long‐term climate change and the fluctuations in atmospheric carbon dioxide, it is paramount to investigate the regulators of chemical weathering. The controls of rainfall and uplift have been reported to either enhance or inhibit the extent of chemical weathering, and therefore their relationship is still being highly debated in literature. Investigation of this relationship in the Southern Alps of New Zealand has been modest in comparison to the Himalayas. These studies have either focused on solute geochemistry of rivers, and therefore do not integrate weathering history of the catchment, or have failed to investigate the interplay between the controls of uplift and precipitation. Fluvial sediments record conditions of chemical weathering at the catchment scale, whilst integrating its weathering history. Therefore, this study has been undertaken to improve the understanding of the response of chemical weathering to uplift and precipitation in the Southern Alps, utilising the geochemistry and mineralogy of fluvial sediments. Mineralogical analysis was performed through X‐ray diffraction and optical microscopy, while geochemical techniques included X‐ray fluorescence, uranium‐series isotopes and strontium isotopic analysis. Geochemical results suggest that modern chemical weathering is low to moderate and is predominantly occurring within the weathering profile. In contrast, weathering during transport in the fluvial system appears to be dominated by physical abrasion, which contributes to downstream fining. Furthermore, 238U was shown to be leached with increased residence time in the fluvial system and its depletion enhanced by rainfall. Similarly, rainfall amplified Mg loss, while Na was leached regardless. High uplift rates, on the western coast, increase erosion and therefore reduce sediment residence time in the weathering profile. The extent of chemical weathering is consequently inhibited, whereby only the most mobile elements are depleted. Therefore, the Southern Alps are classified as a weathering limited setting, where the intensity of chemical weathering is largely controlled by the residence time of sediments (uplift) and rainfall. DDeeggrreeee TTyyppee Thesis DDeeggrreeee NNaammee Bachelor of Science (Honours) DDeeppaarrttmmeenntt School of Earth & Environmental Science AAddvviissoorr((ss)) Tony Dosseto KKeeyywwoorrddss u-series, Sr isotopes, uplift This thesis is available at Research Online: https://ro.uow.edu.au/thsci/32 UNIVERSITY OF WOLLONGONG Geochemistry & Mineralogy of Fluvial Sediments in the Southern Alps, NZ The Influence of Climate & Tectonics on Chemical Weathering Emma Marie Kiekebosch‐Fitt 10th October, 2012 Submitted in part fulfillment of the requirements of the Honours degree of Bachelor of Science (Advanced) in the School of Earth and Environmental Sciences, University of Wollongong 2012 The information in this thesis is entirely the result of investigations conducted by the author, unless otherwise acknowledged and has not been submitted in part, or otherwise, for any other degree or qualification. Emma Kiekebosch‐Fitt 10/10/2012 i Acknowledgements I would like to extend my thanks to the numerous people who generously assisted me throughout the various life stages of my study. Without such assistance I would not have been able to undertake this study and for that I am grateful. I would firstly like to acknowledge, and give special thanks, to my supervisor Dr. Anthony Dosseto. Your guidance, expertise, enthusiasm, patience and feedback have been invaluable and I appreciate the time you spent introducing me to the research world. Furthermore, I would like to thank Associate Professor Brian Jones and Dr. Samuel Marx, for sharing valuable knowledge that aided in the development of my study. Thank you to all of the supporting staff at the School of Earth and Environmental Sciences, University of Wollongong, particularly José Abrantes and Michael Stevens. To all my fellow honours students, whom I shared long days of laughter, tears, encouragement, chocolate and tea with, you have been such an amazing support network. To my friends and family, thank you for your continual support and encouragement, while helping me to keep life in perspective. Lastly to Dave, thank you for everything, you finally have the old me back! ii Abstract Silicate weathering acts as a global sink for the greenhouse gas carbon dioxide. In order to understand long‐term climate change and the fluctuations in atmospheric carbon dioxide, it is paramount to investigate the regulators of chemical weathering. The controls of rainfall and uplift have been reported to either enhance or inhibit the extent of chemical weathering, and therefore their relationship is still being highly debated in literature. Investigation of this relationship in the Southern Alps of New Zealand has been modest in comparison to the Himalayas. These studies have either focused on solute geochemistry of rivers, and therefore do not integrate weathering history of the catchment, or have failed to investigate the interplay between the controls of uplift and precipitation. Fluvial sediments record conditions of chemical weathering at the catchment scale, whilst integrating its weathering history. Therefore, this study has been undertaken to improve the understanding of the response of chemical weathering to uplift and precipitation in the Southern Alps, utilising the geochemistry and mineralogy of fluvial sediments. Mineralogical analysis was performed through X‐ray diffraction and optical microscopy, while geochemical techniques included X‐ray fluorescence, uranium‐series isotopes and strontium isotopic analysis. Geochemical results suggest that modern chemical weathering is low to moderate and is predominantly occurring within the weathering profile. In contrast, weathering during transport in the fluvial system appears to be dominated by physical abrasion, which contributes to downstream fining. Furthermore, 238U was shown to be leached with increased residence time in the fluvial system and its depletion enhanced by rainfall. Similarly, rainfall amplified Mg loss, while Na was leached regardless. High uplift rates, on the western coast, increase erosion and therefore reduce sediment residence time in the weathering profile. The extent of chemical weathering is consequently inhibited, whereby only the most mobile elements are depleted. Therefore, the Southern Alps are classified as a weathering limited setting, where the intensity of chemical weathering is largely controlled by the residence time of sediments (uplift) and rainfall. iii Table of Contents Acknowledgements ....................................................................................................................ii Abstract ........................................................................................................................................ iii Table of Contents ....................................................................................................................... iv List of Figures ............................................................................................................................ vii List of Tables ............................................................................................................................ xix Chapter One: Introduction ...................................................................................................... 1 1.1 Silicate Weathering – A Sink for CO ....................................................................................... 1 2 1.2 Main Factors Influencing Silicate Weathering .................................................................... 4 1.3 Aims and Objectives ....................................................................................................................... 6 Chapter Two: Literature Review ........................................................................................... 8 2.1 Sediment Composition & Geomorphology ........................................................................... 8 2.2 Sediment Composition & Chemical Weathering ................................................................ 9 2.3 Elemental Ratios & Mobility ..................................................................................................... 10 2.4 Chemical Weathering Indices ................................................................................................... 12 2.4.1 Weathering Index of Parker ............................................................................................. 13 2.4.2 Chemical Index of Alteration ............................................................................................ 14 2. 5 Isotopic Fractionation & Chemical Weathering .............................................................. 16 2.5.1 Strontium‐ Isotopes .............................................................................................................. 16 2.5.2 Uranium‐ Series ..................................................................................................................... 17 Chapter Three: Regional Settings ...................................................................................... 21 3.1 Tectonic Setting .............................................................................................................................. 21 3.2 Geology of the South Island ....................................................................................................... 24 3.2.1 Torlesse Terrane ................................................................................................................... 25 3.2.2 Buller Terrane ‐ Haast Schist ........................................................................................... 28 3.3 Climate ........................................................................................................................................... 28 3.4 Physical Erosion ............................................................................................................................. 30 3.5 Hydrology ......................................................................................................................................... 30 3.6 Vegetation ......................................................................................................................................... 30 3.7 Catchment Settings ....................................................................................................................... 31 iv 3.7.1 Catchments Draining Pahau Torlesse Terrane ......................................................... 33 3.7.2 Catchments Draining Rakaia Torlesse Terrane ....................................................... 37 3.7.3 Catchments Draining Haast Schist ................................................................................. 41 Chapter Four: Methods .......................................................................................................... 45 4.1 Site Selection and Sampling Technique ............................................................................... 45 4.2 Sample Pre‐Processing ................................................................................................................ 45 4.3 Grain Size Analysis ........................................................................................................................ 46 4.4 Petrological Analysis .................................................................................................................... 47 4.5 Mineralogical Analysis ................................................................................................................ 47 4.6 Major and Trace Elemental Analysis ..................................................................................... 48 4.7 Loss on Ignition .............................................................................................................................. 51 4.8 Isotopic Analysis ............................................................................................................................ 51 4.9 Geospatial Analysis ....................................................................................................................... 55 4.9.1 Defining Sample Catchment Areas ................................................................................. 55 4.9.2 Distance from Headwaters ................................................................................................ 57 4.9.3 Average Annual Temperature and Rainfall................................................................ 57 4.9.4 Average Uplift Rates ............................................................................................................. 57 4.9.4 Simplifying Regional Geological Map ........................................................................... 58 4.10 Statistical Analysis ...................................................................................................................... 58 Chapter Five: Results & Discussion ................................................................................... 59 5.1 Mineralogical and Geochemical Analysis of Grain Size Fractions ............................ 59 5.1.1 Mineralogy ............................................................................................................................... 59 5.1.2 Geochemistry .......................................................................................................................... 62 5.2 Grain Size Analysis ........................................................................................................................ 68 5.3 Mineralogy ........................................................................................................................................ 72 5.3.1 X‐ray Diffraction Analysis .................................................................................................. 72 5.3.2 Petrology ‐ Thin Section Analysis ................................................................................... 77 5.4 Major and Trace Geochemical Analysis ............................................................................... 86 5.4.1 Source Rock Composition .................................................................................................. 86 5.4.2 Elemental Ratios .................................................................................................................... 88 5.4.3 Major Elements ...................................................................................................................... 90 5.4.4 Trace Elements – Sr, Ba, Rb & U ................................................................................... 101 5.4.5 Weathering Indicies – CIA & WIP ................................................................................ 107 5.4.6 Elemental Ternary Diagrams ........................................................................................ 109 v 5.5 Sr‐Series Isotopes ....................................................................................................................... 114 5.6 U‐ Series Isotopes ....................................................................................................................... 118 Chapter Six: Weathering in the South Island and the Role of Climate and Tectonics ................................................................................................................................... 123 6.1 Where is Weathering Occurring? ........................................................................................ 123 6.1.1 Chemical Weathering Trends ........................................................................................ 123 6.1.2 Intensity of Chemical Weathering ............................................................................... 132 6.1.3 Physical Weathering Trends ......................................................................................... 134 6.2 Climate, Tectonics & Weathering ........................................................................................ 136 6.2.1 Rainfall & Physical Weathering .................................................................................... 136 6.2.2 Rainfall & Chemical Weathering .................................................................................. 137 6.2.3 Uplift & Chemical Weathering ...................................................................................... 144 Chapter Seven: Conclusions, Limitations & Perspectives ....................................... 146 7.1 Conclusions ................................................................................................................................... 146 7.2 Limitations & Perspectives ..................................................................................................... 148 References ................................................................................................................................ 149 Appendices .............................................................................................................................. 156 Appendix A: Grain size Fraction Data ....................................................................................... 157 Appendix B: Grain Size Data .......................................................................................................... 160 Appendix C: Mineralogical Data – X‐ray Diffraction ........................................................... 161 Appendix D: Mineralogical Data – Thin Section Point Count .......................................... 163 Appendix E: Major and Trace Geochemical Data ................................................................. 165 Appendix F: Sr Isotopic Data ......................................................................................................... 170 Appendix G: U‐series Data .............................................................................................................. 171 Appendix H: Normalised Mobile Elemental Ratios versus Uplift .................................. 172 Appendix I: Normalised Mobile Elemental Ratios versus Rainfall ............................... 174 Appendix J: Thin Section Descriptions ..................................................................................... 175 Appendix K: Petrology Photos ...................................................................................................... 184 vi List of Figures Figure 1: Diagram of the uranium‐238 decay series in a proton number (Z) versus neutron number (N) (Dosseto et al. 2008). .................................................................................... 18 Figure 2: Schematic diagram of recoil ejection of 234Th from a spherical grain as a result of alpha decay of 238U, followed by beta decay of 234Th to 234U (Dosseto et al. 2008). .............................................................................................................................................................. 20 Figure 3: Tectonic setting of New Zealand, showing subduction trenches to the north‐ east and south‐west and the transverse Alpine Fault connecting the two trenches (Williams, 1991). ....................................................................................................................................... 21 Figure 4: Late Quaternary annual uplift contour map of New Zealand (Williams, 1988). .............................................................................................................................................................. 23 Figure 5: Tectonostratigraphic terranes that have been identified in South Island, New Zealand (University of Otago, 2011). ..................................................................................... 24 Figure 6: Schematic representation of deposition of the Pahau Terrane. The PF numbers represent Torlesse petrofacies. Arrows demonstrate erosion and subsequent deposition. PF4 is derived from PF1‐PF3. Pahau source includes all Rakaia petrofacies, the volcanogenic terranes to the west and the intervening Haast Schist terrane.(Roser & Korsch 1999) ............................................................................................. 26 Figure 7: Map of central and southern New Zealand showing distribution of major geologic divisions, Torlesse sub‐terranes and Torlesse petrofacies (Roser & Korsch 1999). .............................................................................................................................................................. 27 Figure 8: New Zealand mean annual (A) rainfall and (B) temperature based on the period 1971 ‐ 2000 (NIWA, 2003). .................................................................................................... 29 Figure 9: Prominent land use map of New Zealand (NZMAF, 2006) .................................. 31 Figure 10: Simplified geological map of the Conway catchment, South Island, New Zealand. Drainage boundary is shown by the red line and the sampling location by the asterisk. Modified from Nathan (1993). .................................................................................. 34 Figure 11: Simplified geological map for the north‐east region of the South Island, New Zealand. Drainage boundary is shown by the solid lines and the sampling locations by the asterisk. Modified from Nathan (1993). ........................................................ 35 vii
Description: