ebook img

Genomics of Actinobacteria PDF

54 Pages·2007·1.51 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Genomics of Actinobacteria

MICROBIOLOGYANDMOLECULARBIOLOGYREVIEWS,Sept.2007,p.495–548 Vol.71,No.3 1092-2172/07/$08.00(cid:1)0 doi:10.1128/MMBR.00005-07 Copyright©2007,AmericanSocietyforMicrobiology.AllRightsReserved. Genomics of Actinobacteria: Tracing the Evolutionary History of an Ancient Phylum† Marco Ventura,1* Carlos Canchaya,2 Andreas Tauch,3 Govind Chandra,4 Gerald F. Fitzgerald,2 Keith F. Chater,4 and Douwe van Sinderen2* DepartmentofGenetics,BiologyofMicroorganisms,Anthropology,Evolution,UniversityofParma,Parma,Italy1; Alimentary Pharmabiotic Centre and Department of Microbiology, National University of Ireland, Cork, Ireland2; Institute for Genome Research and Systems Biology Center for Biotechnology,BielefeldUniversity,Universitaetsstrasse25,D-33615Bielefeld, Germany3;andDepartmentofMolecularMicrobiology,JohnInnesCentre, NorwichResearchPark,Colney,Norwich,UnitedKingdom4 INTRODUCTION.......................................................................................................................................................497 GeneralFeaturesofActinobacteria.......................................................................................................................497 EvolutionandDynamicsofBacterialGenomes.................................................................................................497 D Geneduplications...............................................................................................................................................497 o w HGT......................................................................................................................................................................497 n lo Genedecay...........................................................................................................................................................498 a d Genomerearrangements....................................................................................................................................498 e d TaxonomyofActinobacteria....................................................................................................................................498 fro ActinobacterialGenomeSequencingProjects.....................................................................................................498 m GENOMICSOFBIFIDOBACTERIUM....................................................................................................................499 m m GeneralFeatures.....................................................................................................................................................499 b ComparativeBifidobacterialGenomeAnalysis..................................................................................................501 r.a s DNARegionsAcquiredbyHGTinBifidobacterialGenomes..........................................................................501 m Prophage-LikeElementsinBifidobacteria..........................................................................................................501 .o rg ExtrachromosomalDNAElements.......................................................................................................................502 a BifidobacteriaandCarbohydrateMetabolism....................................................................................................502 t P BifidobacteriaandPrebioticProperties..............................................................................................................503 en n InteractionofBifidobacteriawiththeGIT.........................................................................................................504 S GENOMICSOFTROPHERYMA..............................................................................................................................504 ta GeneralFeatures.....................................................................................................................................................504 te U TropherymaComparativeGenomeAnalysis........................................................................................................504 n iv DNARegionAcquiredbyHGTinT.whippleiGenomes...................................................................................504 o n TropherymaGenomeandBiologicalLifestyle.....................................................................................................505 J InteractionofTropherymawiththeEnvironment..............................................................................................505 an u GENOMICSOFPROPIONIBACTERIUM...............................................................................................................506 a GeneralFeatures.....................................................................................................................................................506 ry 3 ExtrachromosomalDNAElementsinPropionibacterium..................................................................................506 1 DNARegionAcquiredbyHGT.............................................................................................................................506 , 20 0 Prophage-LikeElementsinPropionibacterium....................................................................................................506 8 P.acnesGenomeandBiologicalLifestyle...........................................................................................................506 InteractionofP.acneswithItsEnvironment.....................................................................................................508 GENOMICSOFMYCOBACTERIUM......................................................................................................................508 GeneralFeatures.....................................................................................................................................................508 GenomicsofM.tuberculosis...................................................................................................................................508 M.tuberculosisgenomearchitecture.................................................................................................................509 M.tuberculosisgenomeandbiologicallifestyle...............................................................................................509 ComparativegenomicswithintheM.tuberculosiscomplex...........................................................................509 *Corresponding author. Mailing address for Marco Ventura: De- partmentofGenetics,BiologyofMicroorganisms,Anthropologyand Evolution,UniversityofParma,parcoAreadelleScienze11a,43100 Parma, Italy. Phone: 39-521-906236. Fax: 39-521-905476. E-mail: [email protected]. Mailing address for Douwe van Sinderen: Alimentary Pharmabiotic Centre and Department of Microbiology, Bioscience Institute, National University of Ireland, Western Road, Cork, Ireland. Phone: 353-21-4901356. Fax: 353-21-4903031. E-mail: [email protected]. †Supplementalmaterialforthisarticlemaybefoundathttp://mmbr .asm.org/. 495 496 VENTURA ET AL. MICROBIOL.MOL.BIOL.REV. Prophage-likeelementsinM.tuberculosis.......................................................................................................510 GenomicsofM.bovis..............................................................................................................................................511 M.bovisgenomearchitecture............................................................................................................................511 M.bovisgenomeandbiologicallifestyle..........................................................................................................511 ComparativeGenomicsofM.bovisandM.tuberculosis....................................................................................511 GenomicsofM.leprae............................................................................................................................................511 GenomicsofM.aviumsubsp.paratuberculosis....................................................................................................513 ExtrachromosomalDNAElementsinMycobacterium........................................................................................513 GENOMICSOFNOCARDIA....................................................................................................................................514 GeneralFeatures.....................................................................................................................................................514 NocardiaComparativeGenomeAnalysis.............................................................................................................514 ExtrachromosomalDNAElementsinNocardia..................................................................................................514 N.farcinicaGenomeandBiologicalLifestyle......................................................................................................514 GENOMICSOFCORYNEBACTERIUM..................................................................................................................514 GeneralFeatures.....................................................................................................................................................514 CorynebacteriumGenomeArchitecture.................................................................................................................515 CorynebacteriumComparativeGenomeAnalysis................................................................................................516 DNARegionsinC.glutamicumAcquiredbyHGT.............................................................................................517 Prophage-LikeElementsintheC.glutamicumGenome....................................................................................518 DNAAcquiredbyHGTintheC.efficiensGenome............................................................................................518 D o Prophage-LikeElementintheGenomeofC.diphtheriae.................................................................................519 w n DNARegionsintheC.diphtheriaeGenomeAcquiredbyHGT.......................................................................519 lo DNARegionsintheC.jeikeiumGenomeAcquiredbyHGT............................................................................519 ad e ExtrachromosomalDNAElements.......................................................................................................................520 d CorynebacterialGenomesandBiologicalLifestyle............................................................................................521 fro m AdherencetopharyngealepithelialcellsbyC.diphtheriae...........................................................................521 m AdaptationtoaminoacidproductionbyC.glutamicumandC.efficiens....................................................521 m AdaptationtoelevatedtemperaturesbyC.efficiens.......................................................................................521 b AdaptationtothelipophiliclifestylebyC.jeikeium.......................................................................................521 r.as m GENOMICSOFLEIFSONIA....................................................................................................................................522 .o GeneralFeatures.....................................................................................................................................................522 rg ExtrachromosomalDNAElementsinLeifsonia.................................................................................................522 a DNARegionsAcquiredbyHGTinLeifsonia......................................................................................................522 t P e Prophage-LikeElementsinLeifsonia...................................................................................................................522 nn L.xylisubsp.xyliGenomeandBiologicalLifestyle...........................................................................................522 S ta GENOMICSOFTHEMYCELIALACTINOBACTERIA:STREPTOMYCES,FRANKIA,AND te THERMOBIFIDA.................................................................................................................................................523 U n GeneralFeatures.....................................................................................................................................................523 iv ArchitectureofMycelialActinobacterialGenomes............................................................................................523 on ComparativeGenomicsofMycelialActinobacterialGenomes.........................................................................524 J a Multiplyrepresentedmetabolicgenes.............................................................................................................525 nu a GenesunexpectedlymissingfrommycelialActinobacteria............................................................................525 ry Conservonsandtransposons.............................................................................................................................525 3 1 DNARegionsinMycelialActinobacterialGenomesAcquiredbyHGT.........................................................525 , 2 StreptomycesExtrachromosomalElements..........................................................................................................526 00 8 Prophage-LikeElementsinStreptomyces.............................................................................................................526 MycelialActinobacterialGenomesandBiologicalLifestyle.............................................................................526 Ecology..................................................................................................................................................................526 Secondarymetabolism........................................................................................................................................527 P450cytochromes(CYPs)..................................................................................................................................527 Development........................................................................................................................................................527 SpecializeduseoftherareUUAleucinecodon..............................................................................................529 COMPARATIVEGENOMICSOFACTINOBACTERIA........................................................................................530 SyntenyofActinobacterialGenomes....................................................................................................................530 ActinobacterialCoreGenomeSequences:Phylogenomics................................................................................531 IMPACTOFACTINOBACTERIALGENOMICSONTAXONOMY.................................................................531 NewApproachestoInvestigateTaxonomicRelationshipsinActinobacteriaBasedonWhole-Genome Sequences.............................................................................................................................................................534 ActinobacterialTaxonomyBasedonMultilocusApproach..............................................................................536 CONCLUSIONS.........................................................................................................................................................537 ACKNOWLEDGMENTS...........................................................................................................................................538 REFERENCES............................................................................................................................................................538 VOL.71,2007 GENOMICS OF ACTINOBACTERIA 497 INTRODUCTION tracetheevolutionarydevelopmentofbacteriabasedontheir currentgenomestructure(8,183,243,398). GeneralFeaturesofActinobacteria Gene duplications. It was previously thought that bacterial genomeshaveevolvedfromamuchsmallerancestralgenome In terms of number and variety of identified species, the throughnumerousgeneduplicationeventsandtheconsequent phylumActinobacteriarepresentsoneofthelargesttaxonomic generation of paralogs (244). However, an analysis based on unitsamongthe18majorlineagescurrentlyrecognizedwithin thecurrentlyavailablebacterialgenomedatadoesnotsupport the domain Bacteria (406), including 5 subclasses and 14 sub- this theory and shows that gene duplications contribute only orders (404). It comprises gram-positive bacteria with a high G(cid:1)C content in their DNA, ranging from 51% in some modestly to genome evolution (79). Despite this, it has been noted that genes involved in a specific adaptation have been corynebacteriatomorethan70%inStreptomycesandFrankia. preserved after duplications, suggesting that gene duplication An exception to this is the genome of the obligate pathogen Tropherymawhipplei,withlessthan50%G(cid:1)C. doeshaveanevolutionaryrole(79).Thisisnicelyillustratedby the mycobacterial paranome, which largely corresponds to a Actinobacteria exhibit a wide variety of morphologies, from functionalclassofgenesinvolvedinfattyacidmetabolism,in coccoid (Micrococcus) or rod-coccoid (e.g., Arthrobacter) to agreement with the complex nature of the mycobacterial cell fragmenting hyphal forms (e.g., Nocardia spp.) or permanent wallandprobablyreflectingadaptiveevolutionofthiscellular and highly differentiated branched mycelium (e.g., Streptomy- structure(79,432). cesspp.)(15).Theyalsoexhibitdiversephysiologicalandmet- HGT. The introduction of novel or alien genes by HGT abolic properties, such as the production of extracellular en- D zymes and the formation of a wide variety of secondary allows for rapid niche-specific adaptation, which in turn may ow metabolites (389). Notably, many such secondary metabolites lead to bacterial diversification and speciation (80). Bacterial nlo arepotentantibiotics(255),atraitthathasturnedStreptomyces genomeevolutionisbasedonthecombinedoutcomeofgenes ade acquiredthroughcelldivision,i.e.,verticallyinherited,andby d species into the primary antibiotic-producing organisms ex- HGT(482).Takingthisconcepttoitsextreme,onecanclaim fro ploitedbythepharmaceuticalindustry(29).Furthermore,var- m iousdifferentlifestylesareencounteredamongActinobacteria, thattwobacterialtaxaaremorerelatedtoeachotherthanto m athirdonenotbecausetheyshareamorerecentancestorbut m andthephylumincludespathogens(e.g.,Mycobacteriumspp., b Nocardia spp., Tropheryma spp., Corynebacterium spp., and because they exchange genes more frequently (151). HGT is r.a s Propionibacterium spp.), soil inhabitants (Streptomyces spp.), heldresponsibleforenhancingthecompetitivenessofbacteria m in their natural environments. For example, in some patho- .o plant commensals (Leifsonia spp.), nitrogen-fixing symbionts rg (Frankia), and gastrointestinal tract (GIT) inhabitants (Bi- ggeenniecsabnacdtegreinae, cselugsmteerns,tscaolfleDdNpaAthocognentaicinitiyngislmanadnsy,avpirpuelaernctoe at P fidobacterium spp.). Unusual developmental features are dis- e played by many actinobacterial genera, such as formation of have been acquired by HGT (321). Actinobacterial examples nn of transmission of virulence genes through HGT are rare S sporulatingaerialmyceliuminStreptomycesspeciesortheper- ta sAisctteinnotbnaocnterreiapliacraetinwgidsetalytedeisxthriibbiuteteddbiyncebrottahintemryrecostbraiacltearniad. (o3b7v6io).uOsHftGhTeseev,ethnets:fo(il)lopwhianggesthorfeCeocraysneesbaapctpeeriaurmtodirpehptrheesreianet te Un aquatic(includingmarine)ecosystems,especiallyinsoil,where carry the major diphtheria toxin gene, (ii) a linear plasmid iv o theyplayacrucialroleintherecyclingofrefractorybiomate- carries the genes for the macrolide toxin responsible for the n J rials by decomposition and humus formation (152, 403). Fur- ulceration that gives Mycobacterium ulcerans its name (411), anu and (iii) a large segment of the chromosome of Streptomyces a thermore,manybifidobacteriaareusedasactiveingredientsin ry a variety of so-called functional foods due to their perceived turgidiscabiesconcernedwithcausingpotatoscabcanbetrans- 3 1 health-promoting or probiotic properties, such as protection ferred by conjugation (280). In addition, it has been argued , 2 against pathogens mediated through the process of competi- that the Mycobacterium tuberculosis Rv0986-8 virulence 00 8 operon, which plays an important role in parasitism of host tiveexclusion,bilesalthydrolaseactivity,immunemodulation, phagocytic cells by increasing the ecological fitness of the in- andtheabilitytoadheretomucusortheintestinalepithelium fectingmycobacterium(339),wasacquiredhorizontallybythe (273,329,407). ancestor of M. tuberculosis, Mycobacterium prototuberculosis. The actinobacterial genomes sequenced so far belong to OthergeneticstudiesoftheancestralM.prototuberculosisspe- organismsrelevanttohumanandveterinarymedicine,biotech- cies have indicated that various HGT events occurred before nology,andecology,andtheobservedgenomicheterogeneity theevolutionarybottleneckthatledtotheemergenceoftheM. isassumedtobeareflectionoftheirbiodiversity.Thisreview tuberculosis complex (167), probably from the Indian subcon- willgiveanaccountoftherecentexplosionofactinobacterial tinent(124). genomicsdataandwillplacethisinabiologicalandevolution- Bioinformatic methods to identify HGT events are based arycontext. principally on the analysis of divergence in the G(cid:1)C content (GC deviation), dinucleotide differences, four-letter genomic EvolutionandDynamicsofBacterialGenomes signatures,and/orcodonusage,thoughgeneticistswouldoften be satisfied with HGT as the explanation for genes found in The principal genetic events that determine genome shape onlyoneorganism.Ifthelatteriscorrect,itwouldmeanthat and structure are believed to be gene duplication, horizontal HGT frequency is rather low (below 10% of the total gene genetransfer(HGT),geneloss,andchromosomalrearrange- complement) (243, 398). Interestingly, a recent analysis ments. Despite efforts to quantify the relative contribution of showedthatmanyoftheproteinsthatappearedtobespecific eachoftheseprocesses,noreliablemodelcanyetexplainand for actinobacteria are also encoded by the genome of an al- 498 VENTURA ET AL. MICROBIOL.MOL.BIOL.REV. phaproteobacterium, Magnetospirillum magnetotacticum, but eliminated rapidly, and thus only rarely persist in bacterial not by any other sequenced alphaproteobacterial genome, genomes(320).Otherbacteriashowalowerlevelofgeneloss: leading to the proposal that M. magnetotacticum acquired intheobligateintracellularpathogenRickettsiaprowazekiionly thesegenesbyHGTfromactinobacterialspecies(137). 76% of the potential coding capacity is used, while just 12 TwootherinterestingcasesofHGTbetweenChlamydiaand pseudogeneswereidentified(9);andarecentgenomeanalysis a subset of Actinobacteria (e.g., Streptomyces, Tropheryma, Bi- oftwoStreptococcusthermophilusstrains(33)foundthat10%of fidobacterium, Leifsonia, Arthrobacter, and Brevibacterium) thegeneswerepseudogenes,perhapsreflectingadaptationofS. have recently been described (158). In the enzyme serine hy- thermophilustoitsspecializedenvironment,milk(33). droxymethyltransferase(GlyAprotein),twoconservedinserts Whenallbacterialgenomesarecomparedwitheachother, of3and31aminoacids(aa)arepresentinvariouschlamydiae asetofonly50to100genes,whicharecalledthecoregenome aswellastheabove-mentionedsubsetofActinobacteria.Sim- sequences, appear to be maintained universally (for a review, ilarly,thesebacteriacontainaconserved16-amino-acidinsert seereference147). in the peptidoglycan biosynthesis enzyme UDP-N-acetylglu- Genome rearrangements. Apart from the events described cosamineenolpyruvyltransferases(MurA).Thefunctionaland intheprevioussectionsthataffectgenecontent,theorganiza- physiological significance of these apparent HGT events be- tion of a genome is subject to change through chromosome tweenchlamydiaeandActinobacteriaispresentlyunclear. rearrangements. Synteny, a term used here to indicate the Gene decay. Bacterial genome size is determined by the conservation of gene order between genomes, can be applied outcomeofseveralopposingforces.Deletionbiasandgenetic asaphylogenetictooltoinvestigaterelationshipsbetweenspe- D driftcausegenomestocontract,whileselectionongenefunc- cies, since the degree of genome rearrangements increases ow tionpromotesgenomestopreserveDNA.Genomeincrements linearly in relation to the time of divergence of bacterial taxa nlo depend on both gene duplications and acquisition of alien (236,484). ad e DNA,coupledtoadaptivebenefits(293).DNAlossmayrange Chromosomalrearrangementsarelargelydependentonthe d fromlargedeletionsthatspanmultiplelocitodeletionsofone activity of repeated and mobile elements such as insertion fro m orafewnucleotides(7).Theinfluenceofthesedifferentroutes sequences (ISs), transposons, prophage sequences, and plas- m is variable among bacterial lineages (293). Inactivating and mids(233).Bacterialgenomescontainingahigherrepeatden- m b deleteriousmutationsingeneswithlittlecontributiontofitness sity have higher rates of rearrangements, leading to an accel- r.a s canbetransmittedtoprogenyandaccumulateinpopulations, erated loss of gene order (371). Homologous recombination m eventually leading to gene loss; whereas such mutations in events between such repeat sequences catalyze both gene re- .org genes that are critical will prevent the production of progeny arrangement and gene loss in the genome, thus leading to a and so will be eliminated from populations, resulting in the diversification of taxa. Such recombination events may have t P e preservationofthefunctionalgene(320). promoted speciation in the T. whipplei taxon (357). Further- nn Geneinactivationandlossareparticularlyapparentinsev- more, chromosome evolution is influenced by large chromo- S ta eral bacterial groups with a host-associated lifestyle, in which somalrearrangements,e.g.,largeinversions,roughlysymmet- te thehostsuppliesmanyofthemetabolicintermediates,thereby ricallycenteredaroundthereplicationorigin,whichleadtothe Un obviating the need to maintain many biosynthetic genes. In occurrence of X-shaped patterns in the alignments of whole iv o endosymbiotic bacteria, such as Buchnera and Rickettsia, loss genomes(117). n J ofindividuallocioroperonsistheonlysourceofdivergencein an u the gene inventories between species (289, 419). A clear ex- a ample of genome degradation is provided by Mycobacterium TaxonomyofActinobacteria ry 3 1 leprae, which has discarded more than 1,000 genes compared Actinobacteriaincludemanyorganismsthatexhibit,orhave , 2 with M. tuberculosis (84). Moreover, the presence of an even 00 atendencytowards,mycelialgrowth.16SrRNAgenesequenc- 8 larger set of nonfunctional genes, i.e., pseudogenes, in M. ing has led to the recognition of 39 families and 130 genera, leprae indicates that this genome contraction is still in progress. whichalsoincludehigh-G(cid:1)Cgram-positivebacteriawithsim- Althoughthecriteriaforidentifyingpseudogenesdifferamong plermorphology,suchasbifidobacteriaandmicrococci(Fig.1) studies,theoverallrationaleisidentical:thepredictedprotein (119). The deepest branch separates bifidobacteria from all must be altered to a degree that abolishes its function. The other known families. The divergence of actinobacteria from thresholdsappliedforpseudogeneidentificationarebasedon otherbacteriaissoancientthatitisnotpossibletoidentifythe theknownsizeandorganizationoffunctionaldomainswithin phylogenetically closest bacterial group toActinobacteria with proteins, the observed length variation within individual gene confidence(119). families, and available information on experimentally dis- Actinobacteriahaveauniquemolecularsynapomorphy,i.e., ruptedproteins(320).Generally,pseudogenesincludecasesin a shared derived character: a homologous insertion of about which a stop codon or deletion has resulted in an encoded 100 nucleotides between helices 54 and 55 of the 23S rRNA protein that is less than 80% of the length of its functional gene(375). counterpart in the contrasted genome and cases in which a frameshift or insertion has altered more than 20% of the amino acid sequence (263). Most of the pseudogenes so far ActinobacterialGenomeSequencingProjects annotated in bacterial genomes are among the open reading frames (ORFs) whose functions are unknown. The lack of Thefirstactinobacterialgenometobesequencedwasthatof pseudogenes shared among multiple strains of the same spe- theparadigmstrainofthehumantuberculosisagent,M.tuber- cies suggests that pseudogenes are generated continually, are culosis H37Rv (83). In the last few years, genomes of 20 dif- VOL.71,2007 GENOMICS OF ACTINOBACTERIA 499 D o w n lo a d e d fro m m m b r.a s m .o rg a t P e n FIG. 1. PhylogenetictreeofActinobacteriabasedon1,500nucleotidesof16SrRNA.Scalebar,5nucleotides.Familiescontainingmembers n subjectedtocompletegenomesequencingatthetimeofthiswritingaredepictedinbold.Ordersareindicated. Sta te U n ferent Actinobacteria (in some cases multiple strains of the GENOMICSOFBIFIDOBACTERIUM iv o swahmileessepqeucieensc)inhgavoefbgeeennomseeqsuferonmcedretporecsoemntpalteitvieosno(fT4a3boleth1e)r, GeneralFeatures n Jan high-G(cid:1)C bacteria are still in progress (Table 1) (http://www ua The Bifidobacteriaceae family comprises four genera, Bi- ry .ncbi.nlm.nih.gov/genomes/lproks.cgi). fidobacterium,Gardnerella,Scardovia,andParascardovia(404), 31 Although most of the sequenced genomes in Table 1 are of which only the first contains more than one species. Bi- , 2 circular, like most bacterial genomes, Streptomyces genomes fidobacteria form a deep-branching lineage within the Acti- 008 arelinear.Usingpulsed-fieldgelelectrophoresis,thegenomes nobacteria (136, 137). The Bifidobacterium genus contains six of some other, still-unsequenced mycelial Actinobacteria taxa, phylogeneticclusters,namedB.boum,B.asteroides,B.adoles- suchasActinomyces,Amycolatopsis,Actinoplanes,Streptoverti- centis,B.longum,B.pullorum,andB.pseudolongum(448). cillium, and Micromonospora, were also shown to be linear, Bifidobacteria are nonmotile, nonsporulating, non-gas-pro- withsizesrangingfrom7.7Mb(e.g.,Micromonosporachalcea) ducing, anaerobic, and saccharoclastic bacteria. They have to9.7Mb(Streptoverticilliumabikoense),whilesometimesalso beenisolatedfromfivedifferent,thoughsomewhatconnected, harboring large linear plasmids (362). Linear plasmids, typi- ecologicalniches:theintestine,theoralcavity,food,theinsect cally possessing short inverted repeats at their termini and protein-bound 5(cid:2) ends, are often present in Actinobacteria gut,andsewage.ThosethatinhabittheGIT(e.g.,B.breve,B. (216). longumbiotypelongum,andB.longumbiotypeinfantis)have Belowweexaminerelevantgenomicinformationfromsome been the subject of growing interest due to their probiotic ofthebest-knownactinobacterialtaxa(Bifidobacterium,Myco- properties. Bifidobacteria ferment a large variety of oligosac- bacterium, Streptomyces, Corynebacterium, Thermobifida, Leif- charidesintheGIT,someofwhich,inparticularthosethatare sonia,Frankia,Nocardia,Propionibacterium,andTropheryma), not digested by their host, are commercially exploited to en- partially in the light of what is known for Escherichia coli or hancebifidobacterialnumbers(aswellasotherprobioticbac- Bacillussubtilis,asparadigmsofgram-negativeproteobacteria teria) in situ, a practice that is referred to as the prebiotic andgram-positivelow-G(cid:1)C-contentbacteria,respectively.We concept(146). discusshowgenomicinformationcanbeusedtogaininsights Of the currently recognized 29 Bifidobacterium species, intothephysiology,genetics,andevolutionofActinobacteria. three strains that belong to the B. longum and B. adolescentis 500 VENTURA ET AL. MICROBIOL.MOL.BIOL.REV. TABLE 1. Publisheddataforactinobacterialgenomes Genome No.of %G(cid:1)C No.ofrRNA No.of No.of Microorganism Reference size(bp) ORFs content operons tRNAs pseudogenesa Bifidobacteriumlongum 2,266,000 1,730 60 4 66 ND 384 biotypelongumNCC2705 Corynebacteriumdiphtheriae 2,488,635 2,320 53.5 5 54 48 60 NCTC13129 Corynebacteriumefficiens 3,147,090 2,950 63.4 5 56 ND 316 YS-314 Corynebacteriumglutamicum 3,309,401 2,993 53.8 5 60 ND 195 ATCC13032 Corynebacteriumjeikeium 2,462,499 2,104 61.4 3 50 68 427 K411 FrankiaalniACN14a 7,497,934 6,786 72 2 62 12 319 Frankiasp.strainCc13 5,433,628 4,618 70 2 61 50 NCBIsource NC_007777 Leifsoniaxylisubsp.xyli 2,584,158 2,351 67.7 1 49 307 300 CTCB07 Mycobacteriumaviumsubsp. 4,829,781 4,350 69.3 1 47 0 268 paratuberculosisK-10 Mycobacteriumbovis 4,345,492 3,953 65.63 1 49 23 139 D o AF2122/97 w n MycobacteriumlepraeTN 3,268,203 1,605 57.79 1 49 1116 84 lo Mycobacteriumtuberculosis 4,411,532 3,994 65.61 1 49 6 83 ad H37Rv ed Mycobacteriumtuberculosis 4,403,836 4,250 65.60 1 49 ND 126 fro CDC1551 m Mycobacteriumsp.strain 5,705,448 5,391 68 2 59 21 NCBIsource m MCS NC_008146 m b Nocardiafarcinica 6,021,225 5,674 70.8 3 61 0 198 r.a IFM10152 s m Propionibacteriumacnes 2,560,265 2,297 60 3 51 17 46 .o KPA171202 rg StreptomycescoelicolorA3 8,667,507 7,769 72 6 80 56 26 a Streptomycesavermitilis 9,025,608 7,577 70 6 82 0 194 t P e MA-4680 n n ThermobifidafuscaYX 3,642,249 3,110 67 4 63 7 281 S Tropherymawhipplei 925,938 783 46 1 54 1 27 ta TW08/27 te U TropherymawhippleiTwist 927,303 808 46 1 54 0 357 n iv aND,notdetermined. o n J a n u phylogeneticgroupshavebeensequencedtocompletion(Ta- in the nucleotide composition of the leading DNA strand ary ble2),whilethesequencesofothers,e.g.,B.dentiumBd1,are (129); and a typical presumptive origin-of-replication region 3 1 atvariousstagesofcompletion:detailedsequenceinformation (350),includingageneconstellationneartheorigin(compris- , 2 0 for some of these genomes is expected to become publicly ingrpmH,dnaA,dnaN,andrecF),aparticularGCnucleotide 0 8 availableinthenearfuture.Furthermore,genomesequencing skew ([G-C]/[G(cid:1)C]), and the presence of multiple DnaA ofB.breveM-16V,B.breveYacult,B.animalissubsp.lactis,B. boxes and AT-rich sequences immediately upstream of the longumbiotypelongum,andB.longumbiotypeinfantis(276)is dnaAgene(77). under way. These genomes range in size from 1.9 to 2.9 Mb The number of rRNA operons in bifidobacteria varies be- andgenerallydisplayarchitecturalfeaturesofatypicalbacte- tweenoneandfive(58),perhapsreflectingdifferentecological rialchromosome.Someofthesearetheco-orientationofgene strategies(230).ThenumberoftRNAgenesinthebifidobac- transcriptionandDNAreplication(288);aG-rich,C-poorbias terialgenomessequencedsofarisrelativelystable,i.e.,54and TABLE 2. Generalfeaturesofbifidobacterialgenomes Genomesize No.of %G(cid:1)C No.ofrRNA Microorganism Statusa Reference (bp) ORFs content operonsb B.longumbiotypelongumNCC2705 C 2,266,000 1,730 60 4 384 B.longumbiotypelongumDJO10A UF 2,375,800 1,811 59 4 NCBIsourceNZ_AABM00000000 B.adolescentisATCC15703 C 2,084,445 1,564 59 5 NCBIsourceNC_008618 B.breveUCC2003 C 2,422,668 1,868 59 2 254 B.dentiumBd1 UF (cid:3)2,600,000 (cid:3)2,270 59.2 NA NCBIsource(projectID17583) aC,finished;UF,unfinished. bNA,notavailable. VOL.71,2007 GENOMICS OF ACTINOBACTERIA 501 FIG. 2. Comparativegenomemapsoftheprophage-likeelementsdetectedinBifidobacteriumgenomes.Genessharingsimilarityarelinked. D Probablefunctionsofencodedproteinsidentifiedbybioinformaticanalysisareindicated.Themodularstructureiscolorcoded:red,lysogeny; o w green,DNApackagingandhead;blue,tail;mauve,tailfiber;violet,lysismodule;yellow,transcriptionalregulator;orange,DNAreplication;gray, n unknowngenes;black,genessimilartootherfunctionallyunknownbacteriophagegenes.Verticalbluelines,tRNAgenes. loa d e d fro 56 in B. breve UCC2003 and B. longum biotype longum inB.longumbiotypelongumNCC2705havebeenacquiredvia m NCC2705, respectively. These are representative of all 20 HGT, as part of the adaptation of this organism to a specific m m aminoacids,withredundanttRNAsforallaminoacidsexcept ecological niche. For example, a region encoding rhamnosyl b cysteine,histidine,isoleucine,phenylalanine,andtryptophan. transferases seems to have been acquired from streptococci r.a s m (384), while two other regions that contain genes encoding .o ComparativeBifidobacterialGenomeAnalysis restriction-modification systems also appear to have been ac- rg Dot plot comparisons (at the nucleotide level) of the fully qbiuoitryepdetlhornoguugmhNHCGCT2.70O5vgeernalol,maebcoountte5n%tseoefmtshetoBh.avloenbgeuemn at Pe n sequenced bifidobacterial genomes revealed a high degree of recentlyacquiredbythismechanism(384). n S conservationandsyntenyacrosstheentiregenomes.,i.e.,those ta of B. longum biotype longum NCC2705, B. longum biotype te U longum DJO10A, B. breve UCC2003, and B. adolescentis Prophage-LikeElementsinBifidobacteria n iv ACC15703. Preliminary analysis against the draft genome se- o quencesofB.dentiumBd1confirmedandextendedthisresult. Untilrecentlybifidobacteriawerenotconsideredtobesuit- n J However,therearealsoseveralbreakpointregionsthatseem able targets for phage infection. However, prophage-like ele- an u to represent inversions or DNA insertion/deletion points (S. ments, designated Bbr-1, Bl-1, and Blj-1, are present in the ary LeahyandD.VanSinderen,unpublisheddata). genomes of B. breve UCC2003, B. longum biotype longum 3 1 Recently,aB.longumbiotypelongumNCC2705-basedspot- NCC2705, and B. longum biotype longum DJO10A (455). , 2 tedDNAmicroarraywasemployedtocomparethegenomesof These prophage-like elements display homology to genes of 00 8 10 bifidobacterial strains, including other B. longum biotype double-strandedDNAphagesthatinfectabroadphylogenetic longumstrainsaswellasthecloselyrelatedB.longumbiotype range of bacteria. Surprisingly, using the proteomic tree infantisandB.longumbiotypesuistaxa(232).Resultsrevealed method to investigate the evolution of these phages (373), it sevenlargegenomeregionsofvariability,themajorityofwhich became clear that the Bbr-1, Bl-1, and Blj-1 prophage-like encompassDNAwithadeviatingG(cid:1)Ccontent.Theseregions elementsexhibitaclosephylogeneticrelationshipwithphages correspond to a prophage remnant; a cluster of genes for infectinglow-G(cid:1)Cbacteria(e.g.,lactococcalandstaphylococ- enzymesinvolvedinsugarmetabolism,suchasan(cid:4)-mannosi- cal phages) (455), perhaps because these bacteria and their dase;andacapsularpolysaccharidebiosynthesisgenecluster, phageshavesharedthesameecologicalniche(i.e.,theanimal whichcouldplayaroleinhost-bacteriuminteractions(seeFig. GIT)duringtheirevolution,therebyallowingDNAexchange. S1inthesupplementalmaterial).Thoughveryuseful,microar- ThismaythereforepointtoDNAtransfereventsbetweenlow- ray-basedcomparativegenomeanalysessufferfromsomelim- and high-G(cid:1)C bacteria. Perhaps such phages originally in- itations.Itisnotpossibletoidentifyregionspresentinthetest fectedtheancestorofhigh-G(cid:1)Cgram-positivebacteria,inline strainsbutabsentfromthestrainthatwasusedtoconstructthe with the concept that high-G(cid:1)C gram-positive bacteria origi- array,anditwillgenerallynotallowsyntenystudies. natedfromlow-G(cid:1)Cancestors(455).TheunfinishedB.den- tium Bd1 genome contains at least two prophage-like ele- ments, one of which resembled that of the NCC2705 Bl-1 DNARegionsAcquiredbyHGTinBifidobacterialGenomes prophage(Fig.2).Notably,allthreepublishedbifidobacterial It has been suggested that selected genes involved in sugar prophage-like elements are integrated in a tRNAMet gene, metabolismaswellasintheproductionofexopolysaccharides whichisthefirstcaseofthistRNAgeneasatargetforphage 502 VENTURA ET AL. MICROBIOL.MOL.BIOL.REV. integration in any gram-positive or gram-negative bacterium necessaryfordegradingmostoftheseglycans(CAZydatabase; (56). Analysis of the distribution of this integration site re- see below), which are supplied instead by the distal GIT mi- vealedthattheattBsitesarewellconservedinmanybifidobac- crobiome (16). The human GIT microbiome is enriched in terial species and in a phylogenetically unrelated bacterium, genesinvolvedinmetabolismofsugars,includingglucose,ga- Thermosynechococcus elongatus BP-1 (306), but surprisingly lactose, fructose, arabinose, mannose, and xylose, as well as notinothersequencedActinobacteria. other sugars that escape digestion by the host’s enzymes, in- The 36.9-kb Blj-1 prophage is induced by mitomycin C or cludingmanyprebioticcompounds,suchasfructooligosaccha- hydrogenperoxideandisthefirstreportedinducibleandmo- rides, galactooligosaccharides, glucooligosaccharides, xylooli- lecularly characterized Bifidobacterium prophage, presenting gosaccharides, lactulose, and raffinose (for reviews, see possibilitiesforfurtherstudiesonthebiologyofbifidophages. references 148, 161). Gill et al. (148) describe more than 81 Interestingly, the Blj-1 element possesses a putative reverse different glycoside hydrolase families distributed in a mixture transcriptase-encodinggene,ahomologofwhichwasshownto ofanaerobicbacteria,i.e.,theGITmicrobiome,whichincludes representadiversity-generatingretroelement(275,455). Bifidobacteriales, Clostridiales, Bacteroidales, Enterobacteriales, The Bbr-1 and Bl-1 prophage-like elements appear to be Fusobacterales, Thermoanaerobacteriales, and Methanobacteria defective prophages, although they may constitute functional (148, 447. Many of these enzymes are not represented in the satellitephages,whosemobilitydependsonhelperphagesina human glycobiome. Moreover, GIT mucus provides an abun- manner similar to that described for the cryptic mycophages dantreservoirofglycansformicrobiota,whichservetoreduce Rv1andRv2(175,455). the effects of marked changes in the availability of dietary D polysaccharides(16). ow ExtrachromosomalDNAElements Thetypeofsugaravailableislikelytoinfluencethespecies nlo composition and abundance of the microbiota along the GIT ad e Plasmidsarenotubiquitousinbifidobacteria(332,392),and (447). In this context, bacteria such as Lactobacillus are par- d whenpresenttheyaresmall,i.e.,rangingfrom1.5kbto15kb. ticularly prevalent in the upper GIT, where they mainly fer- fro m CompletelysequencedplasmidsfromdifferentB.longumbio- mentrelativelysimplemono-,di-,andtrisaccharides(447).In m type longum strains include pMB1 (378); pKJ36 and pKJ50 contrast,bacteriaactiveinthelowerpartsofthecolon,suchas m b (332,333);pBLO1(384);pNAC1,pNAC2,andpNAC3(95); bifidobacteria,probablyowetheirspecificecologicalsuccessto r.a s pDOJH10SandpDOJH10L(260);pTB6(421);pB44(GenBank their capacity to metabolize complex carbohydrates. It there- m accessionnumberNC004443);andpNAL8(162).Inaddition,six forecomesasnosurprisethatgenesforcomplexsugarmetab- .org plasmidsfromotherbifidobacterialspecieshavebeensequenced: olismaboundinthegenomesofB.breveandB.longumbiotype a pVS809 from Bifidobacterium globosum (285), pCIBb1 from B. longum.Accordingtothesequence-basedclassificationofcar- t P e breve (327), pNBb1 from B. breve (GenBank accession number bohydrate-active enzymes (CAZy), over 8% of the annotated nn E17316), pAP1 from B. asteroides (GenBank accession number genes of these bifidobacterial genomes may encode enzymes S ta Y11549),pBC1fromBifidobacteriumcatenulatum(5),andp4M involvedinthemetabolismofcarbohydrates,includingvarious te from Bifidobacterium pseudocatenulatum (GenBank accession glycosylhydrolasesforutilizationofdiverse,butinmostcases Un numberNC003527).Theseplasmidsdonotencodeanyobvious notidentified,plant-deriveddietaryfiberorcomplexcarbohy- iv o phenotypictrait,exceptfortheplasmidisolatedfromB.bifidum dratestructures.Relativelyfewoftheseglycosylhydrolasesare n J NCFB1454(492),whichwasproposedtoencodeabacteriocin, predicted to be secreted, including those that are thought to an u bifidocinB. hydrolyze arabinogalactans and arabinoxylans (384). Instead, a ry Mostoftheplasmidscontaincharacteristicgeneticfeatures mostofthebifidobacterialglycosylhydrolasesarepredictedto 3 1 for plasmid replication via a rolling-circle replication system, be intracellular, and the genes that encode them are almost , 2 i.e.,repB,traA,andmobgenes.Incontrast,pDOJH10SfromB. without exception associated with genes predicted to encode 00 8 longumbiotypelongumDJO10AandpBC1fromB.catenula- systems for the uptake of structurally diverse carbohydrate tumcontainsequenceshomologoustoreplicationfunctionsof substrates(seebelow).Moreover,carbohydrate-modifyingen- theta-typereplicatingplasmids(5,260). zymesmayalsoshapetheoverallmetabolicstateofthecolon Repproteinsfromdifferentbifidobacterialplasmidsdonot to sustain a microbiota that indirectly provides the host with cluster together phylogenetically (110) but resemble replica- about 10 to 15% of its calories from the degradation of com- tion proteins from different hosts, including gram-negative plexcarbohydratesthroughshort-chainfattyacids(447). bacteriasuchasE.coli(5,260)(Fig.3).Horizontaltransferis Bifidobacteriacanalsoutilizesialicacid-containingcomplex alsoindicatedforpDOJH10S,whichmayhavebeenacquired carbohydrates in mucin, glycosphingolipids, and human milk from another Actinobacteria member, possibly Rhodococcus (187, 465). Thus, the mammalian host supplies substrates for rhodochrous(260). intestinalcommensalssuchasbifidobacteriaandlactobacilli,in a remarkable symbiotic (or altruistic) relationship (94, 308). Starchandamylopectinareotherexamplesofpolysaccharides BifidobacteriaandCarbohydrateMetabolism which may escape digestion in the upper human GIT and Mammalian(includinghuman)biologyispartiallyshapedby whichareplant-derivedhigh-molecular-weightcarbohydrates. the vast community of commensal bacteria that colonize the Theabilitytodegradethesesugarsappearstoberestrictedto GIT.Plant-basedfoodsthatarecommonlyconsumedbymam- certain species or to certain strains of a particular species, malsarerichincomplexpolysaccharidesthatcontain,among includingB.breveandB.adolescentis(379). others,glucose,fructose,xylan,pectin,andarabinosemoieties. Nearly10%ofthetotalbifidobacterialgenecontentisded- Mammalian genomes do not appear to encode the enzymes icated to sugar internalization, via ABC transporters, per- VOL.71,2007 GENOMICS OF ACTINOBACTERIA 503 D o w n lo a d e d fro m m m b r.a s m .o rg a t P e n n S ta te U n iv o n J FIG. 3. PhylogeneticrelationshipsofRepproteinsfromactinobacterialplasmidsandseveralprototypeplasmidsofdifferentplasmidfamilies a n fromgram-positiveandgram-negativebacteria.Thephylogenetictreewascalculatedbythesequencedistancemethodusingtheneighbor-joining u a algorithm. ry 3 1 , 2 0 0 8 meases,andprotonsymportersratherthanphosphoenolpyru- BifidobacteriaandPrebioticProperties vate-phosphotransferase systems (PEP-PTSs) (384), though a PEP-PTShasbeenexperimentallydemonstratedinB.breveto Prebiotics, such as fructo- and galactooligosaccharides, are beactivefortheinternalizationofglucose(108).ThePTSacts indigestiblefoodingredientsthatbeneficiallyaffectthehostby through the concomitant internalization and phosphorylation selectivelystimulatinggrowthofcommensalbacteria(36,370). ofcarbohydrates,inwhichthetransferofphosphatefromPEP Bifidobacterialgenomeshavearicharsenalofgenesforsuch totheincomingsugarismediatedviaaphosphorylationchain prebiotic metabolism (116, 176, 218, 259). For example, B. involving enzyme I (EI), histidine-containing protein (HPr), breve UCC2003 has a fos operon encompassing a putative andEII.TheB.longumbiotypelongumNCC2705genomehas permease-encoding gene, a gene specifying an unknown pro- asingleEII-encodinglocus,andthatofB.breveUCC2003has tein, and a (cid:5)-fructofuranosidase gene, which has been shown four(287).Thelattersystemwasshowntotransportfructose, tobeinvolvedinfructooligosaccharidedegradation(380).Pre- but it appears to transport glucose as well (287). This differ- bioticoligosaccharidesarealsoprovidedinhumanmilk(467). ence in the number of PEP-PTSs may indicate that B. breve Theseincludegalactooligosaccharides(325)rangingindegree more frequently encounters less complex sugars in its pre- of polymerization from 3 to over 32 galactose moieties (247). ferred niche, the GITs of infants, than B. longum biotype Certain bifidobacteria can also hydrolyze high-molecular- longumencountersintheGITsofadults,whereitisprevalent. weightprebioticcarbonsources,suchastrans-galactooligosac- Thus, the different diets of infants and adults may affect the charides, the latter through an extracellular enzyme encoded compositionsoftheirGITmicrobiomes. bygalA(176). 504 VENTURA ET AL. MICROBIOL.MOL.BIOL.REV. InteractionofBifidobacteriawiththeGIT ergy metabolism, dependence on external amino acids, and a lowerG(cid:1)Ccontent(i.e.,46%)thanfree-livingrelatives(302). Themolecularbasisofinteractionswiththehostepithelium Alargeamountofcodingcapacityisdevotedtothebiosyn- has been investigated in detail for several pathogens such as thesisofsurface-associatedfeaturesthatmaysustaintheintri- Listeria monocytogenes and Salmonella spp. (256, 291), but cate interaction with eukaryotic cells. These surface features little is known about this for commensal bacteria such as bi- include a prominent family of predicted surface proteins fidobacteria. Bifidobacterial genome analyses did not reveal termed WiSP (Wnt-induced secreted protein), ranging in size clear candidate genes for GIT-bifidobacterial interaction. from103to2,308aaresidues.OnlyafewWiSPfamilymem- However,bifidobacteriaarepredictedtoencodecellenvelope- bers contain a predicted transmembrane motif near the C associatedstructureswhichmayplayaroleinhostassociation. terminusthatcananchorsuchproteinstothebacterialmem- Allsequencedbifidobacteriaappeartoencodeanextracellular brane.AlignmentofalltheWiSPmembersrevealedthepres- polysaccharide(EPS)orcapsularpolysaccharide,andsuchan enceofasingle(cid:5)-strandmotif(27). extracellular structure may be important in bacterial adher- The two T. whipplei genomes contain many noncoding re- encetohostcells,whileitcouldalsocontributetoresistanceto petitive DNA regions, which may promote recombination stomachacidsandbilesalts(338). events that allow the bacteria to expose different sets of pro- ThevariousdifferentEPSclusterspresentinthecommensal teins at their surface, possibly in response to host defense microorganism Bacteroides tetaiotamicron help to avoid im- actionsand/orspecificenvironmentalconditions(27,357).All mune recognition by the host (240). The B. longum biotype thesegenomecharacteristicsarediscussedindetailbelow.Itis D longumNCC2705genomehastworegionsrelatedtopolysac- noteworthythatthegenomesofT.whippleiTwistandTW08/27 ow charide biosynthesis that, like the cps/eps cluster of B. breve contain 808 and 784 coding sequences (CDSs), respectively, nlo UCC2003, are flanked by IS elements and show a strong di- with only a small number of pseudogenes. This apparent low ad vergence in G(cid:1)C content relative to the remainder of the degree of gene decay, which contrasts with the conspicuous ed genome.Theseappeartobeagenetichallmarkofcps/epsloci gene decay of M. leprae (see below), may be related to the fro m examinedthusfar(127)andmayfacilitateinter-andintraspe- complete absence of mobile genetic elements within the ge- m ciestransferofsuchgeneclusters. nomes,oritmaymeanthatmostredundantDNAhasalready m b Genespredictedtoencodeglycoprotein-bindingfimbria-like beenremoved. r.a structures, which have been identified in the genome se- s m quences of both B. longum biotype longum NCC2705 and B. .o longumbiotypelongumDJO10A,maymediateanotherinter- TropherymaComparativeGenomeAnalysis arg actionwiththehost(232,384).Inaddition,B.longumbiotype ThetwoavailableT.whippleigenomicsequencesare(cid:6)99% t P e longumNCC2705encodesaserpin-likeproteaseinhibitorthat identicalbutdifferbyalargechromosomalinversion(Fig.4). nn hasbeendemonstratedtocontributetohostinteractioninthe Theextremitiesofthisinversionincludetwoidenticalnucleo- S GIT (199). The NCC2705 serpin is an efficient inhibitor of tide sequences corresponding to the WND domain of the tate human neutrophil and pancreatic elastases, whose release by WiSPs.Consequently,theinversioneventcauseddifferencesin Un activated neutrophils at the sites of intestinal inflammation the WiSPs in the two strains: TW08/27 has eight copies of iv o representsaninterestingmechanismofinnateimmunity(199). WND domain sequences that are identical across an 800-bp n J nucleotidespan,whereastherestoftheseWiSPgenesdonot an u displayanyDNAsimilarity.ThissuggeststhatWNDmotifsact a GENOMICSOFTROPHERYMA ry both as coding regions and as DNA repeats to promote ge- 3 1 GeneralFeatures nomerecombination(357). , 2 ThecomparisonofT.whippleigenomesequenceswiththose 00 8 TheonlysequencedmemberofthegenusTropherymaisT. of other reduced bacterial genomes (less than 1 Mb), such as whipplei, the causative agent of Whipple’s disease, which is Mycoplasmaspecies,Ureaplasma,andBuchnerarevealedare- characterized by intestinal malabsorption leading to cachexia duced complement repertoire of genes for most functional and death. T. whipplei isolates are typically found in human categories(357).However,mycoplasmasaregeneticallybetter intracellularniches,suchasinsideintestinalmacrophagesand equipped for carbohydrate metabolism and transport, and circulating monocytes (355, 356). However, extracellular and Buchnera displays a larger gene content devolved to energy metabolically active T. whipplei cells have been found in the production and conversion. This variability shows that small intestinallumen(130).AnenvironmentalreservoirofT.whip- bacterial genomes did not necessarily follow the same reduc- plei is also suspected, as PCR experiments revealed its pres- tiveevolutionarypathway. enceinsewagewater(283). Phylogenetic analyses based on the 16S rRNA, 5S rRNA, DNARegionAcquiredbyHGTinT.whippleiGenomes 23S rRNA, groEL, and rpoB genes placed T. whipplei within the phylum Actinobacteria (282, 479). T. whipplei was difficult HGT events appear to be less frequent for intracellular to propagate until relatively recently, when cultivation meth- bacteria with small genomes than for free-living bacteria (27, ods using human fibroblasts were established (354). Two T. 40,321,357).InT.whippleiTwist,onlyninegenes,about1% whipplei strains, TW08/27 and Twist, have been fully se- oftheentiregenome,appeartohavebeenacquiredbyHGT. quenced(27,357).Bothstrainshaveasmallgenome(lessthan These encompass aminoacyl-tRNA synthetase-encoding genes, 1 Mb) (Table 1) bearing the traits of strictly host-adapted genesinvolvedinnucleotidemetabolism(purBandpyrB),and microorganisms,whichincludepronounceddeficienciesinen- genesspecifyinghypotheticalproteins(357).

Description:
Germany3; and Department of Molecular Microbiology, John Innes Centre,. Norwich Research Park mids (233). Bacterial genomes three strains that belong to the B. longum and B. adolescentis. FIG. 1. Phylogenetic tree of
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.