ebook img

Genomics and Ecology of Novel N 2 O-Reducing Microorganisms PDF

2018·3.1 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Genomics and Ecology of Novel N 2 O-Reducing Microorganisms

Review Genomics and Ecology of Novel N O-Reducing 2 Microorganisms Sara Hallin,1,* Laurent Philippot,2 Frank E. Löffler,3,4 Robert A. Sanford,5 and Christopher M. Jones1 Microorganismswiththecapacitytoreducethegreenhousegasnitrousoxide Trends (N O) to harmless dinitrogen gas are receiving increased attention due to 2 increa sin g N O em issions (an d ou r ne ed to mitig ate climat e change) and to N2O is produced in several microbial 2 processes, but N2O reduction is lim- recentdiscoveriesofnovelN O-reducingbacteriaandarchaea.Thediversityof itedtoasingleprocesscatalyzedby denitrif ying and no nd enitri fyi2ng microorg anisms w ith capacity for N 2O redu c- othneo N m2iOc a rl leyducdtiav seers pereseb natc atemrioang ta anxd- tion was recently shown to be greater than previously expected. A formerly archaea. This enzyme is used for overlookedgroup(cladeII)intheenvironment includealargefractionofnon- energyconservationthroughanaero- bic re spiration, d etoxificat ion, or denitrifying N2O reducers, which could be N2O sinks without major contribution rem ovalofexces selectrons. to N O formation. We review the recent advances about fundamental under- 2 standing of the genomics, physiology, and ecology of N2O reducers and the The N2O reductase has evolved into importan ce of t hese findin gs for curbin g N O emiss ion s. two lineages, clade I and the recently 2 described clade II. Surveys indicate that clade II N2O reductase (NosZ) is abundantinmanybiomes. Microbial Sources and Sinks of Nitrous Oxide: Introducing the Nitrous Oxide Reducers Genome analyses and culture-based Inorganic nitrogen compounds are primarily transformed through reduction–oxidation reac- studiessuggestthatthephysiologyof NO reduction differs between the tionsmediatedbymicrobialcommunitiesinthebiogeochemicalnitrogencycle(Figure1).Their 2 clades. Evidence from community activityregulatestheretentionorlossofnitrogenfromecosystems,anddeterminesinwhich ecology supports niched ifferentiation formnitrogenislost.Nitrousoxideisproducedinseveralnitrogenturnoverprocesses(Box1).It oforganismswitheithertypeofNO isan importan tg reen houseg aswi th awarming p otential nearly30 0times thatofCO2 over 10 0 re ductase, an d wit hin the two cla de2s. years, and the major cause of stratospheric ozone depletion [1,2]. Terrestrial ecosystems accou nt for the majori ty of pla ne tary N2O emis sions, w hile aquat ic eco systems co ntribute one gIdiceanlt aifynidn ge cfaoclotogricsa tl hreast pdornivsee ps hoyf sNio2lOo-- third [1], of which the anthropogenic origins can be assigned to agricultural soils [3,4], and reducing communities could lead to agric ultu ral run-of f an d animal wast e [5], r espe ctiv ely. Thes e e missions a re ex pecte d to effective and innovativ e strat egies to increasedu etoinc rease duseo ffertiliz ers andmineraliz ationof soilorgani cma tterfollow ing curb N2O emissions. land usechange [6,7]. AlthoughmultiplesourcesofN Oexist,thereisonlyoneknownsinkforN Ointhebiosphere– 2 2 themicrobialreductionofN2OtoN2,catalyzedbytheN2Oreductase(NosZ).Thisenzymehas 1SwedishUniversityofAgricultural trad itionallyb eenassig ne dtob ac teri aandarch ae ape rform ingcomp leteden itrifi cation( see Sciences, Departme nt ofForest Mycology andPlantPa th ology,75007 Glossary): a pathway ending with N2O reduction to N2 [8,9]. A few nondenitrifying bacteria, Uppsala,S wed en such as Wolinella succinogenes and Campylobacter fetus, were reported early on for their 2Agroéco logie,AgroSupDijon,INRA, capacitytogrowwithN Oasthesoleelectronacceptor[10,11].Duetotheincreasingnumber Univ.BourgogneFranche-Comté, of seque nc ed mi crob ial2 ge no me s fro m a rang e of taxa , the div ersit y o f bo th denitrify ing and 3FC-2e1n0t e0r0 foDrijoEnn,v iFror annmceental nondenitrifying microorganisms with the genetic capacity for N2O reduction was recently Biotech nolo gy,Departmentof showntobegr eaterthanprevio uslye xpe cted[12 –14].Inco ntr astto denitrifying mic roorgan- Microbiology,D epartmento fCiviland Environmenta lEngineering , isms, nondenitrifying N2O-reducing bacteria and archaea have the potential to be true N2O Departmentof Biosystems sinks without contributing to N2O production (Box 1, Figure 1). Agricultural production and Engineering an dSoilScience, TrendsinMicrobiology,January2018,Vol.26,No.1 http://dx.doi.org/10.1016/j.tim.2017.07.003 43 ©2017ElsevierLtd.Allrightsreserved. water treatment facilities are focal points for N O mitigation efforts, and the capacity for UniversityofTennessee,Knoxville,TN 2 37996,USA smtricartoeogriegsanthisamtsc otmo baactt Na2sO Ne2mO isssinioknss isa ngdaminiintigg aitnecrceliamsaetde acthteanntgioen[ 1in5 –t1h7e] .development of I4nBsitoitsuctie enfocresB iDoilvoigsiicoanl, Sacnide nJcoeinst(JIBS), OakRidgeNationalLaboratory,Oak Ridge,TN37831,USA An important discovery was the realization that NosZ protein phylogeny has two distinct 5Unive rsity ofIllino is,Departmentof groups,cladeIandthenewlydescribedcladeII[13,14].Thesecladeshavealsobeenknownas Geology,C ha mpaign ,IL,USA typical and atypical NosZ [13], but the authors of this review have agreed on using the terminology clade I and II NosZ. It is known that denitrifiers within clade I reduce N O at 2 differentrate s[18] ,i mply ing thatd en itr ifiercom mun itycompos itionco uldin flu encein situn et *Correspondence: [email protected](S.Hallin). N Ofluxes.LessisknownaboutcladeIItypes,especiallythenondenitrifiers,althoughgenomic 2 and physiologicaldifferencesareemerging (e.g.,[19,20]).Wereviewthe recentliterature on N O reducers and focus on genomic, physiological, and ecological information that would 2 explainnichedifferentiationbetweenandwithinthetwocladesofN O-reducingbacteriaand 2 archaea. We also discuss the importance of these findings for mitigation of N O emissions, 2 especiallyfromsoils. Evolution and Genomics of N O-Reducing Microorganisms 2 TheabilitytoreduceN Oisataxonomicallywidespreadtrait.HomologsofthenosZgene, 2 whichcodeforthecatalyticsubunitinvolvedinN Oreduction,arefoundinapproximately12% 2 of sequenced microbial genomes, representing 12 archaeal and bacterial phyla (Figure 2) isolatedfromvariousenvironments[19].Phylogeneticanalysisindicatesthatthediversification ofNosZoccurredpredominantlythroughverticalinheritancewithsomeinstancesofhorizontal genetransfer,asthenosZphylogenyislargelycongruentwithorganismalphylogenyathigher taxonomiclevels[19,21].WhilethissuggeststhatN Oreductionisapotentiallyancienttrait,the 2 literatureoffersconflictingscenariosonwhetheranN Oreductaseappearedbeforeorafterthe 2 ‘great oxygenation event (GOE)’ of the late Archaean, 2.8–2.5 Gyr before present. Isotopic evidencesuggeststhatthedenitrificationpathwayappearedonlyshortlyaftertheGOE[22]. Copper, a key cofactor for several enzymes, including the N O reductase, was likely not 2 biologically available in the reduced conditions prior to the GOE, although recent isotopic evidence suggests that copper concentrations may have been less limiting than previously assumed[23].TheformationofNO,theprecursortoN O,isexpectedtohaveoccurredpriorto 2 theGOE[24],andiron-andheme-basedNOreductasescouldhavegeneratedN Opriortothe 2 build-upofoxygenlevels.Inaddition,N Ocouldhavebeenformedbychemodenitrification, 2 an abiotic reaction of nitrite with iron (II) [25,26]. Thus, N O reductase activity could have 2 evolved due to the accumulation of N O in parallel with nitrite reduction, but before nitrate 2 reduction becamesignificant. Despite evidence for vertical inheritance, the distribution of nosZ genes across microbial taxonomicgroupsatafinerscaleispatchier,asnosZcanbepresentorabsentinthegenomes ofcloselyrelatedorganisms[19,21,27–30].ThepolyphyleticdistributionofN Oreductionasa 2 traitsuggeststhattheacquisitionorlossofnosgenescouldbeinfluencedbyenvironmental conditions [27,31]. Gene loss through deletion is a common evolutionary phenomenon in bacteria,wherelossoffunctionsmayresultinanincreaseinfitness[32].Indeed,organisms capableofcompletedenitrificationmaydownregulatenosZexpressionwhennitrateisreplete, but other resources are limiting [33]. This may explain why nearly 40% of all genomes that possessgenesencodingthenitritereductasesassociatedwithdenitrificationlacknosZ[19]. Thispatternisnotrandomlydistributedacrosstaxa.Forexample,nosZhasnotbeendetected in fungal genomes and is conspicuously absent from the genomes of Actinobacteria or Acidobacteria [19,34]. These highly abundant and diverse phyla are commonly associated withlowresourceavailabilityorlowpHconditionsinterrestrialecosystems[35–38],suggesting a lowerfrequency ofnosZ insuchenvironments. 44 TrendsinMicrobiology,January2018,Vol.26,No.1 ThediversityofthenosZgenecanbedividedintotwodistinctgroupsofN2Oreducers,cladeI Glossary andII[13,14](Figure3).ThisisbasednotonlyonthephylogenyoftheNosZprotein,butalsoon Chemodenitrification:achemical differencesbetweenthetwocladesregardingthenosgenecluster(NGC)organization,NosZ reactionbetweenareduced translocationpathway,andfrequenciesofco-occurrencewithothergenesassociatedwith chemical[e.g.,Fe(II)orreduced denitrificationo rrespirator yam monification .C ladeIconsistsa lmos texcl usively ofAlpha-,B eta- humic su bstan ces] a nd NO2(cid:1)to ,andGamma pr oteobacter ia.ThenosZgen esfro m theha lophilic Euryarchae ot a(Haloa rcula pDreondiutrciefi cNaOti oann:d aNn2aOn.aerobic andNatronomonas)arealsogroupedwithcladeIbasedonevolutionarydistance,butforma respiratorypathwayconsistingofthe subc ladefromtheP rote obac teria.The sign alpep t idesre vea lthatcladeI NosZistr ansl ocate d sequential reduction ofsoluble nit rate totheper iplasm us ingthetwin-arg inine translo cationpa thway ,inw hichp r oteins a refirstfolded (NO3(cid:1)) or nitrite (NO 2(cid:1)) to the in the cytoplasm and then transported acrossthecy toplasmic m embr ane[39]. Th eNG Csof pgaasthewouasy cparondbuecttsr uNn2cOa teadnda nNd2. The aonsorgssaeRnm,isebmnlycs, o awdniidnth gp coalasmdsieeb mlyI bncoroaspnZpe ehbra otvruean nads pnFooers-tSZ [ 4flg0ae]v n(oFepi gfrouolrtleoe win4e).lid kA eb ldyye iDnfinvFoinYlgvLe fgdeeainntueersel e inicsvt rtoohlvnee ptdrra einnss eppnrocorette toionf noteixtrrimdifiaeintria-odtnee inwsi ticrthiofi cuNap2tliOeodn. ,At oi n s NpwOehc2ici(cid:1)ahl cNaHse3 is NosZ. Analysis o f theco-occu rrence of no sZ withothe rgen esinthe d enitrificat ionpathw ay rperdoudcutciotino,n wohficNh Oretshurlotsu ginh tbheioticor indicat ethatorg an ism swithcladeIno sZ arem ore likelyt obeco m plet edenitrifiers,a s83%of acombinat ion o2fb ioticand abiot ic re actions. genomeswithcladeInosZalsopossessnirSornirKgenes,whichencodethetwodifferent Fitness:ameasureofthe nitrite reductases NirSor NirK,respectively [19](Figure3). reproductivesuccessofaparticular genotypeduringnaturalselection AdiverserangeofarchaealandbacterialphylapossesscladeIInosZ.IncontrasttocladeI, comparedtoothergenotypesina givenenvir on ment. 51% of the organisms with clade II nosZ appear to be nondenitrifying N2O reducers [19] Geno me:anorganism’scomplete (Figure3).Interestingly,approximately27%ofgenomeswithcladeIInosZinanearlieranalysis setofgeneticinformation,which alsoharboredthenrfAgeneencodingtheformate-dependentnitritereductase[13],ahallmark includesallgenes. for respiratory ammonification (Figure 1, Box 1). However, Photobacterium profundum and Homolog(gene):homologous Sh ewanellaloi hicapossesscla deINos Z, whic hd emonstrate sthatrespiratory ammonifica tion genes have a common ancestor and sharesequencesimilarities. doesnotexclusivelyoccurwithcladeIINosZ.Shewanellaloihicaisabletoperformcomplete Meta genomics :DNA-based denitr ifica tionandre spirato ryam moni fic ation[ 41],afeature share d bya few otherb acteria(e. analyseswhere‘a ll’genetic g.,Opitituster raea ndsomeB acillusspp.).Inc ontr as ttoclad eI,nea rly al lclad eIIno sZ,exce pt informatio nina sam pleis sequenced.Sequencedepthwill thosefromarchaeaandthermophilicbacteria,possesssignalpeptidesassociatedwiththeSec determinethecoverage. translocationpathwaythatextrudesthenascentpolypeptidechainintotheperiplasm,where Niche:the ec ologicalroleofan folding and insertion of cofactors then occurs [42]. Whether the difference in translocation organismwithinacommunitywith pathwa ybe tweenthe tw ocladesh asan yfunctio nalsi gnificance bey ondthetra ns locationitself, respect to use o f resources. Phylogeny:theinferredevolutionary or is merely coincident with the distribution of taxa across the nosZ phylogeny is unclear. Ho w ever,stu diesofsev eralc lade IIorganism s, includ ingW. succ inoge nes,Bacillu sa zotofor- rperloatteioinnss,hgipe noof ma essetb oafs egdenoens,the mans and Solitalea canadensis, indicate that NosZ may be closely associated with the similaritiesanddifferencesintheir characteris tics. cytoplasmicmembrane[11,43].Thisisfurthersupportedbythepresenceofanopenreading Trait:anorganism’sfunctional frame(ORF)immediatelydownstreamofnosZ,referredtoasnosBandpredictedtoencodea characteristicthatisaproductof memb rane-s panningpro teininvolved in electro ntransp or t[4 4].Th eha lophilicarc ha eawith in geneticcomp ositio n a nd cladeIareanexceptiontothispattern,astheirNGCsalsocontainnosB.Overall,thegenomic environmentalfactors. Translocation pathway:proteins signaturesindicateobviousdifferencesbetweenorganismswithcladeIandIInosZ,butfurther thathaveevolvedtofunctionoutside biochemicalandphysiologicalstudiesarerequiredtodeterminehowthesedifferencesinNGC thecytoplasmicmembranecanbe arrangementandtranslocationpathwaytranslateintophysiologicaldifferencesthatpotentially translocatedthroughthemembrane drivenichedifferentiation withinandbetween eachclade. bydifferentmechanisms. Physiology of N O-Reducing Bacterial Populations 2 ThedistributionofnosZgenesinbacterialgenomesandthemultiplesourcesofN Oformation 2 suggestthatN Oreductionisaffiliatedwitharangeofphysiologicalresponses.Reductionof 2 N Oisoftenassociatedwithenergyconservation,butthatdoesnotappeartobethecasefor 2 allmicroorganismspossessingnosZ.Instead,itisawaytocopewithpotentiallytoxiceffectsof N O or functions as an electron sink for metabolism. Sullivan et al. [45] demonstrated that 2 copper limitation downregulates expression of nosZ in Paraccocus denitrificans, resulting in cytotoxiceffectsofN OduetoinactivationofvitaminB .Gemmatimonasaurantiacastrain 2 12 T-27, which lacks a complete set of denitrification genes and cannot grow under anoxic TrendsinMicrobiology,January2018,Vol.26,No.1 45 Figure1.MicrobialPathwaysintheNitrogen(N)Cycle.Backgroundcolorsdifferentiatebetweenprocessesoccurringunderoxicoranoxicconditions.The compoundsarepositionedaccordingtotheoxidationstateofN.Solidcoloredlinesindicatemicrobialpathways,andthegenesencodingtherespectiveenzymesthat catalyzeeachstepinthepathwayareindicatedasfollows:amo,ammoniamonooxygenase;hao,hydroxylamineoxidoreductase;hdh(alsoknownashzo),hydrazine dehydrogenase;hzs,hydrazinesynthase,nar/nap,cytoplasmicandperiplasmicdissimilatorynitratereductases,respectively;nas,assimilatorynitratereductase;nif, nitrogenase;nas /nirB ,assimilato rynitriter eductase ;nirS/nirK,cy toch rome-cd a ndcopper-ba seddi ssimilatoryn itritereductas es,r espectively; ‘nor’,a nyofthemu lti- hemeorhem e–copper nitricoxider educt ases;nosZ, nitrousox idereductase;n1rf,for mate-depende ntdissimilato rynitr itereductase ;nxr,nitriteo xidore duc tas e.D otted lines indicatethecontributingpathways toatmosphericloadingofgaseous nitrogencompounds,whereasdashedgray linesindicatebiotic/abioticprocesses generatinggaseousNcompoundsthatalsofeedintotheoverallN-cycle.DNRA,dissimilatorynitratereductiontoammonium. conditions, reduces N O following growth under oxic conditions [46]. Here, N O apparently 2 2 actsasanelectronsink,andNosZactivitysustainsviabilityduringtemporaryanoxia.Interest- ingly,nosZgenesaffiliatedwiththephylumGemmatimonadetesareamongthemostfrequently encountered nosZgenesinmanyterrestrial ecosystems[47,48]. 46 TrendsinMicrobiology,January2018,Vol.26,No.1 Box1.MicrobialProcessesGeneratingNitrousOxide(N O) 2 Nitrousoxideisproducedbymanydifferentmicrobialguildsaspartofvariouspathways,inwhichinorganicnitrogenous compoundsaretransformed(Figure1).TherelativecontributiontonetNOemissionsofthedifferentprocessesvaries considerably and isinfluence dbythe m icrob ialcom munityande nv iron m2en talconditio n. How ever,th emajorityo fNO emittedisprim aril ya ttributedto d enitr ificationa ndammonia oxi dationtoNO(cid:1) ,thefirsts tepinthen itrifi cationp roc es2s. Denitrific a tionoften includes red uctionofNO to N,butde nitrifiersm a yno2ta lway sp erform com pletedenit rification, resultinginthe form ationofN Oasterm in al2pro du ct2(cid:1) eit herbecaus ethe ylac ktheg eneticca pacityfor NOreduction 2 2 toN orbecauseenvironmentalfactorssuppressthereaction[4,19,73].Anexampleoftheformerarefungithatdenitrify [81 –283]. Ammon iaoxidationis anene rgy-yieldin g,a erobicp rocessin wh ichNH is oxi dizedt oN O(cid:1)v iath einter- 3 2 mediateNHOH.WhileNOcanbeproducedfromabioticoxidationofNHOH[84],ithasbeenshownthatNH oxidation cou2pled to enz ym2at ic NO 2(cid:1) and NO re ductio n (i.e., n itrifier-den itr ificat2ion) is the m ain r oute f or N2O e miss ions3 during ammonia oxidation [85]. Recent studies show that ammonia-oxidizing archaea generate N2O through hybrid ofoxrimdiazitniogn bvaiac tae rsiapo[8n6ta–n8e8o].uDs urreinagctiroens poifr aNtoHr2yOaHm amnodn iNficOa,t iaolnth(oduisgshim thilaetyo lriykenlyit rpartoedruecdeu cletisosn Nto2Oa mthmano nthiuem am(DmNoRnAia))-, crpNeorOpono3ds(cid:1)ruet/csrNv ecaOd ot i2onw(cid:1)nchl iue[s9dn 1re eN] .d t OhTuah citnee t dhtch eote onp tcrrNoeiblHclu ei4tss+io sdnw ec itootohfn x rtiterfihiesbepdu i tcr[ea9ost0 no m]cr.y oaS marogmimtinamean lotlD ynf NoitfiorRcm NaAat 2ibtoOioan nc et tmoeo rifosi avss emicoranaansllll aNcaloms2Oomo plubinanu krtde sNg do2e tOfto sN rdies2eO dnuu int(cercit fi.eigocr.nta,a ttii[noo8,n 9 Na ]a)2l.tn hwTdoh iu taehgm hNem n2meOoron gsiiasyt oxidation[85,92].NitritealsoreactschemicallywithferrousirontoformNO,whichreactsfurtherwithferrousirontoform N2O, and this ch emode nitrifi cation process c an m ake rel evan t contr ibutio ns to N2O fo rmatio n in environ men ts with activeferric-iron-reducingmicroorganisms.Nitrousoxideproductionbymethane-oxidizingbacteria,nitriteoxidizing bacter ia,andanaerobicm ethane-andanae robicam mon ium-oxidizin gb acteriahavealsob eenrepor ted[93 –96]but theircontributionstoglobalNOemissionsareunclear. 2 WhenN Oisusedforrespirationbydenitrifiers,reductionmaynotoccurwiththesamekinetics 2 [18],suggestingadaptationstodifferentenvironmentalconditions.Recentworkonthekinetics and regulation of N O reduction by Bacillus vireti highlights how environmental conditions 2 controlthepossibilityofanorganismwithcladeIInosZactingasapotentialN Osink[49,50]. 2 ReductionofN Owasdependentonnitrateconcentrationsintheculturemedium,withhigher 2 concentrations(>30mM)inhibitingNosZactivity.nosZwashighlyexpressedatlowernitrate levels(5mM),andreductionofexogenousN Owascoupledtogrowth,providedthatlowlevels 2 of nitrate or nitrite were present to induce expression. A recent comparison of five bacterial species thatsustain growthwithN Oasthe onlyelectron acceptor showed thatthose with 2 cladeIInosZexhibitedlowerwhole-cellhalf-saturationconstants(K values)thanthosewith s cladeInosZ,althoughthelattertendedtoshowhighermaximumN Oreductionrates[20].The 2 cladeIIbacteriaproduced50–80%morebiomasspermolofN Oreduced,indicatinganN O 2 2 respiratorychainthatallowsformoreefficientfreeenergyconservationcomparedtothecladeI systeminthestudiedorganisms.Whetherthisobservationcanbegeneralizedtoallorganisms withcladeIInosZhasyettobeconfirmed.ShouldcladeIInosZorganismsindeedhavedifferent N OreductionkineticsfromthosewithcladeI,thiscouldexplainnichedifferentiationandwould 2 haveecological andenvironmentalconsequences. Ecology of N O-Reducing Communities 2 AfterthenewlineagesofN O-reducingmicroorganismsweredescribed,microbialecologists 2 studied these microorganisms in different environments. A number of studies assessed the diversityandabundanceofN Oreducerstodeterminefactorsexplainingtheirdistribution.The 2 diversity is typically higher for nosZ clade II than for clade I (e.g., [47,51]), which would be expectedduetothelargertaxonomicbreadthofnosZcladeIIamongsequencedgenomes [19].ThemajorityofenvironmentalcladeInosZsequencesaremostsimilartonosZfromAlpha- and Betaproteobacteria (Burkholderiales) in both marine and terrestrial habitats [47,51–54]. Within the Alphaproteobacteria, Rhodobacteralesdominate in marine sediments and Rhizo- biaceae in soils. Clade II nosZ sequences are predominantly affiliated with Bacteroidetes, Gemmatimonadetes, and Deltaproteobacteria in most environments, although Gammapro- teobacteria and unclassified archaea are also commonly detected in marine and estuary sediments [47,48,51–56]. Several environmental clade II nosZ reads are assigned to TrendsinMicrobiology,January2018,Vol.26,No.1 47 rFeigduucreta s2e. sT(anxirKonaondmnicir SD,irsetsrpibeucttiiovenly o)ifn Dvoelvneitdriifinedre annitdrifi Nca2tOio nR,easdwuceellar sGtehenodimffeeresn. tGveanrioamntesso hfathrbeonroinsgZ ggeenneese ennccooddininggt htheeN coOppreedr-u acntads cey.tTohcehcroemntee rdt1r-eteypiseb naitsreitde 2 onNCBItaxonomicrankings,withcladesizeproportionaltothenumberofgenomesfoundwithineachphylumor,fortheProteobacteria,classgrouping.Venn diagramsillustratethefrequencyofnirandnosZgeneco-occurrencesinthegenomesofeachtaxonomicgroup,wherecirclesizeisproportionaltothefrequencyof geneoccurrencewithineachgroup,andoverlapindicatesdegreeofgeneco-occurrences.Color-codingforeachcombinationisshownatlowerright.Basedondata reportedin[19]. nondenitrifying genomes of genera such as Anaeromyxobacter, Dyadobacter, Gemmatimo- nas, Ignavibacterium, Melioribacter, and Pedobacter. These organisms could be using N O 2 originating from other organisms, chemodenitrification, or other sources [13,55,57] (Box 2). TheirwidespreaddistributionindicatesthattheabilitytoreduceN Oisanecologicallyrelevant 2 trait. PioneeringworkshowedthatcladeIInosZwasequallyormoreabundantthancladeIinarange ofenvironments,forexample,soils,wastewater-treatmentplants,wetlands,andricepaddies [14].Subsequentstudieshavemainlyfocusedonterrestrialenvironments,especiallyagricul- tural soilsdueto theirlargecontributiontoN Oemissions.Numericaldominance ofcladeII 2 nosZovercladeI,withratiosof1.5–10,iscommonlyreportedwhenusingquantitativePCR [14,58,59],althoughtherearesoilswithbothhigherandlowerratios[47,52,56].Studiesusing metagenomics,whichcircumventsprimerbias,supportsthedominanceofcladeIInosZin severalterrestrialhabitats[48,54].Nitrousoxidereducersinaquaticandengineeredsystems, forexample,wastewater-treatmentplants,havesofarreceivedlessattention.Inasaltmarsh, 48 TrendsinMicrobiology,January2018,Vol.26,No.1 Figure3.Maximum-Likelihood-BasedPhylogenyofNosZAmino-AcidSequencesShowingtheTwoMajorCladesofNosZ(IandII).Majorlineagesof monophyletictaxonomiccompositionattheclassorphylumlevelarecollapsed,withpolygonsizeproportionaltoamino-acidsequencediversitywithineachgrouping, anddottedbranchesindicatingbootstrapsupportlessthan70%.PiechartsillustratethepercentageofgenomeswitheachnosZvariantthatlacksthenirgenes asso ciated withdenitr ification(b lack),orpo ssesses eithe rnirS (light gre y)ornir K(darkg ray) .Percentage sa reshown forg enom eswit handw itho utthe norB /Z genes that encode the heme–coppe r nitric o xid e reductase that r educ es N O to N 2O . Th e num ber o f genomes fo r ea ch grou p is shown be low each pie cha rt. B ased o n data reportedin[19]. clade II nosZ was three times more abundant than clade I nosZ based on metagenomics analysis[53].InPCR-basedstudiesofaquaticenvironments,thetwocladeswereeitherequally abundantorcladeInosZdominated.Inwetlands,boreallakes,andaeutrophiclagoon,cladeI nosZwasonlyslightlymoreabundantthancladeIInosZ[60–62],butupto1000timesmore abundantinconstructedwetlandsandinabioreactortreatingnitrate-richwater[63,64].Alsoin coastalsedimentsandsaltmarshes,cladeInosZoccurredata(cid:3)10-foldhigherabundance than clade II nosZ [51,65]. Based on the abundance patterns, complete denitrifiers, being overrepresentedincladeInosZ[19],couldhaveanimportantroleinN Oreductioninaquatic 2 systems,althoughactivityneedstobeconfirmed.Bycontrast,organismswithcladeIInosZ would, in general, be more relevant in soils. The high abundance of clade II nosZ micro- organisms,togetherwiththeirgreatdiversityintheenvironment,emphasizesN Oreductionas 2 anecologicallyfavorabletrait,whichpotentiallycontrolsnetN Oemissionsfromecosystems. 2 TrendsinMicrobiology,January2018,Vol.26,No.1 49 Figure4.ComparisonofnosGeneClustersfromGenomesHarboringCladeIorCladeIInosZGenes.Phylogenyatrightisbasedonthephylogenyshown inFigure2,withphylumorclassleveltaxonomicdesignationundereachname,andthescalebarindicatingestimatedamino-acidsubstitutionspersite.Foreachgene cluster,nosZanditsaccessorygenes(BDFGHLRXY)arelabeledandcoloredaccordingtohomologyacrossthedifferentgeneclusters.ForeachnosZreadingframe, N-terminalregionsarecoloredaccordingtosignalpeptidestargetingtheSec(yellow)ortwin-argininetranslocation(TAT;green)pathwaysthatinsertthenosZproduct intothepe riplasmi csp ace.Ad ditionalpro te ins,inc ludingiro n–sulfur- bind ing proteins (F eS),Rieskeir on–sulfurprot eins( S),and b-andc- type cytoc hrom es(C yband Cyc,respectively)arealsolabeled.Noncoloredgenesdenoteopenreadingframeswithnoorthologsinothernosgeneclusters,andthescalebaratlower-right indicatesgenesize.Adaptedfrom[13]. ContrastingpatternsintermsofabundanceanddiversityofthetwomainnosZcladeswere typically observed within the studies referenced above, which suggest niche differentiation betweenthetwoclades.Nevertheless,therearefewspecificfactorsthatcorrelatewithoneor the other clade when comparing across individual studies. Soil textural components, for example, clay or loam content [47,58,62], as well as nutrient status, for example, nitrogen, carbon,organicmatter,orC:Nratio[47,53,58,61,65],wereshowntopromotethesizeofthe nosZ clade Icommunity, yet no specific factors favoringnosZ clade IIhave emerged. Thus, underlying drivers are only indirectly captured or context-dependent, and biotic drivers or interactionscouldhavebeenoverlooked.Interestingly,microorganismsharboringeithergene occupieddifferentecologicalnichesintheroot–soilinterface,withnosZcladeIItypesfavoredin the soil compartment and type I associated with crop roots regardless of soil type [19]. In agreement,theabundanceratioofcladeIandcladeIInosZwashigherintherhizosphereof silverbirchcomparedtobulksoil[66].BothofthesestudiesindicateatighterlinkbetweenN O 2 productionandreductionviathedenitrificationpathwayintherhizospherecomparedtobulk soil(Box2).GiventhephylogeneticdiversityoforganismswiththecapacitytoreduceN O,itis 2 notsurprisingthatdifferentnichesexistalsowithineachofthetwoclades.Forexample,niche partitioningforbothcladeIandcladeIInosZwasevidencedinrelationtooxygenavailability, 50 TrendsinMicrobiology,January2018,Vol.26,No.1 Box2.HypothesizedInteractionsbetweenN OProducersandN OReducers 2 2 SinceNOisformedinanumberofprocesses,butonlyconsumedviathereductiontoN,interactionsbetweenthe 2 2 producersandreducerscanbeassumed.Indeed,consumptionofNOwasdemonstratedexperimentallyinsoil 2 microcosmsinoculatedwithanondenitrifyingbacteriumcapableofeliminatingNOproducedbythenativemicrobial community[5 7].Thede nitrific a tionpathwayco uldpotent iallyalso be splitoverm u2ltip letaxaas the pat hwayis modular [8,19],consistingofasuiteoffunctionsthatcaneitheractinconcertorbeperformedindividually,dependingon genomicorenvironmentalconstraints.Thisraisesseveralquestions.Isthismodularityanexampleoflabordivisionin communitiesassembledintoconsortiatocarryoutacooperativefunction?Ifso,whyisthepathwaytruncatedforsome microorganis ms but not for others? I n other wo rd s, what are the fitnes s ad vant ag es of comp lete and t run cated denitrificationpa thwa ys, and underw hic hcon ditionsa rethe yfa vore d?Itca nbehypoth esi zedthats ubstr atecross- feeding eliminates interenzyme competition and accelerates substrate consumption. This was demonstrated in experim entswithis ogenicmutan tsofthecom plete denitrifierP seudomon asstutzeri,asn itrate and nitritereductase s, whenfunctionalinseparatepopulationsinthesameculture,nolongercompetedforelectrondonorsastheywouldif functioninginthesamecell,therebyavoidingaccumulationofgrowth-inhibitinglevelsofnitrite[97].Cross-feedingof Nsu2bOs taamntoianl gn u cmobme prleotfeg eonr opm aertsiawl dithe nnitorisfiZertsh aa tnddo Nn2oOt proesdsu ecses rsa mdeanyi traifilscoa tbioen a pdavthawnt aayg. eTohuiss,t yapse so ufgingteesrtaecdti obny wt haes inferredaftergenomicreconstructionofshotgunsequencereadsfromanestuaryshowingthatgenesforatruncated denitrific ation pathway – terminating in N 2O – wer e present i n popu lation s o f Gamm aproteob acte ria, wh ile th e ability to rBreoodlexu fc1oera NNn2odOsGZ w loianss ns faoornuydn).edAn oitnrreilfiyce ienrsn G twesomuurmvldea ybtiemu stooinn gsacdsaetvateebsnle gaenN dN iMs2oOyt xogopecenosecrrcaeatveleedas lbethyda ott thphaoetsr csbehiosestmi cco laadsde enw iIteIr nlilfi oacssaZ tai o[b5ni5od]t.i rcAo npveorotahceesrsi gpsneosisfi sc(siabenleet fractionoftheNOgenerationinestuarinesediments[26].SinceAnaeromyxobacterdehalogenans2CP-Cconstitu- tivelyex pre sse s2Fe( III)-reducing a ctivityand canreduce NO (cid:1)toN O(cid:1)andNOtoN [98,99],onec ouldhyp othesize thatt hisbacteriu mreducesNO gener ated viac hemod enitr3ificat ion.2Thisw ou2ld be an2example ofa nond enitrifierthat com pete swithden itrifiersb y2co uplingbioti ca ndbioticreactions. eutrophicationlevel,pH,C:Nratios,croppingsystems,andbiocharadditiontoagriculturalsoil [51–53,56,67]. Ramifications for Ecosystem Functioning ThediversityoftheN O-producingandN O-reducingcommunitiesultimatelydeterminesthe 2 2 netN Oemissions,sincecommunitieswithdifferentgeneticpotentials(e.g.,assemblagesof 2 variousfunctionalmodules)aresubjecttoecologicalprocessesthatinfluencetheirabundance, diversity, and activity. The feedback between dynamic environmental conditions and evolu- tionary processes will determine the structure and diversity of N O-producing and N O- 2 2 reducingcommunities.By‘structureanddiversity’,wemeannotonlytheassemblageoftaxa thatconstitutethecommunities,butalsotheassociationofthevariousprocesseswithinthe denitrification pathway or in association with other processes. Early work suggested that differences in relative rates of N O production between an agricultural and a successional 2 field could only be explained by the denitrifier community composition when controlling all known environmental factors regulating N O production and consumption by denitrification 2 [68].However,theinfluenceofthedenitrifiercommunitycompositionandthemodularityofthe denitrificationpathwayareinterwovensinceco-occurrencepatternsofdenitrificationgenesare notrandomlydistributedacrosstaxa[19].Forinstance,thehigherfrequencyofco-occurrence ofnosZwithnirSthanwithnirK(Figure3)suggeststhatnirStypedenitrifiersaremorelikelyto performcompletedenitrification,andtherebycontributelesstoN Oemissions,thanisthecase 2 fornirKtypedenitrifiers.AfieldstudyreportedapositivecorrelationbetweennirKabundance and N O emissions, and qPCR analyses suggested that only 10–30% of the nirK type 2 denitrifiersalsocarriedthenosZgene[69].Theputativeimportanceofatruncationinthelast step of the denitrification pathwaywascorroborated by a negativerelationshipbetween the proportion of bacteria with nosZ and the N O-to-N denitrification end-product ratio in a 2 2 pasture[70].Similarly,interlakevariationinN Oaccumulationwasconnectedtotherelative 2 abundance of nir versus nosZ genes [60]. Other examples of such correlations have been reported in different ecosystems, for example [71,72], but experimental testing of causal relationships is needed. Addition of Agrobacterium tumefaciens C58, a denitrifying strain lacking nosZ and therefore terminating with N O, to different soils resulted in an increase in 2 TrendsinMicrobiology,January2018,Vol.26,No.1 51 therelativeamountofN Oemitted[73].Thisdirectmanipulationexperimentprovidesaproofof Outstanding Questions 2 principlethattheinabilitytosynthesizeNosZcaninfluencetheratioofthedenitrificationend- Whatisthemainpurposeofreduction products,andthattheextentofthereductionofN2OtoN2hasbothgeneticandenvironmental of N2O in the environment? Microor- controls. ganisms can reduce N2O for different purposes,thatis,energyconservation, detoxificat ion, or remov al of excess AfterthefindingthatnosZcouldbedelineatedintotwodistinctclades,oneofthequestions electrons. En viro nmental seq uences raised wa swhet herd ifferen cesb etw eenmicroo rgan isms withcla deIand IIno sZ co uldimpact indicateth atsuchfunctio nalvariation is present, if we can assume that net N O emissions. In earlier studies considering only the clade I nosZ community, the link 2 sequence similarity equals functional betweennosZcommunitymetricsandN2Oemissionsrangesfrombeingstrong,weak,oreven similarity. absent[74–77].However,arecentlandmarkpaperhighlightedtheputativeroleofthecladeII nosZratherthancladeInosZcommunityforthecapacityofsoilstoactasN Osinks[47].This Areresponsestoenvironmentalcon- ehwmaalfsiso ss fuiocplnapsdo e[r5 tIe2Idn,5o b4s y]Z. laTmtheiecr s rs oeto uordgbieas sne irlsivnmekdsin ldgai cftfhkeern e icrnlgati aedlne re oI Is lnewosh saiZlre ecm oc omosn mtsoiusfntteiht nyet w cwliatihtdh er ethId neuo 2cfisneZdd ti ynppgoe ttesh napttoia asl sbNeo2suOst Sadtiogiitmnieo ,sinla wisnr lh yct,eho anenr seNce o2erOfvufi ep crdleiee ddwnucictwihetiaistnhs o edfe ipNfnfhee2yrOreglo nyrget edclinounynce?--- nirKornirS[19].TheproposedroleofcladeIInosZmicroorganismsinthesoilN O-reduction servation, conserved in the capa ci tywa srec entl yverified[5 7].I no culatio n ofDy adobacterferme nt ans –a no2ndenitrifying phylogeny ? This type o f infor mation is needed to understand if and how bacterium possessing clade II nosZ and commonly detected in soil metagenomes [48] – to evolution and niche differentiation different s oils resulted in a de creas e in N2O emiss ion of up t o 18 9% in one-thi rd of t he among a nd w ithin t he two major inoculated soils [57]. This demonstrates that clade II nosZ bacteria can consume N2O emitted icslmadseas reofl inNk2eOd .reducing microorgan- insoilbyothermicroorganisms,andsuggeststhatatighterlinkbetweenN2Oproducersand reducers could have relevance for mitigating N O emissions (Box 2). It has been known 2 IsnichedifferentiationbetweencladeI anecdotallyforsomeyearsthatsoilscanconsumeN Oinsitu[78–80],butthemechanisms 2 andIIorganismsmainlyduetodiffer- have not been investigated. Further work is needed to determine if N O emissions are encesrelatedtotheNOreductaseor 2 2 controlled by N O production or N O consumption, why and when soils increase N O areothertraitsthatvarybetweenthese 2 2 2 twogroupsmoreimportantinthiscon- consumption, and whether microbial N2O reduction can be important, in quantitative terms, text. Thedi stribu tionofthe tw ot ypes for curbing global N2O emissions. of N2 O re ductase is c orr elat ed to taxa, andtherebyinterlinked.Thisneedsto Concluding Remarks beteasedaparttobeabletomanipu- The recent dis covery of clade II nosZ, and the realization that nondenitrifying N O-reducing late and manage the N2O reducers in 2 managedecosystems. microorganismsarepresentinhighnumbersandgreatdiversityinessentiallyallecosystems, has opened up a new field of research. Research conducted over the past 5 years has Are direct associations between N2O souf bthseta fnutniacltlyio enxapl uannidtse dth oaut rd ruivned eNr2sOta nreddinugc toiof nt hteo oNr2gaanndis munadl, egrsecnoormesic t,h aen ads gseernteiotnic mdaivdeers bityy mtpargooends,u cafoenrrdst hifae nsoodr, g Nawn2hOisam t raser?deu tcheer sa dcvoamn-- ZumftandKroneck[40],thatN Oreduction‘representsarespiratoryprocessinitsownright’. 2 Both N O production and N O reduction are integral parts of the nitrogen cycle, yet most ecos yst2em s emit N2O . Em iss2ion of N2O is of environm ental co nce rn, and e xperim ent s and Draote tsh eo fr aNte2sO o rf eNd2uOct ifoonrm caotniotnro ol rN t2hOe surveyscomparingN OreducerswithincladeIandcladeIIsuggestthatcladeIIorganismsare emission,andisitecosystem-depen- key det erminants o f 2a soil’s N2O sink capac ity. M ore i ns ight into the ecol og y of the N 2O sdieonnt?c oKnnto rowlsled cog ue ld of auidndinerldyeinvge loempinisg- reducers is needed, especially mechanisms and factors explaining niche differentiation andimprovingstrategiestodecrease between org anisms w ith clade I and II nosZ, and betwee n organism s with in each of the NO emissions . 2 clades. Additional questions to further our understanding revolve around what the main purpose of N O reduction is in the environment, whether close interactions between N O 2 2 producers and N O reducers are common, and if there are advantages of labor division in 2 consortia splittingthe denitrificationpathway (seeOutstanding Questions).Thisreview high- lights advancements in the field, but further progress is essential for developing predictive understandingofN Ofluxesandgeneratingimprovedmanagementstrategiesthatcancurb 2 N Oemissions. 2 Acknowledgments ThisworkwassupportedbygrantsfromtheSwedishResearchCouncilVR(grant2016-03551toSH),theSwedish Research Council FORMAS (grant 2013-656 to SH), and the US Department of Energy, Office of Biological and EnvironmentalResearch. 52 TrendsinMicrobiology,January2018,Vol.26,No.1

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.