INVESTIGATION Genotyping by Sequencing in Almond: SNP Discovery, Linkage Mapping, and Marker Design Shashi N.Goonetilleke,*TimothyJ.March,*Michelle G.Wirthensohn,* PereArús,† AmandaR.Walker,‡andDiane E.Mather*,1 *SchoolofAgriculture,FoodandWine,WaiteResearchInstitute,TheUniversityofAdelaide,GlenOsmond,5064, Australia,†InstitutdeRecercaiTecnologiaAgroalimentàries,CentredeRecercaenAgrigenòmica,ConsejoSuperiorde InvestigacionesCientíficas–InstitutdeRecercaiTecnologiaAgroalimentàries–UniversitatAutònomadeBarcelona– UniversityofBarcelona,CampusUniversitatAutònomadeBarcelona,08913,Spain,and‡AgricultureandFood,Waite Campus,CommonwealthScientificandIndustrialResearchOrganisation,GlenOsmond,5064,Australia ORCIDIDs:0000-0001-7539-011X(S.N.G.);0000-0002-2066-9495(T.J.M.);0000-0003-1174-6580(M.G.W.);0000-0003-0939-8038(P.A.); 0000-0002-7596-8484(A.R.W.);0000-0001-7506-2589(D.E.M.) ABSTRACT Incropplantgenetics,linkagemapsprovidethebasisforthemappingoflocithataffectimportant KEYWORDS traitsandfortheselectionofmarkerstobeappliedincropimprovement.Inoutcrossingspeciessuchasalmond Prunusdulcis (PrunusdulcisMill.D.A.Webb),applicationofadoublepseudotestcrossmappingapproachtotheF progeny singlenucleotide 1 of a biparental cross leads to the construction of a linkage map for each parent. Here, we report on the polymorphisms applicationofgenotypingbysequencingtodiscoverandmapsinglenucleotidepolymorphismsinthealmond allele-specific cultivars“Nonpareil”and“Lauranne.”Allele-specificmarkerassaysweredevelopedfor309tagpairs.Applica- molecular tion of these assays to 231 Nonpareil · Lauranne F progeny provided robust linkage maps for each parent. markers 1 Analysisofphenotypicdataforshellhardnessdemonstratedtheutilityofthesemapsforquantitativetraitlocus composite mapping.Comparisonofthesemapstothepeachgenomeassemblyconfirmedhighsyntenyandcollinearity linkagemap between the peach and almond genomes. The marker assays were applied to progeny from several other shellhardness Nonpareil crosses, providing the basis for a composite linkage map of Nonpareil. Applications of the assays to a panel of almond clones and a panel of rootstocks used for almond production demonstrated the broad applicabilityofthemarkersandprovidesubsetsofmarkersthatcouldbeusedtodiscriminateamongaccessions. Thesequence-basedlinkagemapsandsinglenucleotidepolymorphismassayspresentedherecouldbeuseful resourcesforthegeneticanalysisandgeneticimprovementofalmond. Almond(PrunusdulcisMill.D.A.Webb)isanimportantnutcropwith progeny, with only limited use of molecular information (Scorza anannualglobalproductionof1.2milliontons(UnitedStatesDepart- 2001; Sánchez-Pérez et al. 2007; Gradziel 2009; Koepke et al. 2013). mentofAgriculture2015).Almondbreedingreliesmostlyonpheno- Development and implementation of modern molecular tools could typic assessment of parents, crossing between selected parents, support genetic mapping and the precision of the almond breeding vegetative propagation of progeny, and phenotypic selection among process. Almond is an outcrossing species with a gametophytic self- Copyright©2018Goonetillekeetal. incompatibility system. Genetic mapping in almond has therefore doi:https://doi.org/10.1534/g3.117.300376 usedthepseudotestcrossstrategy(Arúsetal.1994;Virueletal.1995; ManuscriptreceivedJuly20,2017;acceptedforpublicationNovember4,2017; Tavassolianetal.2010;FontiForcadaetal.2012,2015;Fernándezi publishedEarlyOnlineNovember15,2017. Martíetal.2013),whichprovidesalinkagemapforeachparent.The Thisisanopen-accessarticledistributedunderthetermsoftheCreativeCommons first almond linkage maps to include all eight linkage groups were Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, constructedbasedonapplicationofisozymeandrestrictionfragment providedtheoriginalworkisproperlycited. lengthpolymorphism(RFLP)markerstoprogenyfromacrossbetween Supplementalmaterialisavailableonlineatwww.g3journal.org/lookup/suppl/ the almond cultivars “Ferragnès” and “Tuono” (Viruel et al. 1995). doi:10.1534/g3.117.300376/-/DC1. Subsequently,areferencelinkagemapforalmondwasestablishedwith 1Correspondingauthor:SchoolofAgriculture,FoodandWine,WaiteResearchInstitute, theapplicationofisozymeandRFLPmarkerstoprogenyfromacross TheUniversityofAdelaide,PMB1,GlenOsmond,SouthAustralia5064,Australia. E-mail:[email protected] between the almond cultivar “Texas” and the peach (P. persica Volume8 | January 2018 | 161 L. Batsch) cultivar “Earlygold” (Joobeur et al. 1998). Simple sequence theDNAsamplesusedwereresidualsamplesfromtheearliermapping repeat(SSR)markerswerelateraddedtothismap(Aranzanaetal.2003; work.Thesesamples,whichhadbeenextractedfromyoungleavesusing Dirlewangeretal.2004).Othermarkertypesthathavebeenmappedin theLamboyandAlphaDNAextractionmethod(Lamboy1998),were almondincluderandomamplifiedpolymorphicDNA(RAPD)markers, checkedforDNAqualitybyelectrophoresison1%agarosegels,quan- inter-SSR (ISSR) markers, sequence characterized amplified region tifiedusingPicoGreenintercalatingdye(Invitrogen,Carlsbad,CA),and markers,andsinglenucleotidepolymorphism(SNP)markers(Joobeur normalized to a working concentration of 20 ng/ml. For the other etal.2000;Wuetal.2009,2010;Tavassolianetal.2010;Donosoetal. 231N·Lprogeny,andforalloftheotheralmondclonesmentioned 2016). Among these, SNPs are particularly promising as they are the above,DNAwasextractedfromyoungleavesusinganOktopureDNA mostabundantsequencedifferencesinplantsandtheyareusuallybial- extractionprotocolthathadbeenoptimizedforalmond(LGCLimited, lelicandcodominant.Theyhavebeenusedinmanyplantspecies,in- Teddington). cludingalmond(Wuetal.2009,2010;Donosoetal.2016;Sorkhehetal. In addition, some use was made of rootstock materials that are 2017). availableinAustralia:“Adafuel,”“Atlas,”“Bright’sHybrid1,”“Corner- Withnext-generationsequencing(NGS),itispossibletodiscoverand stone,”“Felinem,”“Garnem,”“GF557,”“Hansen536,”“Krymsk86,” directlyassaylargenumbersofsequencepolymorphismswithoutprior “Monegro,” “Nemaguard,” “Nickels,” “Penta,” “Tetra,” and “Viking” knowledgeaboutthepolymorphismsortheirgenomicpositions.Given (Table S2 in File S1). For these materials, DNA was extracted from the size and complexity of plant genomes, NGS-based polymorphism youngleavesusingthemethodofThomasandScott(1993)followedby discovery and genotyping benefit from the preparation of reduced sodiumchloride/ethanolprecipitation. representation libraries (Miller et al. 2007; Baird et al. 2008; Elshire et al. 2011; Peterson et al. 2012; Poland et al. 2012). Among various Libraryconstruction andsequencing availablelibrarypreparationprotocols,themethodproposedforgeno- Toselectarestrictionenzymethatmightbesuitablefordigestionofthe typingbysequencing(GBS)byElshireetal.(2011)issimpleandmakesit almond genome, in silico restriction of the peach whole genome se- possibletodiscoverthousandsofSNPs.Thismethodhasbeenappliedin quenceassemblyv1.0(www.rosaceae.org)wasconductedusingBiopy- manyplantspecies,includingpeach(Bielenbergetal.2015),sweetcherry thon (Cock et al. 2009) for each of three methylation-sensitive (P.aviumL.)(Guajardoetal.2015),Japaneseplum(P.salicinaLindl.) restrictionenzymes:ApeKI,PstI,andHpaII.TheenzymeApeKI,which (Salazaretal.2017),andapricot(P.armeniacaL.)(Gürcanetal.2016). hasbeenusedinGBSforotherplants(Elshireetal.2011;Luetal.2013; WhileGBScanbeacost-effectiveapproachfortheinitialdiscovery Bielenbergetal.2015;Guajardoetal.2015;Kujuretal.2015;Gürcan andmappingoflargenumbersofSNPs,thequalityofthelinkagemaps etal.2016;Salazaretal.2017),wasselected.Ofthethreeenzymes,it producedissomewhatlimitedbygenotypingerrorsandmissingdata. waspredictedtoyieldthehighestnumberoffragmentswithinthesize Onewaytoaddressthislimitationistodevelopallele-specificassaysfor range that isconsidered suitable forGBS (between150 and 500 bp) SNPsdiscoveredbyGBSandtoapplythesetothemappingpopulationto (TableS3inFileS1).Further,ithadbeenreportedtogenerateuniform obtainmoreaccurateandcompletedata.Suchassaysmayalsobeuseful librarieswiththedegreeofcomplexityreductionthatisrequiredfor forapplicationtomaterialsbeyondthosethatwereincludedintheGBS sequencing(Heetal.2014). library.AssaysforindividualSNPsareparticularlyusefulwhenonlyone Barcode,primer,andadaptersequencesforApeKI(TableS4inFile orafewmarkersaretobetested,asinmarker-assistedselectionforone S1)wereobtainedfromhttp://www.maizegenetics.net/genotyping-by- orafewloci.Amongthemanytechnologiesthatcanbeusedtoassay sequencing-gbs.Barcodes,adapters,andprimersweresynthesizedby SNPs, allele-specific Kompetitive Allele Specific PCR (KASP) assays Sigma Aldrich (Castle Hill, Australia). The complementary top and (LGCGenomics,Teddington,UnitedKingdom)arenowwidelyusedin bottom strands ofeachbarcodeand adapterwerediluted to10mM plantgeneticsandbreeding(e.g.,Babikeretal.2016;Rasheedetal.2016; with10·adapterbufferandannealedusingthefollowingPCRcondi- Tanetal.2017). tions:95(cid:2)for1min,followedbyrampingdownto30(cid:2)by1(cid:2)percycle. In this research, the GBS protocol was adapted for almond and Theresultingdouble-strandedbarcodeandadaptersweredilutedsep- appliedtoF progenyfromacrossbetweenthealmondcultivars“Non- aratelyin1·TEto0.6ng/ml,quantifiedusingPicoGreenintercalating 1 pareil”and“Lauranne”todiscoverSNPsandconstructlinkagemaps. dye,andnormalizedto0.1mMwith1·TE.Eachbarcodesolutionwas KASPassayswerethendevelopedforasubsetoftheSNPsandwere mixedwiththeadaptersolutionina1:1ratioinonewellofa96-wellplate. appliedtotheoriginalmappingpopulationandtoadditionalmaterials. ToselectanappropriateratiobetweenadapterandDNAconcentra- Quantitativetraitloci(QTL)forshellhardnessweremappedforNon- tions,atitrationexperimentwascarriedout.Forthis,apooledDNAsample pareilandforLauranne. waspreparedbymixingequalamountsofDNAfrom10N·LF progeny. 1 Eight200-ngsamplesofDNAweredrawnfromthispooledsample.After additionof3.2UofApeKIin2ml10·NEBbuffer(NewEnglandBiolabs, MATERIALS ANDMETHODS Ipswich,MA)andwatertobringthefinalvolumeto20ml,thesesamples Plant materialsandDNAsamples wereincubatedfor2hrat75(cid:2).Oneofeightquantitiesofadapter(2,5,8,10, The almond clones used in this research were Nonpareil, Lauranne, 12, 15, 18, or 20 ml of a 0.1 M adapter solution), 10 ml of a solution “Chellaston,”“Constantí,”“Ferraduel,”“Glorieta,”“Johnston,”“Mandaline,” containing200UofT4DNAligase(NewEnglandBiolabs),and5mlof “Marta,” R1065, “Somerton,” “Tarraco,” “Vairo,” “White,” and 12-350 10·ligationbufferwereadded.Sampleswereincubatedat22(cid:2)for2hrand (Supplemental Material, Table S1 in File S1). In addition, 320 F thenat65(cid:2)for20min.LigationproductswerepurifiedusingaPureLink 1 progeny were used from crosses involving Nonpareil: 320 from PCRPurificationKit(Invitrogen)asperthemanufacturer’sinstructions. Nonpareil·Lauranne(N·L),349fromNonpareil·Constantí(N· Eachpurifiedligationproductwasresuspendedinafinalvolumeof50ml. C),207fromNonpareil·Tarraco(N·T)and198Nonpareil·Vairo For the final library, 10 ml of each purified ligation product was used (N·V).Nonpareilisofparticularinterestbecauseitisamajorcultivarin ina25-mlPCRreactionwith2mlofthe10-mMpaired-endprimers bothCaliforniaandAustralia. 59-AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTACA Ofthe320N·Lprogeny,89hadbeenpreviouslyusedforgenetic CGACGCTCTTCCGATCT-39 and59-CAAGCAGAAGACGGCATAC mappingbyTavassolianetal.(2010).FortheseclonesandforLauranne, GAGATCGGTCTCGGCATTCCTGCTGAACCGCTCTTCCGATCT-39 162 | S.N.Goonetillekeetal. whetherthetagswerehomozygousinNonpareilandheterozygousin Lauranne,orviceversa.Eachofthesedatasetswasfurtherfilteredto retainonlytheSNPsmissingnomorethan20datapointspermarker andwithsegregation ratiosnotdeviatingsignificantlyfrom3:1(a = 0.05).SeparateparentallinkagemapswereconstructedforNonpareil and Lauranne using a double pseudotestcross strategy implemented using the backcross(BC) format inASMap R packageversion 1.0-1 (TaylorandButler2017)withthefollowingmapconstructionstrategy: 1. An initial framework linkage map was constructed using data from progenyforwhichtherewerenomissingdatafortheselectedSNPs. DataforafewSSR,RAPD,andISSRmarkersthatTavassolianetal. (2010)hadreportedtobehomozygousinoneparentandheterozygous intheotherparentwereincludedinadditiontodatafortheselected SNPs.Linkagemappingwascarriedoutusingtheminimumspanning treemapalgorithm(MSTmap)(Wuetal.2008)asimplementedin ASMaptoassignmarkerstolinkagegroupsandtoorderthemwithin linkage groups. A P-value of 0.0001 was used to declare whether markers belong to the same linkage group. The Kosambi mapping function(Kosambi1944)wasusedtocalculategeneticdistancesincM. Figure1 Numberofuniquesequencetagsvs.numberofsequence 2. Foreachlinkagegroup,ASMapwasusedtogenerateaheatmap reads.Relationshipbetweenthenumberofsequencereadsobtained (rf/LODplots)toevaluatepairwiseassociationsbetweenmarkers. andthenumberofunique64-bpsequencetagsobtainedfromGBSof For cases in which markers appeared to have had their alleles 89N·LF1progeny. assignedtotheincorrectparents,genotypedesignationswerereas- signed using the“switchAlleles”function oftheR/qtl Rpackage alongwith12.5mlofTaq2XMasterMix(NewEnglandBiolabs).ThePCR version1.41-6(Bromanetal.2003).Mapswerethenreestimated conditionsusedwereasfollows:30secat95(cid:2),15cyclesof30secat95(cid:2), usingthemstmap.crossfunction. 20secat65(cid:2),30secat68(cid:2),followedbyafinalextensionat72(cid:2)for5min. 3. To further improve the quality of the Nonpareil and Lauranne Eachamplifiedlibrarywaspurifiedasdescribedaboveandelutedinafinal linkage maps, markers were checked for segregation distortion volumeof30ml.Eachlibrary(2ml)wasrunon2%agaroseat90Vfor and numbers of double crossover events involving adjacent markerintervals.Markerswereremovediftheirsegregationratio 30mintoevaluatethelibraryandtheadapterdimerpeaks.Anadapter concentration of 4.5 ng in a volume of 15 ml was selected because it deviated significantly from 1:1 (a = 0.05) and/or if they were associatedwithhighnumbersofapparentdoublecrossoverevents. providedasatisfactorylibrarywithnoadapterdimerpeak. Librarypreparationwascarriedoutusing200ng(10mlof20ng/ml)of Mapswerethenreestimatedusingthemstmap.crossfunction. DNAfromeachoftheinitial89N·Lprogenyandeachofthreealiquotsof 4. TheorientationofeachlinkagegroupoftheNonpareilandLauranne maps was established by comparing the maps constructed DNAfromNonpareilandLauranne.Thesameprocedurewascarriedout usingtheSNPdatawiththepublishedmapsofTavassolianetal. forawatersampleasanegativecontrol.Initialreactionswerecarriedoutin (2010).ThiswasdoneusingtheAlignCrossfunctionofASMap. a96-wellplateusingaseparatewellforeachsample.Afteradapterligation, sampleswerepooledforpurification,PCRamplification,evaluation,and FromtheresultingframeworkmapsforNonpareilandLauranne,a sequencing.Thepooledlibrarywassequencedusingsingle-endsequencing setofGBSmarkersfromtheeightlinkagegroupswasselectedforthe (100-bpreads)ononeflow-celllaneofanIlluminaHiSeq2000instrument designofallele-specificassays,withtheobjectiveofobtainingmarkers attheAustralianGenomeResearchFacility(Melbourne,Australia). spacedat(cid:1)10-cMintervalsthroughoutthegenome. SNPdiscovery Primerdesign TheGBSsequencedatawereanalyzedusingtheUniversalNetworkEnabled PrimersetsweredesignedforSNPsthathadbeendiscoveredandmapped AnalysisKit(UNEAK)pipelineinTASSEL3.0software(Bradburyetal. basedontheGBSdata.SomeofthesewereheterozygousinNonpareiland 2007;Luetal.2013).ThispipelinepermitsSNPcallingbasedsolelyon homozygousinLauranne,andotherswereheterozygousinLauranneand GBStagsequencedata,withoutrequiringareferencegenomesequence. homozygousinNonpareil.Forsomeofthese,itwaspossibletodesign TheoutputwasfilteredtoselectSNPswithatleast80%coverageacross primersbasedsolelyontheGBSdata.Forothers,theSNPsweretoocloseto samples,aminimumreaddepthof5,andaminimumrelativeheterozy- oneendoftheGBStags.Forthese,thetagswerealignedtoNonpareil gosity value (ratio of heterozygotes to homozygotes) of 0.01. The level genomic contig sequences using the BLAST tool in Geneious software ofalmondgenomecoverageobtainedwasestimatedusingtheLander– version9.1.3(Kearseetal.2012)toobtainsequencesof(cid:1)100bpwiththe Watermanequation(LanderandWaterman1988). SNPslocatedneartheirmidpoints.EachSNP-bearingsequencewasused todesignasetofthreeprimers(twoallele-specificprimersandonecom- Construction oflinkagemaps monprimer)usingKrakensoftware(LGCLimited).Theprimersetswere FortheconstructionofinitialframeworklinkagemapsforNonpareil namedusingtheprefixWriPdK,withWrireferringtotheWaiteResearch andLauranne,tagpairswithminorallelefrequencies(MAF)between0.2 Institute,PdreferringtoP.dulcis,andKreferringtoKASPtechnology. and0.3inthemappingpopulationwereselected.Thiswasbasedonthe expectationofaMAFof0.25forthemostinformativeSNPs(thosethat ApplicationofKASPassays areheterozygousinoneparentandhomozygousintheotherparent). Atotalof309primersets(146designedforSNPsthatwereheterozygousin Theresultingdatasetwasseparatedintotwoparentaldatasetsbasedon Nonpareiland162designedforSNPsthatwereheterozygousinLauranne) Volume8 January2018 | SNPDiscoveryandMappinginAlmond | 163 Figure2 Anchoringofalmondsequence tags to peach genome. Numbers of unique tags anchored to each 500-kbp regionofeachoftheeightmainscaffolds (Pp1–Pp8) of the peach whole genome sequence assembly v2.01a1. For each scaffold,thetotalnumberofuniquetags isgiveninparenthesesandtheestimated position of the centromere is indicated withanarrow. wereassayedonapanelconsistingofDNAsamplesofNonpareil,Lauranne, achievedusingapseudotestcrossmappingstrategywithdatacodedinthe andsevenN·LF progeny,withawatersampleincludedasanegative BCformat,consideringonlythosemarkersforwhichNonpareilwashet- 1 control.Samplesof10ngofDNA(5mlof2ng/ml)weredriedat55(cid:2)for erozygous.Inpopulationsforwhichtheotherparentwashomozygousat 1hr.Aliquotsofaprimermixture(0.028ml,containing12mMofthe a marker, the codes “ab” and “aa” were assigned to heterozygous and allele-specificprimersand30mMofthecommonprimer)andof1·KASP homozygousprogeny,respectively.Inpopulationsforwhichtheotherpar- MasterMix(1.972ml;LGCLimited)wereaddedtoeachreactionsample. entwasalsoheterozygous,allprogenywerecodedashavingmissingdata. PCRamplificationwasconductedusingthestandardKASPPCRprotocol Recombinationfractionsbetweenadjacentmarkerswereestimated inaHydrocycler-16PCRsystem(LGCLimited).Fluorescencewasdetected usingtheR/qtlpackageversion1.41-6(Bromanetal.2003).Recom- inaPherastarPlusplatereader(BMGLABTECH,Ortenberg,Germany). binationfractionswereconvertedtomapdistancesusingtheKosambi DatawereanalyzedusingKrakensoftware(LGCLimited).Primersetsthat mappingfunction(Kosambi1944).Theresultingcompositemapwas detectedpolymorphisminthevalidationpanelwereselectedandassayed comparedwithNonpareilmapsthathadbeenconstructedusingdata on311N·Lprogeny:80ofthe89progenythathadbeenusedtoprepare fromindividualpopulations.Markersforwhichthereweresubstantial theGBSlibrary,plus231others.Thesameprimersetswerealsoassayed inconsistenciesamongmapswereremovedandthemappinganalysis onthepanelofalmondclones.Genotypiccallswerecomparedamong wasrepeated.Markersthathadbeenmappedinonlyonepopulation clonesusingFlapjacksoftwareversion1.16(Milneetal.2010).Selected wereassignedpositionsinthecompositemapbasedontheirpositions markers(thosethatwereheterozygousinoneparentandhomozygousin relativetoflankingmarkers.Thefinalcompositemapwasdrawnusing theother)wereassayedontheN·C,N·T,and/orN·Vprogeny. MapChartversion2.3software(Voorrips2002). LinkagemappingusingKASPmarkers Comparativemappingbetweenalmond andpeach LinkagemapswereconstructedforeachparentusingKASPmarkerdata EachuniqueGBSsequencereadobtainedforNonpareilandLaurannethat from80N·Lprogeny,231N·Lprogeny,349N·Cprogeny,207 wasatleast64-bplongandhadsequencecoverage$10wasalignedagainst N·Tprogeny,and198N·Vprogeny,usingtheproceduresdescribed thepeach(P.persica)wholegenomesequenceassemblyv2.0.a1(www. fortheconstructionof theinitialframeworklinkagemap.Mapswere rosaceae.org)usingtheBLAST+toolversion2.2.27(http://www.ncbi.nlm. drawnusingMapChartversion2.3software(Voorrips2002). nih.gov/blast).Eachsequencereadwasconsideredtohavebeenanchored Datafrom985progenyfromfourcrosses(N·C,N·L,N·T,and tothepeachgenomeifitmappedtoauniquesitewith.90%sequence N·V)wereusedtoconstructacompositemapforNonpareil.Thiswas similarityandanE-value,1e215.Forsequencesthatmetthesecriteria 164 | S.N.Goonetillekeetal. Figure 3 Examples of KASP assay re- sults.IntensitiesofFAMandHEXfluores- cence detected when two KASP assays (WriPdK7andWriPdK69)wereappliedto Nonpareil,Lauranne,andN·Lprogeny. TheWriPdK7primersweredesignedfor aSNPthatisheterozygous(G:C)inNon- pareilandhomozygous(C:C)inLauranne. TheWriPdK69primersweredesignedfor aSNPthatishomozygous(C:C)inNon- pareilandheterozygous(T:C)inLauranne. (A) WriPdK7 applied to Nonpareil (in duplicate), Lauranne (in duplicate), and seven N · L F progeny. (B) WriPdK7 1 applied to 231 N · L F progeny. (C) 1 WriPdK69appliedtoNonpareil(indupli- cate),Lauranne(induplicate),andseven N·LF progeny.(D)WriPdK69applied 1 to231N·LF progeny. 1 andforwhichmarkerassayshadbeendeveloped,theCirclizeRpackage Dataavailability version0.4.1(Guetal.2014)wasusedtocomparethegeneticpositionsin Information on the parentage and origin of the almond clones and almondwithphysicalpositionsintheeightmainscaffoldsofthepeach rootstocksusedinthisresearchisinTablesS1andS2inFileS1.Sequence genomeassembly. datafor89N·LprogenyhavebeendepositedintheNationalCenter forBiotechnologyInformationShortReadArchive:studySRR5722967. QTL mappingforshellhardness Informationonfragmentsizedistributionsfrominsilicodigestionof Shellhardnesswasevaluatedin2015for180N·Lprogeny.Foreach the peach genome sequence is in Table S3 in File S1. Barcode and tree,arandomsampleof10nutswasweighedtoobtainin-shellweight. primer sequences used for GBS are in Table S4 in File S1. Contig Thenutswerethencrackedopenusinganutcracker,andkernelswere sequencesforNonpareilhavebeendepositedintheEuropeanNucle- weighed.Theshell-hardnesspercentagewascalculatedassuggestedby otideArchiveunderaccessionnumberPRJEB23106.Primersequences Rugini (1986): (kernelweight/in-shell weight)· 100%. Accordingto forKASPassaysareinTableS5inFileS1.LinkagemapsforNonpareil thismeasure,almondnutsmaybeclassifiedaspapershell($55%),soft are in Table S6 in File S1. Linkage maps for Lauranne, Constantí, shell(45–54%),semihardshell(35–45%),hardshell(25–34%),orstone Tarraco,andVairoareinTableS7inFileS1.Resultsobtainedfrom shell(#24%).QTLforthistraitweremappedusingtheR/qtlpackage theapplicationofKASPmarkerstoalmondclonesandrootstocksare version1.41-6(Bromanetal.2003),withthefunctionScanoneusedto inTablesS8andS11inFileS1,respectively.ThebestBLASThitsinthe testforputativeQTLat1-cMintervalsthroughoutthegenome.Signif- peachgenomeforSNP-bearingtagsfromNonpareilandLauranneare icance wasdeclared bycomparing LODvaluestoa threshold deter- inTablesS9andS10inFileS1,respectively.Thegenotypicandphe- minedusing10,000permutationsandagenome-widesignificancelevel notypicdatausedforQTLanalysisareinTablesS12andS13inFileS1. of0.05. RESULTS Polymorphismdetectionin rootstocks UsingtheKASPassayproceduresdescribedabove,253SNPs(128hetero- Sequencedata zygousinNonpareiland125heterozygousinLauranne)wereassayedon TheGBSlibrarygenerated21.6Gb of sequencedata,withatotalof duplicatesamplesofDNAsamplesextractedfromtherootstockaccessions. 186millionsequencereads(ameanof2.1millionpersample).Linear Volume8 January2018 | SNPDiscoveryandMappinginAlmond | 165 Figure4 Nonpareillinkagemaps.LinkagemapsconstructedforNonpareilusinggenotypicdatafromKASPassaysappliedto(A)231N·LF 1 progenyand(B)985F progenyfromfourcrosses(N·L,N·C,N·T,andN·V). 1 regressionanalysisindicatedastrongpositiverelationshipbetweenthe 295markers(279GBS,5SSR,8ISSR,and3RAPD),andis1371cM numberofsequencereadsandthenumberoftagsforeachindividual long(TableS7inFileS1). (R2=0.92,P,0.0001,Figure1). Ofthe149KASPprimersetsdesignedbasedonsequencetagsthat Acrossallsamples,atotalof453,648uniquetagswasobtained.Of exhibited heterozygosityin Nonpareil (e.g., Figure 3A), 138 detected these tags, 308,971 (68%)wereanchored tothe peachgenome, with polymorphismamongtheprogeny(e.g.,Figure3B).Ofthe162primer between30,594and59,923mappingtoeachoftheeightmainscaffolds setsdesignedbasedonsequencetagsthatexhibitedheterozygosityin (Pp1–Pp8)(Figure2)and6088mappingtootherscaffolds.Tagswere Lauranne (e.g., Figure 3C), 155 detected polymorphism among the mappedthroughouttheentirelengthofeachmainscaffold,butwith progeny (e.g., Figure3D). Noneof the genotypic ratios observed for somevariationinthemarkerdensity.Therewereafewregions(e.g.,on thesepolymorphismsdeviatedsignificantlyfromtheexpected1:1ratio. Pp5andPp7)withveryhighdensity. RelativetotheinitialframeworkmapsthatwerederivedfromGBS Fromtheuniquetags,11,936SNP-containingtagpairswereiden- data, the linkage maps constructed based on KASP marker data for tified.Withtheapplicationofaseriesoffilters,.300tagpairsthatwere 231 N · L progeny had very similar marker orders, but were much consideredsuitableformappingwere selectedforeachofNonpareil shorter(TablesS6andS7inFileS1).TheKASPmapforNonpareilhad andLauranne. 138markersandatotallengthof609cM(Figure4A).TheKASPmap forLaurannehad155markersandatotallengthof659cm(Figure5). Linkagemaps forNonpareil andLauranne AninitialframeworkmapconstructedforNonpareilbasedoncomplete Polymorphismsamongalmond clones datafor 52progenyhad327 markers (310GBS, 9 SSR,5 ISSR, and Ofthe261KASPassaystested,239exhibitedpolymorphismamong14 3RAPD)oneightlinkagegroupswithatotallengthof1152cM(TableS6 almondclonesotherthanNonpareilandLauranne(TableS9inFileS1). inFileS1).TheinitialframeworkmapconstructedforLaurannewas Ofthesemarkers,111hadbeendesignedbasedonheterozygosityin basedoncompletedatafrom55progeny.Ithaseightlinkagegroups, Nonpareil,and128basedonheterozygosityinLauranne.Amongthe 166 | S.N.Goonetillekeetal. Figure 5 Lauranne linkage map. A linkage map constructed for Lauranne using genotypic data from KASP assays applied to 231 N · L F 1 progeny. 14otheralmondclonesonwhichthesemarkerswereassayed,allexcept totallengthsof439,569,and553cM,respectively(TableS6inFile MartaandSomertoncouldbedistinguishedfromallothersbyjustone S1),andwithmarkerordersverysimilartothoseobtainedwiththe marker. A total of 11 KASP assays were selected (Figure 6) that, in N ·L population. Linkage maps developedfor Constantí, Tarraco, combination,couldbeusefulfordistinguishingamongalloftheclones andVairohad65,39,and52markers,respectively,withtotallengths thatwereexaminedhere. of382,295,and148cM(TableS7inFileS1). Linkagemaps basedonN3C,N3T,andN3V QTLforshellhardness Of the 138 KASP markers that were developed based on Nonpareil ForNonpareil,QTLforshellhardnessweredetectedintworegions,both heterozygosity and mapped using N · L progeny, 92, 85, and onlinkagegroup5(LG5).ForLauranne,QTLforshellhardnesswere 103markersdetected polymorphismin N·C,N ·T, andN ·V, detectedinfourregions:oneonLG2,twoonLG5,andoneonLG8(Table respectively. Of the 155 KASP markers that were derived based on 1). In all of these regions, Nonpareil-like genotypes were associated Lauranne heterozygosityandmappedusingN·Lprogeny,68,40, with softer shells (higher mean shell hardness). Of the 180 progeny and56markersdetectedpolymorphisminN·C,N·T,andN·V, thatwereevaluatedforshellhardness,just17hadtheNonpareil-like respectively.Inaddition,severalmarkersthathadnotexhibitedpoly- genotypeinallQTLregions.LikeNonpareil,theseprogenyexhibited morphismamongN·Lprogenywerefoundtobepolymorphicin the “paper-shell” trait (very high shell-hardness percentage). The other populations. Linkage maps for Nonpareil that were based on genotypes at six markers (WriPdK251 and WPdK50 on LG2; N·C,N·T,andN·Vhad90,82,and94markers,respectively,with WriPdK129,WriPdK18,andWriPdK264onLG5;andWriPdK282 Figure6 Genotypesof15almondclonesfor11KASPmarkersselectedbasedontheirabilitytodiscriminateamongtheseclones.Foreach marker,theleastcommongenotypeisshowninwhitetextonadarkbackground. Volume8 January2018 | SNPDiscoveryandMappinginAlmond | 167 n Table 1 QTL detected for shell-hardness percentage in NonpareilandLaurannebasedonevaluationofnutsharvestedin 2015from180N3LF progeny 1 LinkageMap LinkageGroup Position(cM) LOD R2a NonpareilKASPmap LG5 0 2.5 9 45 2.5 9 LauranneKASPmap LG2 26 3.4 9 LG5 0 4.2 11 43 3.2 9 LG8 87 3.4 9 a PercentageofphenotypicvarianceexplainedbytheQTL. onLG8)weresufficienttoseparateprogenywiththepaper-shelltrait fromthosewithhardershells(Figure7). CompositelinkagemapforNonpareil Thecompositelinkagemapconstructedbasedondatafromtheprogeny offourNonpareilcrosseshad129KASPmarkerswithatotallengthof 741cM(Figure4BandTableS6inFileS1).Somemarkersthathad collocatedinNonpareilgeneticmapsconstructedforindividualNon- Figure7 Marker-baseddiscriminationofprogenywiththepaper-shell pareilpopulations(N·L,N·C,N·T,and/orN·V)wereseparated trait.Shell-hardnesspercentagesandmeansfortwosetsofN·LF 1 inthecompositemap. progeny,oneselectedtohavetheNonpareilgenotypiccombination across six markers (WriPdK251 and WPdK50 on LG2; WriPdK129, Comparisonofalmond geneticmapswiththe WriPdK18,andWriPdK264onLG5;WriPdK282onLG8)areassociated with shell hardness and the other consisting of progeny with other peachgenome genotypiccombinationsatthosemarkers. ComparisonofmarkerpositionsonNonpareilandLauranneparental mapswithpositionsonpeachgenomescaffoldsconfirmedtheexpected highsyntenyandcollinearitybetweenthealmondandpeachgenomes discoverandassaySNPswithoutanypriorsequenceinformation.The (Figure8andTablesS9andS10inFileS1).Almostallmarkersan- restriction enzyme used here, ApeKI, is a type-II endonuclease that chored to the expected peach scaffolds. For the Nonpareil map, the recognizes a degenerate 5-bp sequence (GCWGC, where W is A or exceptionsarea fewmarkers thatgenetically mapped on LG1,LG4, T).Itisusefulforthereductionofsequencecomplexity,becauseithas LG6,andLG8butanchoredtopeachscaffoldsPp5,Pp1,Pp1,andPp4, relativelyfewrecognitionsitesinthemajorclassesofplantretrotrans- respectively.FortheLaurannemap,thereweremarkersthatgenetically posonsandwillnotcutifthe39baseoftherecognitionsequenceonthe mappedonLG2,LG3,andLG6butanchoredtopeachscaffoldsPp6, bottomstrandis59methylcytosine(Söllneretal.2006).Itcreatesa59 Pp6,andPp4,respectively.Therearealsoafewdiscrepanciesinmarker overhangof3bp,providingsitesforattachmentofadapterstowhich orderbetweenthealmondgeneticmapsandthepeachscaffolds(e.g.,at primers can anneal toprovide a uniform libraryfor sequencing(He eachendofNonpareilLG4andpeachscaffoldPp4).Afewareasofthe etal.2014). peachgenomearenotwellrepresentedononeorbothalmondlinkage Themeannumberofsequencereadspersamplethatwasobtained maps.Forexample,onlytwomarkersfromtheNonpareilLG7map here(2.1million)issimilartowhathasbeenreportedforotherPrunus andnomarkersfromtheLauranneLG7mapanchoredbetween0and species:1.8millionforsweetcherry(Guajardoetal.2015),2.4million 7MbponpeachPp7scaffold.Therearealsosomeregionsinwhich for peach (Bielenberg et al. 2015), 2.3 million for Japanese plum markersthatarecloselylinkedinalmond(e.g.,at27cMonNonpareil (Salazaretal.2017),and3.5millionforapricot(Gürcanetal.2016). LG2andat20cMonLauranneLG8)anchoredtophysicallydistant Ofthesequencesgenerated,68%wereanchoredtouniquepositionsin positionsonpeachscaffolds. thepeachgenomesequenceassembly.Thisishigherthanwasreported forapricot(43%,Salazaretal.2017),whichisnotascloselyrelatedto Polymorphisms amongrootstocks peach.Withinatotalof224Mbofthepeachgenometowhichalmond Ofthe220KASPassaystestedonrootstockmaterials,169werepoly- tags were anchored, the densityof almond–peach SNPs was (cid:1)1 per morphic and 66 were monomorphic (Table S11 in File S1). Of the 22kb.Similarresultshavebeenreportedforsweetcherry(Guajardo 169 polymorphic assays, 93 had been designed based on Nonpareil etal.2015).Somevariationwasobservedinthenumbersofsequence heterozygosity, and 76 based on Lauranne heterozygosity. In most tagsandSNPsmappedtoeachscaffoldandintheanchorpositionsof cases,justonemarkerwassufficienttodistinguishaparticularroot- tagswithinscaffolds.Possiblereasonsforthisvariationcouldinclude: stockfromallothers.PentaandTetra,bothofwhicharederivedfrom (1) variation in the distribution of ApeKI restriction sites across the European plum, were very similar but there were four markers that almondgenome,(2)variationinDNAmethylationacrossthealmond distinguishedbetweenthem.Atotalof10KASPassayswereselected genome,and(3)structuraldifferencesbetweenthealmondandpeach (Figure 9) that, in combination, could be useful for distinguishing genomes. The unusually high numbers of sequence tags obtained in amongalloftherootstockmaterialsthatwereexaminedhere. someregions(e.g.,oneat6.5MbponPp5andoneat0.5MbponPp7) mayindicatethattheseregionsaremorepolymorphicormorerepet- DISCUSSION itiveinalmondthaninpeach.Consistentwiththis,oneoftheseregions Inthisresearch,implementationofaGBSprotocolenableddiscovery (at6.5MbponPp5)correspondswitharegionofLG5inwhichmany ofthousandsofSNP-bearingGBStags,providinganeasymethodto polymorphismsweregeneticallymappedforNonpareil(albeitnotfor 168 | S.N.Goonetillekeetal. what was obtained for apricot (18,322; Gürcan et al. 2016) or plum (42,909;Salazaretal.2017).Oneapproachtoincreasethenumberof SNPsdiscoveredwouldbetouseless-stringentfiltersinthesequence analysis. The TASSEL GBS 3.0 SNP-calling pipeline, which was de- velopedmainlyforhighlyhomozygousmaterials,isconsideredtobe sensitive to low sequence depth in highly heterozygous materials (Hymaetal.2015).Therefore,astringentreaddepthcutoffvalueof fivewasappliedpermarkercall.Withavalueofthree,alargernumber ofGBStags(.600)couldhavebeenselectedformapping,butmaps constructedonthisbasis(datanotshown)hadverylonglinkagegroups (.300cM);someoftheadditionalSNPsmayhavebeenspurious. AnotherapproachtoincreasethenumberofSNPsdiscoveredcould betoincreasesequencedepth.Inthisanalysis,therewasastrongpositive relationship(R2=0.92)observedbetweentotalreadnumberandthe totalnumberofuniquetags,indicatingthatadditionaluniquetagsand SNPsmighthavebeendiscoveredbyincreasingsequencingdepth. AthirdapproachtoincreasethenumberofSNPsdiscoveredcouldbe touseanenzymeorcombinationofenzymesthatwouldprovidealarger numberofdigestedfragmentsandincreasingthedepthofsequencing. To investigate this, we extended the in silico analysis of the peach genome sequence to include consideration of two-enzyme combina- tions.Theresults(TableS3inFileS1)indicatedthatthecombinationof ApeKIandHpaIImightprovideasubstantiallyhighernumberoffrag- mentsofsuitablelengththanApeKIalone. WhileGBScangeneratelargenumbersofpolymorphicmarkers,it cansufferfromincorrectassignmentofparentalphase,underestimation ofheterozygotes,andhighproportionsofmissingdata(Luetal.2013). Here,technicalreplicatesoftheparentswereincludedinthegenomic library and very stringent filters were applied to select subsets of markers and progeny for initial mapping. Duringmap construction, diagnostictestswereconductedtodetectandcorrectphasingerrors. TheseapproachescontributedtoaveryhighsuccessrateinKASPassay design.Onlyoneincorrectlyphasedmarkerwasdetected.Thatmarker (GBS tag pair TP37439), which had originally been assigned to the Nonpareilmap,wasreassignedtotheLaurannemapbasedonresults obtainedwiththeWriPdK92primerset.Threemarkers(GBStagpairs TP15642,TP16449,andTP18643)thatwereoriginallyassignedtothe Laurannemapweredeterminedtobeheterozygousinbothparentsand were not used for map construction. Three other markers (GBS tag pairsTP11609,TP12109,andTP25403)thathadoriginallybeenscored asheterozygousinoneparentweredeterminedtobehomozygousin bothparentsandwerenotusedformapconstruction.WiththeKASP Figure8 Comparisonsofalmondgeneticmapswiththepeachgenome markers, it was possible to obtain complete and accurate data for a sequence.(A)Nonpareillinkagegroups1–8comparedwithpeachscaf- largernumberofprogenythanhadbeenusedfortheinitialGBSmap. foldsPp1–Pp8.(B)Laurannelinkagegroups1–8comparedwithpeach scaffoldsPp1–Pp8.Onthealmondlinkagegroups,geneticdistancesare Thereforeitisnotsurprisingthattherearesomedifferencesinmarker orderbetweentheinitialandKASPmaps;theKASPmapsshouldbe given in cM. On the peach scaffolds, physical distances are given in Mbp.Linksbetweenlinkagegroupsandscaffoldsindicatethepositions consideredasmorereliable. atwhichmarkersgeneticallymappedinalmondanchortothegenomic ThenumbersofGBStagpairsusedtoconstructtheinitialNonpareil sequenceofpeach. andLaurannelinkagemaps(310and282,respectively)weresimilarto numbersthathavebeenusedforJapaneseplum(232foroneparentand Lauranne).However,anotherone(at0.5MbponPp7)isonachro- 324fortheother;Salazaretal.2017)andforsweetcherry(443forone mosome arm for which only two polymorphisms were mapped in parentand474fortheother;Guajardoetal.2015).Theinitialgenetic Nonpareil and none were mapped for Lauranne. Lack of polymor- mapsconstructedusingGBSdataareabouttwiceaslongastheNon- phisminthisregionmaynotbelimitedtothesematerials,noreven pareilandLaurannemapspublishedbyTavassolianetal.(2010),but toalmond,assimilarobservationshavebeenreportedforthisregion thefinalmapsconstructedusingdatafromKASPassaysaresimilarin for the sweet cherry cultivars Riverdale and Rainer (Guajardo et al. lengthtothepreviouslypublishedmaps.This“shrinkage”wasdueto 2015).Theconsistentlackofpolymorphismincertaingenomicregions correctionofgenotypesthathadbeenerroneouslycalledintheGBS couldreflectfixationoffavorableallelesduetoselection. analysis.Inmostcases,correctionswerefromhomozygoustohetero- Whilethetotalnumberofhigh-qualitySNPsobtainedforalmond zygous,indicatingthatalthoughtwoalleleswerepresent,onlyoneof (11,936) was sufficient for genetic mapping and higher than was them had been sequenced in sufficient depth. Of a total of 12,720 obtainedforsweetcherry(8476;Guajardoetal.2015)itislowerthan heterozygous calls in the final KASP data set, 1526 (12%) had been Volume8 January2018 | SNPDiscoveryandMappinginAlmond | 169 Figure 9 Genotypes of 15 rootstocks for 10 KASP markers selected based on their ability to discriminate among these rootstocks. For each marker,theleastcommongenotypeisshowninwhitetextonadarkbackground. miscalledashomozygousintheGBSanalysis.Thistypeoferrorwas marker genotypes were associated with softer shells. Depending on evenlydistributedamongmarkers.These observations aresimilarto whetherthepaper-shellcharacteristicofNonpareilisconsideredfavor- whathasbeenreportedforGBSanalysisinswitchgrass(Luetal.2013). ableorunfavorable(toosoft),selectioncouldbeimposedfororagainst The success rate in converting SNP-bearing tag pairs to useful Nonpareil-likegenotypesatsixmarkers(twoonLG2,threeonLG5,and fluorescence-basedmarkerassayswasveryhigh.Ofthe309SNP-bearing oneonLG8).IntheN·Lpopulation,thiswouldhaveeitherfixedor GBS sequences that wereselected for assay design, 293(95%) were eliminatedthepaper-shelltrait. successfullyconvertedtoKASPassaysandmapped(138forNonpareil Giventhatthismapwasconstructedusingsequence-basedmarkers, and 155 for Lauranne). However, not all of these could have been itwaspossibletoanchorittothepeachgenomesequenceassembly.It designedsolelybasedontheGBSdata.Inmanytags,theSNPposition willbepossibletoanchorittoalmondgenomesequenceassembliesas was too close to one end of the tag for primer design. These tag they become available and to connect it with other sequence-based sequenceshadtobealignedagainstpreexistingcontigsequencesto linkagemapsastheyaredeveloped.Thus,thiscompositemapcould obtainflankingsequences. provideaplatformforunificationofgeneticandgenomicresourcesfor Untilnow,linkagemappinginalmondhasreliedondatafromthe thealmondresearchcommunity. progeny of individual biparental crosses. Here, progeny from four Thisisthefirstreportofgenome-wideanchoringofalmondgenetic Nonpareilcrosseswereused,providingfourlinkagemapsforNonpareil. maps to the peach whole genome sequence assembly. The results There should be no differences in the true biological positions of confirmedtheexpectedhighsimilaritybetweenthealmondandpeach the SNPs on these four maps, as each map is based on estimates of genomes, with only a few of the mapped markers anchoring to un- recombinationfrequenciesforthesameparent,Nonpareil.Whilethere expectedpositions.Inmostpartsofthegenome,markerpositionson was very good agreement among the maps, there were also some Nonpareiland Lauranne genetic maps were linearly relatedwith the differences, presumably due to sampling error. Given that the SNPs physicalpositionstowhichtheywereanchoredinthepeachgenome. mappedinallfourpopulationshadbeenpreselectedbecausetheywere Thereweresomeregionsofthepeachgenomeforwhichfewalmond informativeforN·L,themapderivedfromthatpopulationhasmost polymorphismswerediscovered.Basedthedatageneratedhere,itisnot markers and the best genome coverage. Among the four individual possible to distinguish whether these are simply regions in which Nonpareilmaps,theonefromN·Lshouldbeconsideredasthemost NonpareilandLaurannearebothhighlyhomozygous,orwhetherthese reliable. Nevertheless, the quality of any genetic map is limited by regionsarestructurallydifferentbetweenpeachandalmond. samplesize.Here,theavailabilityofadditionalNonpareilpopulations Thepolymorphismsdetectedhereamongalmondclonesandroot- providedanopportunitytoimprovethemapaccuracyandresolution. stocksprovideinformationaboutthetransferabilityofSNPsdiscovered The Nonpareil composite linkage map constructed here is the first inonepopulationtoothermaterials.Ofthemarkersdesignedbasedon almondlinkagemapconstructedbasedongenotypicdatafrommulti- heterozygosity in Nonpareil or Lauranne, 70% were useful for poly- plecrosscombinations.Theuseoffourcrosseswithacommonparent morphism detection among almond rootstocks. Although SNPs are (Nonpareil)providedanopportunitytoexploitalargertotalpopula- generallyusedforpolymorphismdetectionwithinspecies,manyofthe tionsizetoresolvetheorderofsomecloselylinkedmarkers.Giventhat SNPmarkersdevelopedherebasedonalmondpolymorphismdetected NonpareilisthepredominantalmondcultivarinboththeUnitedStates polymorphismsinmaterialthatoriginatedfrompeach,apricot,plum, and Australia, this linkage map should be a particularly useful new cherry,andcomplexbackgrounds.Themarkersdevelopedherecouldbe resource for almond research, including QTL mapping and marker- broadlyusefulfordetectinggeneticdifferencesamongaccessionsofP. assistedbreeding. dulcis,relatedspecies,andinterspecificcrosses.Applicationsofthese TodemonstratetheutilityofthelinkagemapsforQTLmappingand markerscouldincludeassessmentof cultivar verification,geneticdi- toprovideexamplesofmarkersthatcouldbeusedforselection,QTL versity assessment, genetic mapping, and marker-assisted selection. resultsarepresentedhereforshellhardness.Forthattrait,QTLwere From among the markers that were assayed here, 11 were selected detectedonthreelinkagegroups:LG2,LG5,andLG8.QTLforthistrait based on their ability to differentiate among 15 almond clones and hadpreviouslybeenmappedonLG2(Sánchez-Pérezetal.2007)and 10 were selected based on their ability to differentiate among LG8(Arúsetal.1998),butnotonLG5.AtalloftheseQTL,Nonpareil-like 15rootstocks. 170 | S.N.Goonetillekeetal.
Description: