ebook img

Genomic Makeup of the Marine Flavobacterium Nonlabens PDF

13 Pages·2013·0.75 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Genomic Makeup of the Marine Flavobacterium Nonlabens

GBE Genomic Makeup of the Marine Flavobacterium Nonlabens (Donghaeana)dokdonensisandIdentificationofaNovelClass of Rhodopsins Soon-Kyeong Kwon1,2, Byung Kwon Kim3, Ju Yeon Song3, Min-Jung Kwak1,2, Choong Hoon Lee3, Jung-Hoon Yoon4, Tae Kwang Oh1,5, and Jihyun F. Kim1,3,* 1SystemsandSyntheticBiologyResearchCenter,DivisionofBiosystemsResearch,KoreaResearchInstituteofBioscienceandBiotechnology, Yuseong-gu,Daejeon,Korea D o 2BiosystemsandBioengineeringProgram,SchoolofScience,UniversityofScienceandTechnology,Yuseong-gu,Daejeon,Korea w n 3DepartmentofSystemsBiology,CollegeofLifeScienceandBiotechnology,YonseiUniversity,Seodaemun-gu,Seoul,Korea loa d 4DepartmentofFoodScienceandBiotechnology,CollegeofBiotechnologyandBioengineering,SungkyunkwanUniversity,Jangan-gu,Suwon, ed Gyeonggi-do,Korea fro m 521CFrontierMicrobialGenomicsandApplicationsCenter,Yuseong,Daejeon,Korea h ttp *Correspondingauthor:E-mail:[email protected]. s ://a Accepted:December 21, 2012 c a d Datadeposition:CP001397 em ic .o u p .c Abstract o m /g Rhodopsin-containingmarinemicrobessuchasthoseintheclassFlavobacteriiaplayapivotalroleinthebiogeochemicalcycleofthe be /a euphoticzone(FuhrmanJA,SchwalbachMS,StinglU.2008.Proteorhodopsins:anarrayofphysiologicalroles?NatRevMicrobiol. rtic 6:488–494).Decipheringthegenomeinformationofflavobacteriaandaccessingthediversityandecologicalimpactofmicrobial le -a rhodopsinsareimportantinunderstandingandpreservingtheglobalecosystems.Thegenomesequenceoftheorange-pigmented b s marineflavobacteriumNonlabensdokdonensis(basonym:Donghaeanadokdonensis)DSW-6wasdetermined.Asamarinephoto- tra c heterotroph, DSW-6 has written in its genome physiological features that allow survival in the oligotrophic environments. The t/5 sequenceanalysisalsouncoveredageneencodinganunexpectedtypeofmicrobialrhodopsincontainingauniquemotifinaddition /1/1 toaproteorhodopsingeneandanumberofphotolyaseorcryptochromegenes.Homologsofthenovelrhodopsingenewerefound 87 /7 inotherflavobacteria,alphaproteobacteria,aspeciesofCytophagia,adeinococcus,andevenaeukaryotediatom.Theyallcontainthe 3 1 characteristicNQmotifandformaphylogeneticallydistinctgroup.ExpressionanalysisofthisrhodopsingeneinDSW-6indicatedthat 78 3 itisinducedathighNaClconcentrations,aswellasinthepresenceoflightandtheabsenceofnutrients.Genomicandmetagenomic b y surveysdemonstratethediversityoftheNQrhodopsinsinnatureandtheprevalentoccurrenceoftheencodinggenesamong g u e microbialcommunitiesinhabitinghypersalineniches,suggestingitsinvolvementinsodiummetabolismandthesodium-adapted s lifestyle. t on 1 Key words: heterotrophic picoplankton, Bacteroidetes, bacteriorhodopsin, xanthorhodopsin, sodium pump, metagenome. 0 A p ril 2 0 1 Introduction 9 animportantpositioninthephotometabolicsysteminmarine Marineecosystems,inwhichhalfofglobalprimaryproduction environments.Acomprehensivecommunityanalysisindicates occurs, are home tooligotrophs that are responsible for the that the phyla Proteobacteria (63%), Bacteroidetes (13%), biogeochemical cycle and add an important axis to the Cyanobacteria(7.9%),Firmicutes(7.5%),andActinobacteria Earth’s energy balance (Falkowski et al. 1998; Whitman (4.6%) are among the dominant members of the oceanic et al. 1998; Azam and Malfatti 2007). Flavobacteria, which picoplankton (Venter et al. 2004). At the class level, Alpha- belong to the phylum Bacteroidetes, previously called the and Gammaproteobacteria and Flavobacteriia are believed Cytophaga–Flavobacterium–Bacteroides (CFB) group, occupy to be major carriers of microbial rhodopsins called (cid:2)TheAuthor(s)2013.PublishedbyOxfordUniversityPressonbehalfoftheSocietyforMolecularBiologyandEvolution. ThisisanOpenAccessarticledistributedunderthetermsoftheCreativeCommonsAttributionNon-CommercialLicense(http://creativecommons.org/licenses/by-nc/3.0/),which permitsunrestrictednon-commercialuse,distribution,andreproductioninanymedium,providedtheoriginalworkisproperlycited. GenomeBiol.Evol.5(1):187–199. doi:10.1093/gbe/evs134 AdvanceAccesspublicationJanuary3,2013 187 GBE Kwonetal. proteorhodopsins(PRs) (Giovannoni etal. 2005; Ruschet al. et al. 2006; Yi and Chun 2012). The genome information 2007). Among metagenome fragments recruited from the provides a glimpse to the survival strategy of DSW-6 as a GlobalOceanSampling(GOS)expedition,twoassembledfla- photoheterotroph in the oligotrophic ocean. Importantly, in vobacterial genomes harboring the PR gene turned out to addition to a typical PR, we found a new type of rhodopsin represent the dominant taxa in the Northwest Atlantic whose retinal-binding sequences are distinct from those of (Ruschetal.2007;Woykeetal.2009). well-studiedrhodopsins.Tobetterunderstandthecharacter- Solar energy is captured and converted into chemical isticsofthisnewtypeofrhodopsin,itsgeneexpressionlevelin energy by phototrophs that depend either on the chloro- DSW-6wasmonitoredundervariouslightintensities,nutrient phyll-harboring photosynthetic reaction center or on the concentrations, and NaCl concentrations. Similarity searches photoactive retinal-binding rhodopsin. Contrary to the against completely sequenced genomes and expressed multicomponent photosynthetic reaction centers, which are sequencetagswereperformed,revealinganumberofhomo- D o restrictedtosixbacterialphyla,single-moleculemicrobialrhod- logspresentintheclassesFlavobacteriia,Alphaproteobacteria, wn opsins show wide taxonomic distribution, possibly through Cytophagia, and Deinococci, and even a eukaryotic diatom. loa d horizontalgenetransferbetweendomainsandphyla(Bryant Finally,thefrequencyofthisrhodopsinfamilyindiverseaqua- ed and Frigaard 2006; Sharma et al. 2006; Bryant et al. 2007). tic ecosystems was investigated by searching through public fro m Despitethegreatdiversityofmicrobialrhodopsins,thesepro- databasesofenvironmentalsequencedata. h teins share structural features such as seven-membrane- ttp s spanning helices (Fuhrman et al. 2008). The structure and ://a functionofarchaealbacteriorhodopsins(BRs)withtheretinal Materials and Methods cad chromophorehavebeenstudiedmostintensivelytodate.BRs em moveprotonsacrossthemembraneoutofthecellusinglight StrainandCultureConditions ic .o energytogenerateanelectrochemicalprotongradient,which Donghaeana dokdonensis DSW-6, recently reclassified as up in turn can be used for ATP production (Lanyi 2004). Nonlabens dokdonensis comb. nov. (Yi and Chun 2012), .com Metagenomic approaches enabled the discovery of PRs, the was isolated from the surface seawater collected between /g b firstrhodopsinofbacterialoriginfromtheunculturedmarine the two main islands of Dokdo, Republic of Korea (Yoon e/a gammaproteobacterialSAR86group(Bejaetal.2000,2001). etal.2006).Thisnonmotilestraingrowsunderstrictlyaerobic rtic PRssharehighsequencesimilaritywithBRs,andlight-driven conditionsandexhibitsoptimalgrowthinthepresenceof2% le-a chemiosmoticprotontranslocationwasobservedafterheter- NaClat25(cid:2)C(Yoonetal.2006).CellsweregrownonMarine bs ologousexpressioninEscherichiacoli(Bejaetal.2000,2001). tra Agar2216(Difco,USA)orArtificialSeaWater(ASW)prepared c Recently,inaPR-containingmarineflavobacterialsuspension, from sea salts (Sigma-Aldrich, USA) enhanced by 2.5% w/v t/5/1 light-drivenprotontransportactivitysufficientforATPgener- peptone and 0.5% w/v yeast extract. The strain produces /1 8 ationwasdemonstrated(Yoshizawaetal.2012). 7 orange-coloredcarotenoidpigments. /7 Among other well-known rhodopsins that generate 31 7 proton-motive force, xanthorhodopsins (XRs), which have 8 been discovered first in Salinibacter ruber, are unusual in GenomeSequencingandAnnotation 3 b y thattheyrequiretwochromophores,thecarotenoidssalinix- AhybridapproachofRoche/454pyrosequencingandSanger gu e anthin and retinal, to broaden the spectral range for light sequencing followed by manual gap filling was applied to s t o harvesting (Balashov et al. 2005). Actinorhodopsins (ActRs), deciphertheN.dokdonensisDSW-6genome.Shotgunpyro- n 1 whichwererecentlyfoundinactinobacteriafromahypersa- sequence reads of approximately 30-fold genome coverage 0 A linelagoon,anestuary,andafreshwaterlake,areabundantin were generated from GS FLX (NICEM, Korea) and were p microbial communities in freshwater ecosystems (Sharma assembled into 98 contigs using gsAssembler. A total of ril 2 0 et al. 2009). Halorhodopsins (HRs), which are light-driven 2,035 paired-end Sanger sequence reads (GenoTech Co., 19 inwardchloridepumps,existinhalophiles.Theserhodopsins Korea) from a 35-kb genomic library were incorporated to may participate in the regulation of ionic content and the yieldtwoscaffolds.Genomicregionscontainingnonribosomal osmotic state (Mongodin et al. 2005). Although most rhod- peptidesynthetasegenesorISelementscouldnotbeproperly opsins function as ion transporters, sensory rhodopsins (SRs) assembled because of their highly repeated sequence pat- mediatephototaxisorsignaltransduction,likephotoreceptors terns. To disentangle these overcollapsed contigs, additional do (Fuhrman et al. 2008). The amino acid sequences of the Sangersequenceswereprovidedbyrandomshotgunsequen- proton-pumpingrhodopsinsnecessaryforretinalbindingare cing of 35-kb fosmid clones spanning each gap. All the re- highlyconservedanddifferfromthoseofHRs,andSRseven maining small gaps were closed by sequencing polymerase lackthefunctionalresiduesintheretinal-bindingpocket. chain reaction (PCR)-amplified genomic fragments. The In this study, we determined and analyzed the complete PHRED/PHRAP package (Ewing and Green 1998) was used genomesequenceofanorange-pigmentedmarineflavobac- for Sanger read base calling and partial mini-assembly, and terium,Nonlabens(Donghaeana)dokdonensisDSW-6(Yoon all sequence editing procedures were conducted using 188 GenomeBiol.Evol.5(1):187–199. doi:10.1093/gbe/evs134 AdvanceAccesspublicationJanuary3,2013 GBE GenomicMakeupoftheMarineFlavobacterium CONSED (Gordon et al. 1998). The final assembly led to a and MrBayes v3.1.2 (Zhang et al. 2012) for Bayesian infer- singlechromosomewithoutplasmids.Thesequencewasvali- ence.PhylogenetictreeswereconstructedbytheNJmethod datedanderrorswererectifiedbycomparingthefinalassem- basedontheJukes&Cantor distancemodel, followedby a bly with independent sequence data to further increase the 1,000-replicate bootstrap analysis for statistical support. For accuracyoftheassemblyandtoavoidsequenceerrorsinthe theapplicationofMLandBayesianmethods,weranProtTest homopolymeric nucleotides. Trimmed high-quality 102-bp v2.4(Abascaletal.2005)todeterminetheappropriatemodel shotgunreadsat806-foldgenomecoveragewereproduced ofaminoacidreplacement.Eachcomputationwasaccompa- using the Illumina/Solexa GA II system and were mapped to nied with 500,000-generation runs of four chains. Finally, the assembled sequence with CLC Genomics Workbench Bayesianposteriorprobabilityfrom thesetofnonparametric (CLCbio,Inc.,Denmark). bootstrapreplicatesamplestreeswassupportedbySumTrees GenepredictionofthefinishedDSW-6genomesequence programinDendroPypackage(SukumaranandHolder2010). D o was conducted using Glimmer 3.0 (Delcher et al. 2007). The 0.25 fraction of initial number of trees in each file was wn Functional assignment of the predicted genes was achieved excluded from the analysis. The image of trees obtained by loa d bysearchingforhomologsinpublicproteindatabases,suchas MrBayeswasillustratedbyusingtheDendroscope3program ed UniRef100, Swiss-Prot, the GenBank nonredundant protein (HusonandScornavacca2012). fro m database, KEGG, and SMART, using the Basic Local h Alignment Search Tool (BLAST) program (Altschul et al. NaCl-DependentExpressionoftheNQRhodopsinGene ttps 1997). The outputs were automatically parsed using ://a ForthestudyofNQrhodopsingeneexpression,DSW-6was c AutoFACT (Koski et al. 2005), and then all the annotations a d grown in 30ml of ASW enriched with an additional carbon e weremanuallycurated.tRNAscan(LoweandEddy1997)was m applied to search for tRNA genes in the genome, and rRNA source.ASWpreparedwithseasalt(Sigma-Aldrich,USA)was ic.o passedthrougha0.2-mm-pore-sizefilter,enrichedbyadding u geneswereidentifiedusingBLAST.Metabolicpathwayswere p 0.15g of peptone (Bacto Peptone, Difco) and 0.03g .c examined using the KEGG database (Aoki-Kinoshita and o m Kanehisa 2007) and BioCyc, which was generated by the yeastextract(BactoYeastExtract,Difco)andthenautoclaved. /g PathoLogic program of the Pathway Tools software (Karp The final dissolved organic carbon concentration was be/a et al. 2010). The sequence and annotation have been de- approximately 2,200ppm, as measured using a TOC-V total rtic organiccarbonanalyzer(Shimadzu,Japan).Triplicatecultures le positedinGenBankundertheaccessionnumberCP001397. were incubated at 25(cid:2)C under continuous light -ab The genome information is also available from the Genome s Encyclopedia of Microbes (GEM; http://www.gem.re.kr, last (135.05mmolm(cid:3)2s(cid:3)1 photons). When the culture’s optical trac accessedJanuary9,2013). dtuerneswityasatce6n0t0rinfumgerdea,cahneddthaepppreollxeitmwaateslsyto0r.4ed,3immmloefdtiahteelcyuinl- t/5/1/1 8 500mlofRNAlater(Ambion,USA)toyieldtheuntreatedcon- 7 PhylogeneticAnalysisofMicrobialRhodopsins /7 trol(UC)samples.Fortheremainingcultures,4MNaClorthe 3 1 To infer the phylogenetic groups of microbial rhodopsins, carbon-enrichedASWwasaddedintoeachcellculturetoyield 78 3 exemplary representatives of each class of ActRs, BRs, HRs, NaClconcentrationsof2.5%(0.43M),5.0%(0.86M),7.5% b y SRs, PRs, and XRs were retrieved from the UniProt or (1.28M), 10% (1.71M), and 12.5% (2.14M). The culture g u e GenBank databases. The two rhodopsins of N. dokdonensis volumeofeachsamplewasadjustedto50ml,causingadi- s t o DSW-6 and nine NQ-type rhodopsins identified from com- lutionofapproximately2-fold.Tomakethe4MNaClstock, n 1 plete genomes and expressed sequence tags were included NaCl was dissolved in the ASW enriched with peptone and 0 A in the analysis. They are from Gillisia limnaea R-8282 (Van yeast extract to maintain the nutrient concentration of the p Trappen et al. 2004), Krokinobacter (reclassified into culturemedium.WhentheOD600nmofthe2.5%NaClcul- ril 20 Dokdonia; Yoon et al. 2012) sp. 4H-3-7-5 (Klippel et al. turereachedapproximately0.4again,induction(ID)samples 19 2011), Hymenobacter roseosalivarius DSM 11622 (Hirsch were collected in 500ml of RNAlater by the same method. et al. 1998), Citromicrobium bathyomarinum JL354 (Jiao Samplesof3mlwerecollectedforthe2.5%NaClIDcultures, et al. 2010), Citromicrobium sp. JLT1363 (Zheng et al. 5ml samples were collected for the 5.0% NaCl ID cultures, 2011), Fulvimarina pelagi HTCC2506 (Kang et al. 2010), and 6ml samples were collected for the 7.5%, 10%, and Truepera radiovictrix DSM 17093 (Albuquerque et al. 2005), 12.5%NaClIDcultures.AlloftheRNAlater-treatedsamples andChaetocerosneogracileKOPRIAnM0002.Amultiplese- were stored at 4(cid:2)C until RNA extraction. Total RNA was ex- quencealignmentwasobtainedusingtheMUSCLEalgorithm tracted using the RNeasy kit (Qiagen, USA). The remaining (Edgar2004),andambiguouslyalignedregionswereadjusted chromosomal DNA was eliminated using a Turbo DNA-free withtheGblocksprogram(TalaveraandCastresana2007).To Kit (Ambion, USA). No amplification was observed after 40 construct phylogenetic trees, we used the MEGA5 package cyclesofPCRwhenusingtheRNAsamplesastemplateswith- (Tamura et al. 2011) for maximum parsimony (MP) and outthereversetranscriptionstep,confirmingcompleteDNA neighbor-joining(NJ),andmaximumlikelihood(ML)methods, removal. cDNAs were obtained from reverse transcription GenomeBiol.Evol.5(1):187–199. doi:10.1093/gbe/evs134 AdvanceAccesspublicationJanuary3,2013 189 GBE Kwonetal. polymerase chain reaction (M-MLV cDNA Synthesis Kit, localizedwithintheNQ-rhodopsingrouporshowslowphylo- Enzynomics,Korea). geneticcorrelations(bootstrapvalue(cid:5)70),thecorresponding Real-time PCRs were carried out on a CFX Connect readwasdiscarded. Real-Time PCR Detection System (Bio-rad, USA) with the Relationships among the 10 NQ-type rhodopsins and the iQ SYBR Green Supermix (Bio-rad). Each cDNA sample was 55 metagenomic reads were further looked into through a amplifiedwithspecificprimers(qNR_F5’-GAGAATTATGTA clusteringanalysis,becausemanyoftherhodopsinsequences GGTGCTACAGACG,qNR_R5’GTGCCAAATTACCAA frommetagenomedatasetsareinsmallfragmentsandthey GTAATACACCA,q16S_F5’-AGGACTTAACCTGACACC often do not overlap to each other. We made a simple as- TCAC,q16S_R5’-GGGTTGTAAACTACTTTTGTACAG, sumption that the identity values of a test sequence against qPR_F5’-CTAAAATGGCCACAGATGATTATGTAG,and the10referencesequenceswillbesimilartothoseofitsclose qPR_R 5’-TTG CAT CAC CAA TGT TGT AAA CTA CG) and relatives. Gap regions among the 10 references were deter- D o quantifiedintriplicate.ThePCRconditionswereaninitialde- minedbymultiplesequencealignmentbasedontheMUSCLE wn naturation step at 95(cid:2)C for 5min, followed by 40 cycles of algorithm(Edgar2004),andaminoacidpositionscorrespond- loa d amplification at 95(cid:2)C for 30s, 55(cid:2)C for 30s, and 72(cid:2)C for ingtothegapswereexcludedfromfurtheranalysis.Identity ed 1min.Finally,anadditionalsteptoestablishthemeltingcurve, values between the test sequences and the references were fro m in which the temperature was decreased from 95 to 65(cid:2)C calculatedusingtheMEGA5programwiththepairwisedele- h (0.05(cid:2)Cs(cid:3)1), was performed. Threshold cycle values (C) for tion option. To estimate the similarities between the test ttp t s eachmeasurementweredetermined.Therelativequantifica- sequences,theidentityvalueswereusedasinputcharacters ://a c tionofgeneexpressionwascalculatedbyusingthecompara- for the UPGMA algorithm (Murtagh 1984) with root mean a d tivecriticalthreshold2(cid:3)(cid:2)(cid:2)CTmethod,inwhichtheamountof squaredeviation(Huangetal.2005). em theRNA of interestis adjustedtoaninternalreferenceRNA The prevalence of prokaryotic cells that possess the ic.o u (LivakandSchmittgen2001).The16SrRNAgenewasusedas NQ-type rhodopsins in the metagenomic data sets was pos- p .c theinternalcontrolinthisstudy.Thefollowingequationswere tulatedbytheratiooftheNQ-typerhodopsinreadstoRecA, o m used: RpoB, and EF-Tu reads. These three proteins are commonly /g b (cid:2)CT ¼Ct of NQ rhodopsinðgene of interestÞ eBnLAcoSdTeXdsbeyarachsiensgolef-ctohpeymgeetnaegiennmomosictpreroakdasrfyrootmicgCeAnMomEReAs. e/artic (cid:3)Ct of 16S rRNA geneðinternal controlÞ andIMG/MagainstRecA,RpoB,andEF-Turetrievedfromthe le-a b (cid:2)(cid:2)C ¼(cid:2)C of ID samples(cid:3)(cid:2)C of UC samples GenBank and UniProt databases followed by BLASTX of the s RelatiTveexpreTssionlevel¼2(cid:3)(cid:2)(cid:2)CT T r2e0s0u3lt)inidgecnatnifideiddattheesaregaadinsshtothmeoCloOgGoudsattoabthaseet(hTraeteusporovteetinasl.. tract/5 /1 Whenestimatingthenumberofeachprotein,thelengthof /1 8 theproteinshouldbetakenintoaccount;thelongeraprotein 7/7 3 MetagenomicDataAnalysisoftheNQRhodopsins is, the higher the chance of that protein being sequenced 17 from the metagenome pool. Thus, the number of reads as- 83 Toidentifythenewtypeofrhodopsingenesfromthemeta- b signedtoeachproteinwasdividedbytheaveragelengthof y genomic data sets and to assess their abundance in diverse g the protein. The normalized proportion (r ) of prokaryotes u a e aquatic environments, approximately 58Gb of unassembled s reads from metagenome sequencing projects were down- cdoantatasientinwgatshcealncuelwatetdypaesofofllorhwosd:opsins in a metagenomic t on 1 loaded from the CAMERA (Sun et al. 2011) and IMG/M 0 (sMeaarrckhoewsoitfzinetdiavli.d2u0al1r2e)addsat(aidbeansteitsyi(cid:4)nO30c%tob,eErv2a0lu1e1(cid:5).B1LeA(cid:3)ST5X) ra ¼ Njd=(cid:3)ld April 2 were performed against an in-house database consisting of 1nPNi=(cid:3)li 019 i prokaryotic rhodopsins selected for phylogenetic reconstruc- whereN isthenumberofreadsdesignatedasNQrhodopsins tion retrieved from the GenBank and UniProt databases. d andN isthenumberofthei-threferenceprotein.l andl are Identity of the NQ-type rhodopsins among the recruited i d i the lengths of the nucleotide sequences of each protein. n reads was assured by carrying out BLASTP searches of the (¼3)indicatesthenumberofreferenceproteins. translationproductsagainsttheGenBanknonredundantpro- tein database and selecting ones that matches the NQ-type rhodopsinsinthedatabaseasoneofthetopthreebesthits. Results The metagenomic reads confirmed as NQ-type rhodopsins GenomePropertiesforMarineHeterotrophy werealignedwith10full-lengthNQ-typerhodopsins(seeear- lier),andtheirphylogeneticpositionswereassignedbyrecon- IsolatedfromtheseawatersampletakenatDokdointheEast structing trees using the NJ method in the MEGA5 package SeaofKorea,N.dokdonensis(basonym:Donghaeanadokdo- (Tamura et al. 2011) with 1,000 iterations. If a read is not nensis)DSW-6isamemberoftheclassFlavobacteriia(Yoon 190 GenomeBiol.Evol.5(1):187–199. doi:10.1093/gbe/evs134 AdvanceAccesspublicationJanuary3,2013 GBE GenomicMakeupoftheMarineFlavobacterium D o w n lo a d e d fro m h ttp s ://a c a d e m ic .o u p .c o m /g b e /a rtic le -a b s FIG.1.—OverviewofmetabolismandtransportinNonlabens(Donghaeana)dokdonensisDSW-6.Transportersaregroupedbytheirtransportmech- tra anisms:secondarytransporters(yellow),ATP-driventransporters,ionchannels(orange),P-typeATPasesuperfamily(purple),andunclassifiedtransporters. ct/5 Directionsofsubstratetranslocationareindicatedbyarrows. /1 /1 8 7 etal.2006).Wedeterminedthecompletegenomesequence of proteins by secreted peptidases and then transported in /73 1 ofthismarineflavobacterium,whichharborsasingle3.9-Mb across the membrane, where they serve as the main source 7 8 3 chromosome (supplementary fig. S1 and table S1, ofnitrogen.Theureacycledoesnotexist,butapathwayfor b y SupplementaryMaterialonline).Phylogeneticanalysisof16S the conversion of nitrite to ammonia to glutamine is con- g u rRNA genes suggested Gillisia, Gramella, Psychroflexus, and served. Enzymes involved in the synthetic pathway for the es ZunongwangiaasthesistergeneraofNonlabens,whereasa three branched-chain amino acids leucine, isoleucine, and t o n treebasedonbroadlyconservedproteinsoftheflavobacteria, valinearemissing,butgenesencodingtheenzymesrespon- 10 whosegenomeshavebeencompletelysequenced,indicated sible for the degradation of these amino acids exist in the Ap that Croceibacter, Gramella, Krokinobacter, Lacinutrix, and genome. ril 2 0 ZunongwangiaarecloselyrelatedtoNonlabens(supplemen- 1 9 taryfig.S2,SupplementaryMaterialonline). PhysiologyforSurvivalintheMarineEnvironment The genome sequence allowed us to reconstruct in silico Asamarinebacteriumthatinhabitssurfaceseawater,DSW-6 themetabolic networkof thebacterium. The primarymeta- hasmanyattributesthatmayendowthebacteriumwithmeta- bolicnetwork,includingtheaminoacidbiosyntheticpathways bolicadvantagesthatallowsurvivalunderoligotrophiccondi- andtransportsystems,issummarizedinfigure1andsupple- tions.Enzymescompensatingforcarbonlimitationincentral mentarytableS2,SupplementaryMaterialonline.Thegenes metabolism are well conserved in DSW-6. Anaplerotic encoding the enzymes for glycolysis and the pentose phos- enzymes replenish the pools of metabolic intermediates in phatepathwaywereallpresent.Thesepathwaysprovidethe the TCA cycle, which are used as precursors for the biosyn- precursorsofmetabolitesfornucleotideandfattyacidbiosyn- thetic pathways, and maintain the oxidative carbon flux. thesis.Alltheenzymesinthetricarboxylicacid(TCA)cycleare Phosphoenolpyruvate (PEP) carboxylase (DDD_3148) and also well conserved in this genome. Most amino acids are pyruvate carboxylase (DDD_1224) each create oxaloacetate synthesizedbyDSW-6itselforarederivedfromthedigestion from PEP or pyruvate by adding bicarbonate (Owen et al. GenomeBiol.Evol.5(1):187–199. doi:10.1093/gbe/evs134 AdvanceAccesspublicationJanuary3,2013 191 GBE Kwonetal. 2002). Bicarbonate is imported into the cell by transporters online).Carotenoidsandthesephotoproteinsarealsorelated encoded by a SulP-type Na+-dependent bicarbonate trans- totherhodopsin-basedphotosysteminthemarineeuphotic porter (DDD_2127) or the Na+-dependent bicarbonate sec- zone. b-Carotene, one of the carotenoid pigments, is a ondary transporter SbtA (DDD_0780). Carbonic anhydrase precursor of retinal that binds to rhodopsin, and phylogen- interconvertsCO andbicarbonatetosustainasufficientsub- etic analysis illustrates the coexistence of photolyase/crypto- 2 stratelevel. chromeandPRsamongmarineflavobacteria(Gonzalezetal. The CFB group bacteria are known to be adapted 2008). tousehigh-molecular-weightorganicmatter, primarily poly- saccharides and proteins (Kirchman 2002). In particular, IdentificationofaUniqueTypeofMicrobialRhodopsin during a mesocosm study of phytoplanktonic blooms, dom- When mining through the DSW-6 genome, two rhodopsin inatingflavobacteriawereshowntoplayleadingrolesinthe D genes,aswellastheblhgene,whoseproductisresponsible o degradation of organic matter in micronutrient-rich environ- w ments (Riemann et al. 2000). Genome analysis of several fortheoxidativecleavageofb-caroteneintotworetinalmol- nloa ecules,wereuncovered.Retinalbindingisessentialforrhod- d marine flavobacteria revealed that these organisms are e adaptedtousepolymeric organicmatterthat isoccasionally orhposdinopfusinncstioann.dE.thceolipBuLr2ifi1e(dDEp3r)oetexpinreswsienrgeepitihnekrisho-fretdhesine d from available (Bauer et al. 2006; Gonzalez et al. 2008, 2011). colorduetothebindingofrhodopsintotrans-retinal,which h Similartothegenomesofthesestrains,theDSW-6genome ttp wasprovidedseparately(datanotshown). s encodesnumerousdegradingenzymes,including14glycosyl Primarysequenceanalysisofthetranslationproductssug- ://a transferases,20glycosylhydrolases,and25predictedpeptid- ca gestedthatoneisatypicalPR.Itssequenceishighlysimilarto d ases.Thisgenomealsoencodes24proteinswithcell-surface- em thoseofflavobacterialPRs.Thefunctionalresiduesintheion adhesion domains that may function in binding to organic ic transferpathwayareallconserved,asinthenumerousother .o particles for efficient breakdown, even though the bacter- up ium is not motile. These proteins benefit the survival of proton-pumpingrhodopsins.Retinalispredictedtocovalently .co bindtothe"-aminogroupoftheLys-233residueinDSW-6PR m DSW-6 in nutrient-poor oceans where blooms occur only /g (Lys-216forBR),yieldingaprotonatedretinylideneSchiffbase. b occasionally. e Whenstimulatedbylight,Asp-87(Asp-85forBR)becomesa /a DSW-6 shares features with other ocean-inhabiting bac- protonacceptorresidueoftheprotonfromthedeprotonated rtic teria that establish a Na+ gradient instead of a H+ gradient le retinalmolecule.TheprotonreleasegroupofArg-84(Arg-82 -a forgeneratingmotiveforceforthefirststepoftheirrespira- b tory chain (Unemoto and Hayashi 1993). DSW-6 possesses forBR)pumpsouttheprotontotheextracellularsideofthe stra Na+-translocating NADH:quinine reductase (NQR) subunits membrane.Glu-97(Asp-96forBR)restorestheoriginalpro- ct/5 tonatedformoftheretinalmolecule.Then,aprotonfromthe /1 as parts of NADH dehydrogenase. In addition to the NADH /1 cytosol reprotonates the donor residue, and the protonated 8 dehydrogenase subunits, genes encoding the cytochrome c 7 acceptorresiduegivesaprotontothereleasegroup,andthe /7 oxidase, cytochrome c, and ATP synthase are present, but 31 proton-pumpingcyclerepeats(Hayashietal.2003). 7 genesforthebc complexdonotexist(supplementarytable 8 S3, Supplementa1ry Material online). Instead, the alternative Interestingly,theotherrhodopsingeneappearstoencodea 3 b complex III (Refojo et al. 2010) is present to feed electrons newtypeofmicrobialrhodopsinaccordingtotheaminoacid y gu sequence analysis. Although this rhodopsin has seven trans- e to cytochrome c. DSW-6 has numerous genes to cope with s membrane domains, as do other rhodopsins, its sequence t o internalorenvironmentalstresses,suchasoxidativestressor n differs considerably. Notably, although carotenoid-binding 1 osmotic shock (supplementary table S4, Supplementary 0 Lys-255 (Lys-216 for BR) and proton-releasing Arg-109 A Materialonline). p Many nonphotosynthetic marine bacteria use carotenoids (Arg-82forBR)areconserved,thekeyactivesiteresiduesin ril 2 todealwiththedamagecausedbysolarradiation(Haderand typical proton-pumping rhodopsins (Asp-85 and Asp-96 for 019 BR)arereplacedbyAsn-112andGln-123(fig.2A),suggesting Sinha2005)ortoadapttothecoldenvironmentbymodulat- that this protein is functionally unique. We will refer to this ingmembranefluidity(Jagannadhametal.2000).DSW-6is Asn-(Xaa )-GlnsequenceastheNQmotifhenceforth. orangecoloredbecauseofcarotenoidpigments(Yoonetal. 10 2006),whicharesynthesizedbyclusteredcrtgenes.Therep- TheNQMotif-ContainingRhodopsinsFormaDistinct ertoireandorganizationofthecarotenoid-biosyntheticgenes PhylogeneticClass are conserved between DSW-6, G. limnaea R-8282, and Krokinobacter sp. 4H-3-7-5 (supplementary fig. S3, Homologousproteinsweredetectedinbroadlydifferenttaxa SupplementaryMaterialonline).DSW-6mayexpressnumer- through similarity searches of public databases of microbial ous photolyases/cryptochromes related to repairing UV- genomes.Genesencodingrhodopsinsofthenewtypewere induced DNA damage and PAS/BLUF/PAC light-sensing present in the recently sequenced genomes of three CFB domainslocatedinmembrane-boundsensormolecules(sup- strains and three marine alphaproteobacterial strains plementary fig. S4 and table S5, Supplementary Material (fig. 2B). Among these strains, two flavobacterial strains, 192 GenomeBiol.Evol.5(1):187–199. doi:10.1093/gbe/evs134 AdvanceAccesspublicationJanuary3,2013 GBE GenomicMakeupoftheMarineFlavobacterium D o w n lo a d e d fro m h ttp s ://a c a d e m ic .o u p .c o m /g b e /a rtic le -a b FIG.2.—CharacteristicfeaturesofthenewfamilyofrhodopsinsthatcontaintheNQmotif.(A)Aminoacidsequencealignmentofthethirdtrans- s membranehelixoftheNQrhodopsinofNonlabens(Donghaeana)dokdonensisDSW-6andrepresentativemicrobialrhodopsins.Asterisks,invariantresidues; tra c shaded,activesiteresiduesofmicrobialrhodopsins.(B)Phylogeneticrelationshipsamongmicrobialrhodopsins.Atreeinferredfrom199conservedamino t/5 /1 acidpositionswasconstructedusingMEGA5.Bootstrapvaluesfor1,000replicatesareshownnexttothebranches.NQ,NQrhodopsin;BR,bacteriorho- /1 8 dopsin; PR, proteorhodopsin; XR, xanthorhodopsin; ActR, actinorhodopsin; HR, halorhodopsin. Accession numbers: Citromicrobium sp. JLT1363, 7 ZP_08702831; Citromicrobium bathyomarinum JL354, ZP_06860850; Fulvimarina pelagi HTCC2506, ZP_01440547; Chaetoceros neogracile KOPRI /73 1 AnM0002, EL620625; Truepera radiovictrix DSM 170931, YP_003705905; T. radiovictrix DSM 170932, YP_003706581; Gillisia limnaea R-8282, 7 8 ZP_09669334;Krokinobacter(Dokdonia)sp.4H-3-7-5,YP_004429763;HymenobacterroseosalivariusDSM11622,geneID2502504185orlocustag 3 b HrosDRAFT_3745intheIMGdatabase. y g u e s G. limnaea R-8282 and Krokinobacter sp. 4H-3-7-5, and a (fig. 2B and supplementary fig. S5, Supplementary Material t o n cytophagal species, H. roseosalivarius, have both the PR online). 1 0 gene and the new type of rhodopsin. The deinococcus A p T. radiovictrix, a radiation-resistant species recovered from TheExpressionoftheNQRhodopsinGeneofDSW-6Is ril 2 sodium-richhotspringrunoff,carriedtwoof thesegenesin InducedatHighConcentrationsofNaCl 01 9 addition to an HR gene and a rhodopsin gene of an un- Tracking gene expression patterns can be a reliable clue for assigned family. All these rhodopsins contain the NQ motif deducingthefunctionofagivengene,ascellschangetheir instead of the DD motif, and the existence of genome se- geneexpressioninresponsetoenvironmentalperturbations. quences containing only the new type suggests that these ToinfertheroleoftheDSW-6rhodopsins,thegeneexpres- organismsapparentlydonotrequireblhandidiforfunction- sionlevelsundervariousnutritionalandenvironmentalcondi- ing(table1).Surprisingly,ahomologoussequencewasfound tions were measured (see supplementary materials and amongtheexpressedsequencetagsoftheAntarcticmarine methods, Supplementary Material online). Quantitative planktonicdiatomC.neogracile,suggestingthatthisclassof real-timePCR(qRT-PCR)analysisindicatedthatbothrhodop- rhodopsins is not restricted to prokaryotes. Comparative singenesarehighlyinducedwhencellsareincubatedinthe analyses based on NJ, ML, and Bayesian methods confirm, presenceoflightorintheabsenceofsufficientnutrients(sup- supported by (cid:4)99% bootstrap values, that the NQ motif- plementaryfig.S6,SupplementaryMaterialonline).However, containing rhodopsins form a distinct phylogenetic group the absolute levels of the gene encoding the NQ GenomeBiol.Evol.5(1):187–199. doi:10.1093/gbe/evs134 AdvanceAccesspublicationJanuary3,2013 193 GBE Kwonetal. Table1 Rhodopsin GenesandRetinal Biosynthetic Genesin Nonlabens(Donghaeana) dokdonensis DSW-6and Other Strainswith theNQ Motifin Rhodopsin Sequences StrainName NQ PR blh crtE crtB crtI crtY ispA idi GenBankAccession Nonlabens(Donghaeana)dokdonensisDSW-6 + + + + + + + + + CP001397 Krokinobacter(Dokdonia)sp.4H-3-7-5 + + + + + + + + + CP002528 GillisialimnaeaR-8282 + + + + + + + + + AHKR00000000 HymenobacterroseosalivariusDSM11622 + + (cid:3) + + + + + (cid:3) TaxonID:2502422321(IMG) TrueperaradiovictrixDSM17093 ++ (cid:3) (cid:3) + + + (cid:3) + (cid:3) CP002049 FulvimarinapelagiHTCC2506 + (cid:3) (cid:3) + + + + + (cid:3) AATP00000000 CitromicrobiumbathyomarinumJL354 + (cid:3) (cid:3) + + + + + (cid:3) ADAE00000000 D Citromicrobiumsp.JLT1363 + (cid:3) (cid:3) + + + + + (cid:3) AEUE00000000 o w n NOTE.—++indicatestwocopiesofthesamegene.NQdenotestheNQrhodopsingene;PRdenotestheproteorhodopsingene.CrtEBIY,Blh,Idi,andIspAaredirectly lo involvedinbeta-caroteneandretinalbiosynthesis. ad e d fro m motif-containing rhodopsin were much lower than those of even Antarctica (supplementary table S6, Supplementary h thePRgeneundertheseconditions. Material online). Sixteen NQ motif-containing reads are ttp s ThepresenceoftheuniqueNQmotifinthenewlyfound shown in supplementary figure S7, Supplementary Material ://a c classofrhodopsinsandthepresenceoftworhodopsinscon- online. a d e tainingthismotifinabacteriumthatthrivesinasodium-rich Phylogeneticrelationshipsofthegenome-derivedNQrhod- m ic hotspringpromptedustoanalyzetheexpressionoftheNQ opsinsinferredthroughMP,NJ,ML,andBayesianapproaches .o u rhodopsingeneatvariousconcentrationsofNaCltoinferthe indicatedthatoverallbranchingpatternsarealmostidentical p .c functionoftheNQrhodopsins.Theartificialseawater(Huang among the trees (fig. 4A and supplementary fig. S8, om etal.2005)usedfortheculturemediumcontains2.5%NaCl Supplementary Material online). However, grouping of the /g b e andrepresentstheisosalinecondition.DSW-6cellswerefirst branches of an NQ rhodopsin in T. radiovictrix DSM 17093 /a growninASWenrichedwithadditionalcarbonandnitrogen andthatinH.roseosalivariusDSM11622intheMP,NJ,and rtic le sourcesuntiltheearlylogphase,andthentheconcentration BayesiantreescouldnotbesupportedintheMLtree(supple- -a b oMfaNtearCiallswaansdseMtteoth2o.5d%s f,o5r.0d%eta,i7ls.)5.%Ce,ll1s0e%xp,oosred12t.o5%2.5(s%ee, mofetnhteamryefitga.gSe8nAom,SicuprepaledmsoennttahreyNMJattreereiaolfotnhleinfeu).ll-PleonsigtitohnNinQg strac 5.0%,or7.5%NaClkeptgrowing,whereasthoseexposedto rhodopsins indicated that 40 of them (72.7%) can be an- t/5/1 10%NaCldidnotgrowfurtherafter6h(fig.3A).At12.5% chored to the branches that comprised the ones present in /18 7 NaCl,theOD600nmvaluesdecreased.After3hofexposureto N. dokdonensis, G. limnaea, and Krokinobacter sp., and /7 3 each NaCl concentration, total RNA from each sample was 1 YP_003706581 of T. radiovictrix (fig. 4A). Among the reads 7 8 extracted,andtherelativeexpressionleveloftheNQrhodop- included in this subfamily are four out of four reads from a 3 b singenewasdetermined.Nodifferencebetweenthebefore y hypersalinemicrobialmatand12of13readsfromtheGreat g and after treatment time points was observed for the 2.5% u Salt Lake. YP_003706581 has the largest number (15) of e s NaCl culture, as expected. As the NaCl concentration reads that are closest. Results obtained from clustering of t o n increased,geneexpressionwasinduced.Therelativeexpres- the metagenome reads and the full-length NQ rhodopsins 10 sionlevelwashighestat10%NaCl(of375±31.4).In12.5% usingUPGMAshowedthatNQrhodopsinsfromthemetage- Ap NaCl,thelevelofgeneinductionwaslowerthanthatin5.0% nomic data sets can be divided into at least four groups ril 2 NaCl(fig.3B).Incontrast,theexpressionlevelsofthePRgene 0 (fig. 4B). Similar to the results from phylogenetic anchoring, 1 were not affected by the NaCl concentration (data not 9 39 reads were clustered with those of the four species shown). (YP_003706581 for T. radiovictrix). Out of the 13 reads fromtheGreatSaltLake,10readsseemtobecloselyrelated NQRhodopsinsAreFrequentlyFoundinHypersaline to YP_003706581. Among the reads from Antarctica, one Environments clusters with the NQ rhodopsin of C. neogracile, whereas TogaininformationonthediversityandtheprevalenceofNQ six others form another group and appear more distantly rhodopsinsinnature,wesearchedforthisrhodopsintypein related. metagenomicsequences.Atotalof55readsorthologousto The occurrence of NQ rhodopsin-carrying prokaryotes in NQrhodopsingenesinthemicrobialgenomesdescribedear- themetagenomicdatasetswasevaluatedusingtheratioof lier were recruited from metagenomic data sets originating rhodopsingenestoconservedsingle-copygenes(supplemen- from various aquatic environments, including a hypersaline tary table S7, Supplementary Material online). A hypersaline microbial mat, saltern and freshwater lakes, oceans, and microbial mat sample from Guerrero Negro, Mexico, 194 GenomeBiol.Evol.5(1):187–199. doi:10.1093/gbe/evs134 AdvanceAccesspublicationJanuary3,2013 GBE GenomicMakeupoftheMarineFlavobacterium Discussion ThegenomeanalysisofDSW-6demonstratesthatthisstrainis highly adapted for living in the oligotrophic surface of the ocean. Similar to other ocean-inhabiting bacteria, DSW-6 is thoughttousetheNa+gradientinsteadoftheH+gradientto generatethemotiveforcefortherespiratorychain(Unemoto andHayashi1993)andhasmanyNa+-dependenttransporter genes. Several stress-response gene products and pigments mayprotectDSW-6fromtheharshsunlight.Inlightoflight utilization,genesforaPRandretinalbiosynthesisinaddition D tothoseforlight-sensingproteinsexistintheDSW-6genome. ow n In the case of the PR-carrying marine flavobacterium lo a Polaribactersp.MED152,uptakeofbicarbonateincreasedin d e d thepresence of light, suggestingthata PR-mediatedproton fro gradient drives anaplerotic inorganic carbon fixation toward m more efficient anabolism (Gonzalez et al. 2008). Similar to http MED152, enzymes involved in the anaplerotic pathway are s://a wellconservedinDSW-6. c a BecauseBejaetal.(2000)discoveredPRinanuncultured de m marinebacterialclade,extensiveresearch,includingmetage- ic nomic and photochemical approaches, has been conducted .ou p to discover the reasons for the great success of this wide- .c o spreadrhodopsinfamily.Currently,theselight-drivenproton m /g pumps are considered to power cell growth or extend the be survival of marine oligotrophs. Light stimulates growth of /artic the PR-containing marine flavobacterium Dokdonia sp. le MED134 (Gomez-Consarnau et al. 2007). Vibrio sp. AND4, -ab s anotherPR-containingstrain,exhibitedlongersurvivalduring tra c NonlaFbIGe.n3s.(—DoTnhgehareelaantiave)deoxkpdroesnseionnsisleDvSeWls-o6faNtQdiffrehroednotpNsainClgceonnecsenin- s(Gtaorvmaetizo-nConthsaarnnauitsetcaol.rr2es0p1o0n).diWnghenPRexpdreelsesteiodninmE.utcaonlit, t/5/1/1 trations. (A) Cell growth was determined by optical density values at a PR from the SAR-86 clade of the Gammaproteobacteria 87 /7 600nmforculturesincubatedin2.5%NaCl(circles),5.0%NaCl(down- promotes proton-motive force that turns the flagellar motor 3 1 wardtriangles),7.5%NaCl(square),10%(upwardtriangles),and12.5% duringlightillumination(Walteretal.2007).Severallinesof 78 3 NaCl(diamonds).After3h,cultureswerecollectedforRNAextractionto evidencesuggestthatthePRinDSW-6shouldbeafunctional b y analyzethegeneexpression.Errorbarsindicatethestandarddeviationsfor equivalentofotherPRsandmayplaysimilarrolestocontrib- g u triplicatesamples.(B)TheNQrhodopsinexpressionlevelwasquantified e utetothegrowthorsurvivalofthebacteriuminoligotrophic s usingqRT-PCRandthecomparativecriticalthreshold(2(cid:3)(cid:2)(cid:2)CT)method environments.First,itexhibitsthekeyfeaturesofatypicalPR, t on (LivakandSchmittgen2001).The16SrRNAgenewasusedasaninternal 1 andallthefunctionalresiduesintheprotontransferpathway 0 control,andtheNQrhodopsintranscriptat3hwasquantifiedrelativeto A areconserved.Second,theencodinggeneishighlyexpressed p rtahnegNeQs frrhoomdo6p0sintotra3n3s0c.ripEtrrionrabnaUrsCin(2d.i5ca%teNtahCel)s.tTahnedabrrdeadkeivniatthioenysafxoisr inthepresenceoflight orintheabsenceofsufficient nutri- ril 20 triplicatereactions. ents. Most significantly, purified PR protein binds to trans- 19 retinal and pumps out proton (Han S-I, Kwon S-K, Kim JF, andJungK-H,unpublisheddata). Microbial rhodopsins are functionally versatile and may containing approximately 90 practical salinity units had an transit nonproton ions across the plasma membrane. HRs abundance of the NQ rhodopsin genes as high as 17.36%. existinginhalophilespumpinchlorideinsteadofprotonina Inaddition,theywerefoundfrequentinthesamplesfromthe light-dependentmanner(Kolbeetal.2000).Thechannelrho- GreatSaltLake(1.48%)andLabonteLake(2.75%).Basedon dopsinsofgreenalgaearelight-gatedcationchannels(Kato theabundanceanalysisofGOSdata,however,0.09%ofthe etal.2012).Inthisarticle,weproposetheexistenceofanew prokaryotesinhabitingtheseasurfacemaypossessthisrhod- type of rhodopsin with a function that is unique among opsintype.Noprokaryotespossessingthisgenewerefoundin proton pumps and is related to salinity; this proposal was high salinity ponds from Chula Vista solar salterns, where based on the following: These proteins, which we dubbed haloarchaeadominate(Pasicetal.2009). the NQ rhodopsins, have seven transmembrane domains GenomeBiol.Evol.5(1):187–199. doi:10.1093/gbe/evs134 AdvanceAccesspublicationJanuary3,2013 195 GBE Kwonetal. D o w n lo a d e d fro m h ttp s ://a c a d e m ic .o u p .c o m /g b e /a rtic le -a b s tra c t/5 /1 /1 8 7 /7 3 1 7 8 3 b y g u e s t o n 1 0 A p ril 2 0 1 9 FIG.4.—NQrhodopsin-likesequencesinthemetagenomicdatasets.(A)PhylogeneticpositionsoftheNQrhodopsin-likemetagenomicreads.The cylindersymbolrepresentsametagenomicreadoriginatingfromhypersalinemicrobialmat(brown),GreateSaltLake(red),YellowstoneLake(orange),urban lake(yellow),Antarctica(white),oroceans(blue).Aphylogenetictreeoffull-lengthNQ-rhodopsinswasconstructedbasedontheNJdistanceanalysisof243 positions.(B)UPGMAclusteringoftheNQrhodopsin-likemetagenomicreads.ThedendrogramwasderivedfromUPGMAclusteranalysisusingidentity valuesagainstcompletelysequencedgenes.MetagenomeprojectsfromwhichNQrhodopsin-likesequenceswererecruited:hypersalinemat,Guerrero Negrohypersalinemicrobialmat(CAM_PROJ_HypersalineMat);GreatSaltLake,GreatSaltLake(Gm00191ofGOLDIDinIMGdatabase);YellowstoneLake, Yellowstone Lake (CAM_PROJ_YLake); urban lake, LaBonte Lake (Gm00212 of GOLD ID in IMG database); Antarctica, Antarctica aquatic microbial metagenome (CAM_PROJ_AntarcticaAquatic); ocean, Global Ocean Sampling expedition (CAM_PROJ_GOS). Truepera radiovictrix DSM 170931, YP_003705905;T.radiovictrixDSM170932,YP_003706581. 196 GenomeBiol.Evol.5(1):187–199. doi:10.1093/gbe/evs134 AdvanceAccesspublicationJanuary3,2013

Description:
Cyanobacteria (7.9%), Firmicutes (7.5%), and Actinobacteria. (4.6%) are among the dominant Genome Biol. Evol. 5(1):187–199. doi:10.1093/gbe/evs134 Advance Access publication January 3, 2013. 187 . the GenBank nonredundant protein database, KEGG, and SMART, using the Basic Local.
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.