ebook img

Genomic insights into the broad antifungal activity, plant-probiotic properties, and their regulation PDF

32 Pages·2017·13.61 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Genomic insights into the broad antifungal activity, plant-probiotic properties, and their regulation

RESEARCHARTICLE Genomic insights into the broad antifungal activity, plant-probiotic properties, and their regulation, in Pseudomonas donghuensis strain SVBP6 BetinaCeciliaAgaras1,2*,Andre´sIriarte3,ClaudioFabia´nValverde1,2 1 LaboratoriodeBioqu´ımica,Microbiolog´ıaeInteraccionesBiolo´gicasenelSuelo,DepartamentodeCiencia yTecnolog´ıa,UniversidadNacionaldeQuilmes,Bernal,BuenosAires,Argentina,2 ConsejoNacionalde a1111111111 InvestigacionesCient´ıficasyTe´cnicas(CONICET),BuenosAires,Argentina,3 LaboratoriodeBiolog´ıa a1111111111 Computacional,DepartamentodeDesarrolloBiotecnolo´gico,InstitutodeHigiene,FacultaddeMedicina, a1111111111 UniversidaddelaRepu´blica,Montevideo,Uruguay a1111111111 a1111111111 *[email protected],[email protected] Abstract OPENACCESS Plant-growthpromotionhasbeenlinkedtothePseudomonasgenussincethebeginningof Citation:AgarasBC,IriarteA,ValverdeCF(2018) thisresearchfield.Inthiswork,weminedthegenomeofanArgentineanisolateofthe Genomicinsightsintothebroadantifungalactivity, recentlydescribedspeciesP.donghuensis.StrainSVBP6,isolatedfrombulksoilofanagri- plant-probioticproperties,andtheirregulation,in culturalplot,showedabroadantifungalactivityandseveralotherplant-probioticactivities. PseudomonasdonghuensisstrainSVBP6.PLoS ONE13(3):e0194088.https://doi.org/10.1371/ Asthisspecieshasbeenrecentlydescribed,anditseemslikesomeplant-growthpromoting journal.pone.0194088 (PGP)traitsdonotbelongtotheclassicalpseudomonadstoolbox,wedecidetoexplorethe Editor:Marie-JoelleVirolle,UniversiteParis-Sud, SVBP6genomeviaanbioinformaticapproach.Genomeinspectionconfirmedourprevious FRANCE invitroresultsaboutgenesinvolvedinseveralprobioticactivities.Othergenetictraitspossi- Received:November23,2017 blyinvolvedinsurvivalofSVBP6inhighlycompetitiveenvironments,suchasrhizospheres, werefound.Tn5mutagenesisrevealedthattheantifungalactivityagainstthesoilpathogen Accepted:February24,2018 MacrophominaphaseolinawasdependentonafunctionalgacSgene,fromtheregulatory Published:March14,2018 cascadeGac-Rsm,butitwasnotduetovolatilecompounds.Altogether,ourgenomicanaly- Copyright:©2018Agarasetal.Thisisanopen sesandinvitrotestsallowedthephylogeneticassignmentandprovidedthefirstinsights accessarticledistributedunderthetermsofthe intoprobioticpropertiesofthefirstP.donghuensisisolatefromtheAmericas. CreativeCommonsAttributionLicense,which permitsunrestricteduse,distribution,and reproductioninanymedium,providedtheoriginal authorandsourcearecredited. DataAvailabilityStatement:Allrelevantdataare withinthepaperanditsSupportingInformation Introduction files. Funding:Thisworkwassupportedbygrants: AmongallsoilbacterialgenerahavingarepresentativedescribedasaPlant-GrowthPromot- PUNQEXPTE1411/15(UniversidadNacionalde ingMicrobe(PGPM),thegenusPseudomonascompriseawidevarietyofprobioticspecies, Quilmes,Argentina);PIP2012N˚ withdistinctmechanismsofactionthatstrengthenplanthealth,eitherdirectlyorindirectly 11220110100031(ConsejoNacionalde [1,2].Severalpseudomonadshavedemonstratedproductionofdifferentkindsofsecondary InvestigacionesCient´ıficasyTe´cnicas,Argentina); metabolitesinvolvedinantagonismtopathogens,phytostimulationornutrientsupply,andan PIP2015N˚11220150100388(ConsejoNacional abilitytodegradecomplexorganiccompounds,notonlybeingablehencetocontributeto deInvestigacionesCient´ıficasyTe´cnicas, Argentina);PRCT17ActaN˚1459/17(Comisio´nde plantgrowth,butalsotobioremediationofsoils[2–6].Asmembersoftheγ-Proteobacteria PLOSONE|https://doi.org/10.1371/journal.pone.0194088 March14,2018 1/32 GenomeminingofP.donghuensisSVBP6 InvestigacionesCient´ıficas,MinisteriodeCiencia, subphylum,whichrangefrom1%to34%oftheabundanceoftotalsoilbacterialcommunity Tecnolog´ıaeInnovacio´ndelaProvinciadeBuenos ofdifferentenvironments[7],Pseudomonasspp.arekeymembersofthesoilmicrobiome. Aires,Argentina).Thefundershadnoroleinstudy Consideredascopiotrophs,becausetheyarespeciallypresentinareaswhereresourceavail- design,datacollectionandanalysis,decisionto abilityishighandcarbonsourcesaresimple[8],theirremarkablenutritionalversatilityallows publish,orpreparationofthemanuscript.They themtoexploitdiverserhizosphereenvironments,whereeachplantexudatesavarietyof contributedwiththemoneytocarryoutthe describedassaysandtopayforthepublicationfee. organiccompounds[9].Theirhighrhizospherecompetenceiscriticalforthecorrectfunction- ingofmicrobialinoculantsandtheireffectonsoilmicrobiome[10,11]. Competinginterests:Theauthorshavedeclared thatnocompetinginterestsexist. ThephysiologicalandgeneticadaptabilityofPseudomonasspp.facilitatedthewidespread distributionofthisgenusinvariousecosystemsaroundtheworld[12–14].Besides,those genomictraitsallowthesebacteriatobecontinuouslystudiedassourcesofnewmetabolic pathwaysandnovelproducts,sometimesrelatedwithplant-probioticactivities[15–18],which couldbeusefulforthedevelopmentofmoreefficientagriculturalbio-inputs. Genomesequencinghasbecomeausefultoolfordifferentmicrobiologyprojects,notonly tounderstandthegeneticbasisofmetabolicprocesses[19,20],butalsotounravelsomeincon- sistencesintaxonomicaffiliationsthattheclassicalapproachescannotdefine,forinstance,by comparingtheaveragenucleotideidentity(ANI)[21,22].AsPseudomonasspp.genomesare soadaptable,thesetechniqueshaverecentlyallowedthedescriptionofseveralnovelspecies [23–26],andtobetterorganizethisgenus,whichisthelargestwithinGram-negativebacteria [27].Anadditionalbenefitofnextgenerationsequencingisthepossibilitytoaccesstoan increasingamountofgeneticinformation.Thus,genomemininghasbecomeanessentialtool forprocessingsuchamountofdatagenerated,inordertosearchfornewcatalysts,targetsor products,particularlyinmicroorganismswithindustrialapplications,asPGPM[28]. ThereareseveralreportsonthedifficultiestoreproducethepositiveeffectsofPGPMthat hadbeenseenatthelaboratoryonplantgrowth,infieldassays,mostprobablyduetotheinflu- enceofseveraluncontrolledbioticandabioticfactors[29–33].Therefore,thefocushasbeen recentlyputintotheisolationofPGPMfromthesameagriculturalplotsorcroprhizospheres wheretheywouldbeappliedlaterasinoculants.Thisstrategymayhelptoovercomedifficul- tiesinadaptingnon-nativebacterialspeciesinanewenvironment[6,34–37].Withthispur- pose,weisolatedandcharacterizedagroupof19pseudomonadsfromthehumidPampean regionofArgentina,whichwereselectedbytheirinvitroantagonisticactivityagainstdifferent fungalpathogens[6].Oneoftheisolates,namedSVBP6,displayedabroadspectrumoffun- gal-growthinhibitionactivity.Besides,SVBP6couldnotbeclearlyassignedtoanyofthePseu- domonasspeciesalreadydescribedatthatmoment.Therefore,theaimofthisworkwasto obtainandexplorethedraftgenomeofstrainSVBP6,inordertobetterdefineitstaxonomic assignment,tosurveythegeneticdeterminantsofthebroadantifungalactivityshowninvitro, andtodiscoverputativeplant-probiotictraitsthatmaybeinstrumentalforthisstrainasan agriculturalbio-input. Materialsandmethods IsolationofSVBP6,andphysiologicalandbiochemicalcharacterization StrainSVBP6wasisolatedfromthebulktopsoil(0–10cm)ofanagriculturalplotlocatedin Viale,EntreR´ıosprovince,Argentina(31˚52’59,6”S;59˚40’07”W)usingGould’sS1selec- tivemedia[38].Atsamplingtime(February2010),theplotwascultivatedwithsoybeanand hadahistoryofno-tillmanagementundergoodagriculturalpractices(croprotation,nutrient replacement,andminimizedagrochemicaluse)for,atleast,13years[39].IsolateSVBP6was selectedbyitsantagonisticpotentialagainstadiversegroupofphytopathogenicfungithat includedmembersofFusarium,Colletotrichum,Phomopsis,Macrophomina andCercospora genera[6]. PLOSONE|https://doi.org/10.1371/journal.pone.0194088 March14,2018 2/32 GenomeminingofP.donghuensisSVBP6 Colonymorphologywasobservedunderamagnifyingglass(OlympusSZ61,10×),after sowinga20μl-dropofabacterialsuspensionwithDO =1.0onanutrientagar(NA,Biokar) 600 plateandincubatingfor48hat28˚C.Morphologicalcharacterizationofitscellularstructure wasperformedusingTransmissionElectronMicroscopy(JEM1200EXII,Jeol)attheCentral ServiceofElectronMicroscopy(SCME)fromtheFacultyofVeterinaryoftheNationalUni- versityofLaPlata(BuenosAires,Argentina).Forthisassay,SVBP6wasgrownovernighton nutrientyeastbroth(NYB,Biokar)at28˚Cand200rpm. ClassicalbiochemicalassayswereperformedtocharacterizeSVBP6:Gramstaining(Labora- toriosBritania);catalasedirecttestwithadropof3%H O onacolonyandevaluationofbub- 2 2 bling(O production);oxidasetest(BDBBL™Taxo™,N-discswith6%ofp-aminodimethylaniline 2 monohydrochloride);gelatinliquefactionafter24hofincubationofNYBwith12%ofgelatin; glucosefermentationinHughandLeifson’sOFbasalmedium(pH=7.4);growthonNAplates atdifferenttemperatures(4˚C,25˚C,28˚C,35˚C,37˚Cand45˚C);growthonLuria-Bertani(LB) brothatseveralpHvalues(from3.0to13.0)andNaClconcentrations(from0%to11%);reduc- tionofnitritesandnitratesafter24hofculturegrowthonNYBsupplementedwithKNO or 2 KNO ,respectively,bytheevaluationofnitritepresencewithn-(1-naphtyl)-ethylenediamine 3 dihydrochloride[40]andgasformationinsideaDurhamtube[41].Dependingonthetestper- formed,EscherichiacoliK12orPseudomonasaeruginosaPA01wereemployedaspositiveorneg- ativecontrols.Allincubationsweredoneat28˚C,unlessotherwisespecified. ToanalyzethecarbonsourcesthatSVBP6wasabletometabolize,weassayeditsgrowthin BiologEcoPlatesTM[42],after108hofstaticincubationat30˚C.Antibioticresistancewasana- lyzedbygrowingSVBP6inNYBmediumsupplementedwiththecorrespondingantibioticat theconcentrationscommonlyemployedforthePseudomonasspp.genus:chloramphenicol (20μg/ml),ampicillin(100μg/ml),gentamicin(10μg/ml),kanamycin(50μg/ml)andtetracy- cline(150μg/ml). EvaluationofPGPproperties Wetestedseveralplant-growthpromoting(PGP)activitiesaspreviouslydescribed[6]:exopro- tease,phospholipaseand1-aminocyclopropanecarboxylicacid(ACC)deaminaseactivities; hydrogencyanide(HCN)production;siderophoreandindoleaceticacid(IAA)synthesis; swimmingandswarmingmotilities;inorganicphosphatesolubilizationability;biofilmdevelop- ment;secretionofacylhomoserinelactone-like(AHL)quorumsensingsignalsandthepresence ofantifungal-relatedgenes(phlD,phzF,pltBandprnD).Exoprotease(milkagarplates),phos- pholipase(eggyolkagarplates)andsiderophore(CASagarplates)activitieswererelativizedto thecolonydiameterasfollows:[halodiameter(inmm)—diameterofeachbacterialspot(in mm)]/diameterofeachbacterialspot(inmm).Relativevalueswereexpressedaspercentage. Additionally,wetestedthechitinaseactivitybyafluorometricassaywith4-methylumbelli- ferone-N-acetyl-b-D-glucosaminideassubstrate[43].Briefly,wegrewSVBP6onsynthetic medium(SM)liquidmediumsupplementedwith10%v/vofLBbrothand0.2%w/vofcolloi- dalchitin[44]for72hat200rpmand28˚C.Then,wecollected200μlofsupernatantbytripli- cateandmixeditwith50μlofsubstrateat200μMinMESbuffer0.1M(pH=6.1),tomeasure thefluorescenceduring15minutes.Controlreactionsandcalculationsofactivityweredone aspreviouslydescribed[43].Chitinaseproductionwasexpressedastheenzymeactivity (nmol/min)relativetotheOD valueoftheSMculture. 600 Fordetectionoflipopeptideproduction,wecarriedoutthedrop-collapsetestonParaf- ilm1[19].Thepresenceofbiosurfactantsinadropofcell-freesupernatant(fromabacterial culturegrownonNYBfor16hat28˚Cand200rpm)decreasesthesurfacetensionoftheliq- uidand,therefore,resultsinitscollapse.Methylenebluewasaddedtostainthedropsfor PLOSONE|https://doi.org/10.1371/journal.pone.0194088 March14,2018 3/32 GenomeminingofP.donghuensisSVBP6 photographicpurposesandhadnoinfluenceontheresults.Besides,aspecificassayforrham- nolipidsdetectionwasperformedinSiegmundWagner(SW)agar[45],evaluatingtheproduc- tionofhalosaroundthecoloniesafterplateincubationfor48hat28˚C.Rhamnolipidsform aninsolublecomplexwiththeCTABpresentintheSWmedium,anditinteractswiththe methylenebluealsopresent.Thus,rhamnolipidsproducersaredetectedbyadarkbluehalo aroundthecolony[46]. Antagonismbytheproductionofvolatileorganiccompounds(VOCs)wasevaluatedbyco- cultivationassaysinpartitionedPetridishes[47].Briefly,aheavystreakofSVBP6wasper- formedinonesideoftheplateontoNA,anda1cm2plugofafreshM.phaseolinaculturewas depositedontotheothersideoftheplatecontainingpotatodextroseagar(PDA).Plateswere sealedwithParafilm1andincubatedfor5daysat28˚Cinthedarkness.Theassaywasper- formedbytriplicateandcontrolswithoutbacteriaorfungalinoculumwereincluded. Antibacterialactivitywasevaluatedintwoassaystoanalyzeifitwasduetoadirectcontact ofcells(co-culture)ortothesecretionofatoxinmolecule(overlaidlayer).Forthefirstassay, NAplatesweresownwith100μlofabacterialsuspensionofthepreywithaOD =1.0.Once 600 platesweredried,a10μldropofaSVBP6bacterialsuspensionwithOD =1.0wasspotted 600 oneachone,andplateswereincubated24hat28˚CfortheoptimalSVBP6growth.Forthe secondassay,a10μldropofasimilarSVBP6bacterialsuspensionwasspottedintheNAplates andincubatedovernightat28˚C.Then,after30minutesofUVexposuretokilltheSVBP6 cells,4mlofsoftNA(0.8%agar)with10%v/vofasaturatedculturesoftheconfrontedbacte- rialstrainwereoverlaidabovethedropsandplateswereincubatedfor24hattheoptimaltem- peratureofthebacterialprey.SVBP6wasconfrontedagainstEscherichiacoliK12,aBacillus subtilisstrainfromthebacterialcollectionoftheMicrobiologyAreaoftheDepartmentofSci- enceandTechnology(UniversidadNacionaldeQuilmes)andPseudomonasfluorescens1008 fromRizobacterArgentinaS.A.NAplateswiththeoverlaidlayersofE.coliorB.subtilisstrains wereincubatedat37˚C,orwithP.fluorescensstrain,at28˚C. Fattyacidsandwhole-cellsproteinprofileanalyses FattyacidanalysiswasperformedbygaschromatographyusingtheMIDISherlock1Micro- bialIdentificationSystemandthestandardprotocol[48].TheRTSBA6methodwasemployed forcomparisonoftheFAMEprofilewiththeavailablelibrary(http://www.midi-inc.com/pdf/ RTSBA_6.21%20.(Environmental%20Aerobes).pdf,asavailableinAugust2017). Whole-cellproteinprofileofSVBP6wasobtainedusingtheUltraflexIIIUV-MALDI-TOF/ TOFmassspectrometerandMALDIBiotyper3.1software(BrukerDaltonics,Bremen,Ger- many)attheCEQUIBIEMInstitute(CONICET,Argentina)inassociationwiththeInstitute ofBiotechnologyandMolecularBiology(IBBM,CONICET,LaPlata,Argentina).Theprepa- rationofthesampleswasperformedaccordingtomanufacturers’recommendationfromasin- glecolonyculturedonLBfor24hat28˚C[49].Bacterialidentificationwasperformedwith MALDIBiotyperOfflineclassificationsoftwareusingscorevaluesproposedbythemanufac- turerasfollows:ascorevaluehigherthan2.0indicatesspeciesidentification;ascorevalue between1.7and1.9indicatesgenusidentification;andascorevaluelowerthan1.7indicates notaxonomicmatching[50].ThePseudomonasspp.databaseintheMALDIBiotypersoftware included168representativespecies(S1Table). GenomicDNApreparationandsequencing ForDNAisolation,wecollected20mgfreshweightofSVBP6cellsfromanovernightculture onNA.AfterprocessingwiththeZRSoilMicrobeDNAMicroPrep™kit(ZymoResearch), weobtainedca.9μgofDNAwithanOD of1.9andagoodintegrityasjudgedby 260/280 PLOSONE|https://doi.org/10.1371/journal.pone.0194088 March14,2018 4/32 GenomeminingofP.donghuensisSVBP6 electrophoresisina0.8%agarosegel.PurifiedDNA(approx.300ng)wassenttoINDEAR (Rosario,Argentina)topreparethecorrespondinglibrariesandtoobtainadraftgenomevia theIlluminaHiSeq1500sequencingsystem. Genomeassemblyandgeneprediction GenomeassemblywasperformedwiththeA5pipeline[51].Genepredictionandgenome analysisofPGP-relatedtraitsinthedraftgenomeofSVBP6strainwereperformedwiththe RapidAnnotationwithSubsystemsTechnology(RAST)serverdatabase2.0[52],BasicLocal AlignmentSearchTool(BLAST1,[53]),Pseudomonasgenomedatabase(www.pseudomonas. com,[54]),Antibiotics&SecondaryMetaboliteAnalysisShell(antiSMASH)v.3.0.5[55]and theIslandViewer3software[56].SyntenyanalyseswereperformedwiththeSimpleSynteny platform(https://www.dveltri.com/simplesynteny/index.html,[57]). Selectionofgenomes,identificationofputativeorthologousgenes, alignments,andphylogeneticanalysis Alldraftandcompleteassemblies,andproteincodingsequencesofthegenusPseudomonas weredownloadedviaftpfromftp.ncbi.nlm.nih.gov/genomes(April19th,2017).Thisfirst datasetcomprised3545assemblies.Forty-fourhighlyconservedribosomalprotein-coding geneswereusedforgeneticcomparisonandsamplinggenomes(S2Table).All44conserved geneswereidentifiedin3162genomesandthesegenomeswereusedforfurtheranalysis (S3Table).The44groupsofputativeorthologousgeneswereindependentlyalignedusing Muscle[58]withthefastestalgorithm(options:-maxiters1-diags1).Poorlyalignedpositions wereeliminatedusingGblocksoftwarewithdefaultparameters[59],andsubsequently concatenatedforsequencedistanceestimation.Genomesdisplayinga99%ormoresimilarity intheseconservedgeneswereclustered.Onegenomeforeachclusterwasrandomlyselected forsubsequentphylogeneticanalysiswithpreferenceforthosewithanassignedspecies,if available.Thisresultingseconddatasetcomprise140selectedgenomesplustheonefromPseu- domonassp.SVBP6reportedhere(SampledGenomesinS3Table).Sixty-sevenputativeortho- logousgeneswereidentifiedamongthese141genomes.TheOrthoMCLmethod[60]was implementedintheGet_homologoussoftwareandusedforhomologousidentification[61]. Blastsearcheswereperformedwithaminimalidentityvalueof30%andminimalquerycover- ageof75%.OrthologousproteinsequenceswerealignedusingClustalOv1.2.0[62].Again, poorlyalignedpositionswereeliminatedusingGblockwithdefaultparameters[59]andthen concatenatedforphylogeneticanalysis.Aphylogenetictreewasinferredusinganapproxi- matelymaximumlikelihoodmethodwithanaminoacidLG+GmodelusinginFastTree2.1 [63].TheShimodaira-Hasegawa(SH-like)testwasusedtoevaluatebranchsupport.Thephy- logeneticpositionofSVBP6wasestablishedandallgenomesfromthemostinclusiveand robustmonophyleticgroupwereselected.Genomesfromthismonophyleticgroupwereused totrackbackallthecloselyrelatedgenomestoSVBP6strainavailableintheoriginalfirstdata- set.Asaresult,122closelyrelatedgenomesfromthefirstdatasetwereretrievedandusedfora furtherphylogeneticanalysis(CloselyrelatedgenomesinS3Table).Aspreviouslydescribed, putativeorthologousgenesamongthe122genomesplusSVBP6strainwereidentifiedusing Get_homologuespackage.Sixhundredandseventy-sixclustersoforthologousgeneswere foundandsubsequentlyalignedandtrimmedusingClustalOv1.2.0andGblock,respectively. Blockswerefinallyconcatenated,andaphylogenetictreewasbuiltbymeansofFastTree2.1, asaforementioned.ThewholeapproachisdescribedasaworkflowinS1Fig.AVenndiagram wasconstructedwithRsoftwarev.3.4.0[64],employingtheVennDiagrampackageandallthe ORFs(PEGs)foundineveryP.donghuensisgenomeasdatabase. PLOSONE|https://doi.org/10.1371/journal.pone.0194088 March14,2018 5/32 GenomeminingofP.donghuensisSVBP6 Averagenucleotideidentityscore(ANI) PairwiseTwo-wayANIscorewascomputedamongallcloselyrelatedgenomesofSVBP6 usingtheani.rbscriptdevelopedbyLuisM.Rodriguez-Randavailableatenveomics.blogspot. com.ANIscoreisaresultfromawholegenomecomparison.ANIindexisusedtodelineate speciesfromgenomessequencedata[65].Therefore,iftwogenomesdisplayanANIvalueof 95%orhigher,bothstrainsarebelievedtobelongtothesamespecies.Phylogeneticanalysis wasusedtosupportANIresults. Tn5mutagenesisandscreeningofmutantcloneswithreducedantifungal activity ToobtainaclonelibraryofrandomTn5mutantsofSVBP6,weperformedatriparentalconju- gationwithSVBP6astheacceptorstrain,EscherichiacoliCC118λpirwiththepBAMD1-4 plasmidasthedonorstrainandE.coliHB101withthepRK600plasmidasthehelperstrain,as previouslydescribed[66].Briefly,from5mlofNYBovernightculturesthatwereincubatedat 37˚C(forE.colistrains)and35˚CforSVBP6strain(toimprovethePseudomonasabilityto acceptheterologousDNA,[67]),wecombinedequalvolumesofthethreebacterialcultures, centrifugedtoobtaincellularpellets,andmixedtheminasingle1.5mltube.Weresuspended themwith50μloffreshNYBmediumandweplateditontheborderofaNAplate.Theincu- bationwasperformedat37˚Cfor5h.Cellswerecollectedwith1mloffreshNYBandappro- priatedilutionswereplatedontoM9minimalmediumagarplates[49]with0.2%ofcitrateas thesolecarbonsource,supplementedwith100μg/mlofstreptomycin[47].Weobtained approximately2500clonesthatwereconservedin384-wellplatesat-80˚Cin20%glycerol. Forselectionofputativeclonesthathadlosttheirantagonisticpotential,weperformedco-cul- tivationassaysbystreakingindividualclonesontoagarplatespreviouslyoverlaidwithasus- pensionofM.phaseolina131.2010conidia.Afterincubationfor48hat28˚C,wesearchedfor clonesthatdidnotproduceahalooffungalgrowthinhibition.ToidentifytheTn5insertion siteineachselectedclone,wecarriedoutanarbitrarynestedPCRamplificationwiththemeth- odologypreviouslydescribed[66],followedbypartialsequencingofthecorrespondingampli- consatMacrogenInc.(Seoul,Korea). RNAextractionandpurification,andNorthernblotanalysis RNApreparationfromSVBP6cellswascarriedoutessentiallyasdescribedpreviouslyforP. protegensCHA0[68],withminormodifications.Briefly,200–500μlofcellculturewascentri- fuged,andcellswereresuspendedin500μlofTKMbuffer(10mMTris-HCl,10mMKCl,5 mMMgCl ,pH7.5).Washedcellsweremixedwith75μloflysissolution(320mMsodium 2 acetateatpH4.6,8%SDS,16mMEDTA).Lysedcellsweremixedfor5minwith575μlof water-saturatedphenolat65˚C.Aftercentrifugation,thesupernatantwasextractedoncewith phenol-chloroformandprecipitatedwith3volumesofethanol.TheresultingRNApelletwas dissolvedindiethylpyrocarbonate-treatedH Oandkeptat-80˚C.RNAconcentrationwas 2 determinedat260nm.PurityandintegrityofRNApreparationswereassessedbydenaturing agaroseelectrophoresisandethidiumbromidestaining.Northernblotanalyseswereper- formedasreportedelsewhere[69].ThreemicrogramsoftotalRNAfromeachsamplewasini- tiallyelectrophoresedfor45minataconstantcurrent(15mA)inpolyacrylamidegels(8.3M urea,8%[wt/vol]acrylamide,0.2%[wt/vol]bisacrylamidein1×Tris-borate-EDTA[TBE] buffer),withthelow-rangeRNAladder(ThermoScientific,USA)servingasamolecular weightmarker.Themarkerlanewascutandstainedseparatelywithethidiumbromideand theimageregisteredwithaUVtransilluminator.Theremaininggelwaselectroblottedat150 PLOSONE|https://doi.org/10.1371/journal.pone.0194088 March14,2018 6/32 GenomeminingofP.donghuensisSVBP6 mAfor30minontoaHybond-Nmembranein1×TBEbuffer.Afterwashingthemembrane twicewith2×SSCsolution(30mMsodiumcitrate,0.3MNaCl),theRNAwascross-linkedto themembranebyexposuretoUVlightfor5min.Themembraneswerethenblockedwith prehybridizationbuffer(50%[wt/vol]formamide,5×SSC,50mMphosphatebuffer[pH7.0], 2%[wt/vol]blockingreagent,0.1%[wt/vol]N-laurylsarcosine,7%[wt/vol]sodiumdodecyl sulfate[SDS])for1hat50˚Cinahybridizationovenandthenincubatedovernightat50˚C withthehybridizationbuffercontainingthespecificanti-rsmYdigoxigenin-labeleddouble- strandedDNA(dsDNA)probe(previouslygeneratedbyamplificationofthersmYgenomic locusofP.protegensCHA0)[69].Thehybridizedmembraneswerewashedunderstandard stringentconditions,incubatedwithanalkalinephosphatase-coupledanti-digoxigeninanti- bodysolution,washedwiththesamebuffer,andcoveredwiththeLumiphoschemilumines- centreagent(Lumigen,USA)inthedarkatroomtemperaturefor5min.Themembranes wereexposedfor60mintophotographicfilmsandthenfurtherdeveloped. Resultsanddiscussion BiochemicalandmorphologicalfeaturessupporttheassignationofSVBP6 tothePseudomonasgenus SVBP6isaGram-negative,rod-shaped(between1.3–3.2μminlengthand0.5–0.9μmin width)andpolar-flagellatedbacterium(Fig1A)oftheorderPseudomonadales,belongingto theGammaproteobacteriaclass.Itisoxidase,catalaseandgelatinasepositive,andnonsporulat- ing.SVBP6cangrowbetween4˚Cand35˚Cinrichmedia,likeNA,eventhoughtheoptimal growthtemperatureis28˚C,anditbelongstother-strategist(copiotrophs)groupofmicroor- ganisms[8].After48honnutrientagar(NA)plates,SVBP6coloniesarewhiteopaque,rough (non-mucoid)andhaveirregularborders(Fig1B).Besides,thisstraincangrowinapHrange from6.0to10.0andinasalinityrangefrom0%to5%NaClinNYBmedium.SVBP6can reducenitratebutnotnitrite,soitcouldnotparticipateinthesoildenitrificationprocess.Its respirationisstrictlyaerobicanditdoesnotproduceanyfluorescentpigment,neitherpyocya- ninorpyoverdine,inKing’sAorBorGould’sS1media[70].Finally,SVBP6strainisnaturally resistanttochloramphenicol(Cm,20μg/ml),ampicillin(Amp,100μg/ml)andgentamicin (Gm,10μg/ml)inbothliquidNYBandsolidNAmedia.Fivecopiesofbeta-lactamasepro- teins,auniquecopyofanaminoglycoside6’-N-acetyltransferase,whichcouldberesponsible fortheGmresistance[71],andtheeffluxoperonTtgABC,whichgiveCmresistanceinP. putidaKT2440[72],werefoundintheSVBP6genome.Nevertheless,thesegeneswerenot associatedtomobilegeneticelementsandusuallyfoundinenvironmentalisolates[73–75]. Fig1.MorphologicalfeaturesofSVBP6strain.SVBP6wasisolatedfromabulksoilsample(0–10cmdepth)ofan agriculturalplotlocatedinViale,EntreRiosprovince,Argentine(31˚52’59,6”S;59˚40’07”W).Morphological features,i.e.bacillarstructureandpolarflagella,ofP.donghuensisSVBP6seenwithTEM(A).Colonymorphologyona NAplateafter48hofgrowthat28˚C(B). https://doi.org/10.1371/journal.pone.0194088.g001 PLOSONE|https://doi.org/10.1371/journal.pone.0194088 March14,2018 7/32 GenomeminingofP.donghuensisSVBP6 Besides,knowledgeaboutnaturalantibiotics’resistanceallowedustocorrectlyselectthemuta- genesistoolsforthemolecularbiologystudiesontheSVBP6metabolism,asweconfirmedwe couldemployplasmidsmarkedwithtetracyclineandkanamycinresistancegenesintheTn5 approach. Withregardstocarbonsourceutilization,SVBP6wasabletorespirethefollowingsub- strates:pyruvicacidmethylester,Tween40,Tween80,glycogen,D-xylose,D-mannitol,N- acetyl-D-glucosamine,D-galactonicacidγ-lactone,4-hydroxybenzoicacid,itaconicacid,D- malicacid,L-arginine,L-asparagine,L-serine,L-threonine,glycyl-L-glutamicacidandputres- cine.GrowthonL-threonineandD-mannitolcandifferentiateP.donghuesisspeciesfromthe recentlydescribeP.wadenswilerensissp.nov.[24,26].UnlikeHYSstrain,SVBP6canrespire itaconicacidafter108hofincubation[24].ThegroupofcompoundsthatSVBP6canrespire containsrepresentativesfromalltestedguilds:polymers,carbohydrates,carboxylicoracetic acids,aminesandaminoacids.Therefore,thisstrainseemstohavethepotentialtoinhabitthe rhizosphereofmultipleplants,asthosetypesofcompoundsaregenerallyexudedbyroots fromdifferentspecies[76–79]. MIDIandMALDI-TOFanalysesdidnotallowidentifyingSVBP6atthe Pseudomonasspecieslevel Inourpreviousstudies,phylogeneticanalysesplacedisolateSVBP6withintheP.putida complex.Partialsequencingof16SrDNA,oprFandrpoBgenespositionedSVBP6closeto isolatesP.vranovensisT-16andP.alkylphenolicaKL28,butwithsimilaritypercentageslower than96%[6].Maldi-TOFBiotyperanalysisgaveIDscorevaluesranging1.75–1.84(n=4) withtheclosestmatchbeingP.graminisDSM11363T(amemberoftheP.luteagroup)[80]; however,suchi.d.scoresonlycorrespondtoidentificationatthelevelofgenus.Besides, MIDIanalysisdidnotfindanymatchbetweenthefattyacidprofileofSVBP6andthose fromtheSherlocklibraries.Therefore,wecomparedtheSVBP6profilewiththosereported forP.donghuensisHYS,P.putidaATCC12633,P.vranovensisDSM16006[24]andP.alkyl- phenolicaKL28[25],andwefoundthetypicalfattyacidsassociatedwiththePseudomonas genuslikeC 3-OH,C andC 2-OH[13],aswellasseveraluniquefattyacidspecies 10:0 12:0 12:0 foreachstrain(S4Table).Particularly,SVBP6straincontainsauniquefattyacid,C13:1Δ12, thatwasnotpreviouslydescribedforpseudomonads,butonlyforVibrionaceae andClostrid- iumspecies[81,82]. Genomesequencinginformationandgeneannotation Inparallelwiththebiochemicalcharacterization,wedecidedtosequencethegenomeof SVBP6strainwiththeaimsof:1)gettingadditionalsupportforthetaxonomicpositioningof thisisolateatthespecieslevel;2)decipheringthemoleculardeterminantsofthestrongand broadspectrumantifungaltraitofthisbacterium.Withtheprotocolpreviouslydescribed,we sequenced93%ofthegenomebasedonthedatafromthetypestrainP.donghuensisHYS[24]. TheaverageGCcontentwas62.4%matchingvaluesdescribedforpseudomonads(58%-69%, [13]).Atotalof7,136,473readswereassembleddenovointo40scaffolds,withameanscaffold sizeof142534bases(N scaffoldlengthof288994bases).MinimumInformationaboutthe 50 GenomeSequence[83]ofstrainSVBP6issummarizedinTable1.WeconfirmedthatSVBP6 doesnotcontainanyplasmid. RASTanalysispredicted5253genesintotal:5179proteinencodinggenes(PEGs)and74 RNAs,ofwhich65aretRNAs.54.0%ofPEGs(2757)werearrangedinto527subsystems,and atotalof1125(21.72%)wereassignedashypotheticalproteins.RASTanalysisestimateda numberof90missinggenes,i.e.undercalledPEGsintheremaininggapsbetweenfeatures. PLOSONE|https://doi.org/10.1371/journal.pone.0194088 March14,2018 8/32 GenomeminingofP.donghuensisSVBP6 Table1. ClassificationandminimuminformationaboutthegenomesequenceofP.donghuensisstrainSVBP6. MIGSID Property Term Evidencecode1[84] Generalfeatures Classification Domain:Bacteria TAS Phylum:Proteobacteria TAS Class:Gammaproteobacteria TAS Order:Pseudomonadales TAS Family:Pseudomonadaceae TAS Genus:Pseudomonas IDA Species:Pseudomonasdonghuensis IDA strain:SVBP6 TAS Gramstain negative IDA Cellshape Rod IDA Motility Motile IDA Sporulation None IDA Temperaturerange Mesophilic(4–35˚C) IDA Optimumtemperature 28˚C IDA pHrange 6–10 IDA Carbonsource Heterotrophic IDA MIGS-22 Oxygenrequirement Aerobic IDA MIGS-14 Pathogenicity Unknown NAS MIGS-6 Habitat Soil TAS MIGS-5 Samplecollection February2010 TAS MIGS-15 Bioticrelationship free-living/rhizospheric NAS MIGS-4 Geographiclocation Viale,EntreR´ıosprovince TAS MIGS-4.1 Latitude S31˚52’ IDA MIGS-4.2 Longitude W59˚41’ IDA MIGS-4.3 Depth 0–10cmlayer TAS MIGS-4.4 Altitude 80mabovesealevel TAS MIGS-23.1 Isolation Bulksoilfromanagriculturalplot TAS Projectinformation MIGS-31 Finishingquality High-qualitydraft MIGS-31.2 Foldcoverage 125× MIGS-28 Librariesused Illuminapaired-endlibrary(Nextera1XT) MIGS-29 Sequencingplatforms Sanger/Illumina1.9(Illumina1500HiSeq) MIGS-30 Assemblers A5pipeline(Phred) MIGS-32 Genecallingmethod RASTv.2.0 BioProjectID PRJNA407750 GenBankaccessionnumber NWCB00000000 GenBankDateofRelease December1st,2017 Projectrelevance Biocontrol,Plantgrowthpromotion MIGS-13 Sourcematerialidentifier SVBP6 1Evidencecodes—IDAInferredfromDirectAssay,TASTraceableAuthorStatement(i.e.,adirectreportexistsintheliterature),NASNon-traceableAuthorStatement (i.e.,notdirectlyobservedfortheliving,isolatedsamplebutbasedonagenerallyacceptedpropertyforthespeciesoranecdotalevidence).Theseevidencecodesare fromtheGeneOntologyproject. https://doi.org/10.1371/journal.pone.0194088.t001 GenomepropertiesandstatisticsaresummarizedinTable2.Geneswithsignalpeptideswere detectedwiththeSignalP4.1Server[85],andtheCRISPRrepeats,withtheCRISPRreconig- tiontoolv1.0[86].DetailsofclustersoforthologsgroupsareshowninS5Table. PLOSONE|https://doi.org/10.1371/journal.pone.0194088 March14,2018 9/32 GenomeminingofP.donghuensisSVBP6 Table2. Genomestatistics. Attribute Value Percentage Genomesize(bp) 5,701,342 100 DNAcoding(bp) 5,005,841 87.8 DNAG+C(bp) 3,557,637 62.4 DNAscaffolds 40 - Totalgenes 5253 100 Proteinencodinggenes(PEGs) 5179 98.6 RNAgenes 74 1.4 Genesininternalclusters 118 2.2 Geneswithfunctionprediction 4054 78.3 GenesassignedtoCOGs 4865 92.6 GeneswithPfamdomainsa 4450 85.9 Geneswithsignalpeptides 512 9.9 Geneswithtransmembranehelicesb 1170 22.6 CRISPRrepeats 0 0 aDetectedwithPfamv.31.0(http://pfam.xfam.org) bDetectedwithTMHMMServerv.2.0(http://www.cbs.dtu.dk/services/TMHMM/) https://doi.org/10.1371/journal.pone.0194088.t002 PhylogeneticidentificationwithANIanalysisshowedthatstrainSVBP6 belongstotherecentlydescribedspeciesPseudomonasdonghuensis Onehundredandfortygenomeswereselectedfromafirstdatasetasrepresentativesofthe geneticdiversityofthegenusPseudomonas(seeMethods).Thephylogeneticpositionof SVBP6wasestablishedamongthesegenomes(S2Fig).Despiteminordifferences,theobtained phylogenetictreewasingoodagreementwithpreviousonesreportedforthegenus[27].Pseu- domonassp.SVBP6wasclearlypositionedwithintheP.putidacomplex.Onehundredand twenty-twocloselyrelatedgenomesofSVBP6wereselectedandincludedinasecondphyloge- neticanalysis.SVBP6belongstoabasallineagewithintheP.putidacomplex(Fig2A),which includesatleast12differentspecies,accordingtotheestimatedANIscore(S6Table).SVBP6 wascloselyrelatedtoPseudomonassp.482andP.donghuensisHYS(Fig2AandS6Table).The siderophoreproducingisolateHYS,whichservedtodefinethetypespeciesP.donghuensis, wasisolatedfromthewaterofEastLakeofWuhan,China[24],whereasthebactericidalstrain Pseudomonassp.P482wasisolatedfromtherhizosphereofagarden-cultivatedtomatoin Gdynia,Poland[87].ANIscoresupportsthephylogeneticresultandsuggeststhatthesethree strainsbelongtothesamespecies,asSVBP6showedsimilarityvaluesof99.60%±0.70and 99.52%±0.99withPseudomonassp.P482andP.donghuensisHYS,respectively[24,88].This resultwassupportedbyaMulti-LocusPhylogeneticAnalysis(MLPA)performedwith concatenated16srDNA,gyrB,rpoBandrpoDsequencesobtainedfromdifferentgenome sequencingprojectsofreferencestrains[21,27].WhenwecomparedORFsfromthethreeP. donghuensisrepresentative’sgenomesbyahomologousclusteranalysis(minimum50%iden- tity,75%coverage),wefoundthatSVBP6sharesahighernumberofORFswithstrainP482 thanwithstrainHYS(Fig2B).Fromthe284ORFsfoundonlyinP.donghuensisSVBP6(5.6% ofthetotal),wecoulddetectseveralmobilegeneticelements(9.9%),membranecomponents (8.2%),putativesecretedelements(3.4%),genesinvolvedinregulationand/ormetabolism (23.7%)andanimportantnumberofhypotheticalproteins(54.7%). PLOSONE|https://doi.org/10.1371/journal.pone.0194088 March14,2018 10/32

Description:
into probiotic properties of the first P. donghuensis isolate from the d Clusters detected by the Antibiotics and Secondary Metabolism Analysis Shell
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.