ARTICLE OPEN DOI:10.1038/s41467-017-02662-2 Genome-wide association study in 79,366 European-ancestry individuals informs the genetic architecture of 25-hydroxyvitamin D levels Xia Jiang et al.# 1234567890():,; Vdiisteaamsiens.DPirsevaiosutesroGidWhAoSrmoofnseerpurmec2u5rs-ohrydthroaxtyisviatasmsoicniaDtecdowncitehntararatinognesohfavheumidaennttirfiaeitdsfaonudr genome-wide significant loci (GC, NADSYN1/DHCR7, CYP2R1, CYP24A1). In this study, we expand the previous SUNLIGHT Consortium GWAS discovery sample size from 16,125 to 79,366 (all European descent). This larger GWAS yields two additional loci harboring genome-widesignificantvariants(P=4.7×10−9atrs8018720inSEC23A,andP=1.9×10−14at rs10745742inAMDHD1).Theoverallestimateofheritabilityof25-hydroxyvitaminDserum concentrationsattributabletoGWAScommonSNPsis7.5%,withstatisticallysignificantloci explaining38%ofthistotal.Furtherinvestigationidentifiessignalenrichmentinimmuneand hematopoietictissues,andclusteringwithautoimmunediseasesincell-type-specificanalysis. Larger studies are required to identify additional common SNPs, and to explore the role of rare or structural variants and gene–gene interactions in the heritability of circulating 25- hydroxyvitamin D levels. CorrespondenceandrequestsformaterialsshouldbeaddressedtoE.H.(email:[email protected])ortoP.K.(email:[email protected]) ortoD.P.K.(email:[email protected]) #Afulllistofauthorsandtheiraffliationsappearsattheendofthepaper NATURECOMMUNICATIONS| (2018) 9:260 |DOI:10.1038/s41467-017-02662-2|www.nature.com/naturecommunications 1 ARTICLE NATURECOMMUNICATIONS|DOI:10.1038/s41467-017-02662-2 V itamin D is an essential fat soluble vitamin and steroid control for population stratifications and confounders. We pro-hormone that plays an important role in muscu- identified six susceptibility loci harboring genome-wide sig- loskeletalhealth.VitaminDdeficiencyhasbeenlinkedto nificant SNPs, confirming four previously reported loci at GC autoimmune1,2 and infectious disease3, cardiovascular disease4, (P=4.7×10−343atrs3755967),NADSYN1/DHCR7(P=3.8×10−62 cancer5, and neurodegenerative conditions6. Serum 25- atrs12785878),CYP2R1(P=2.1×10−46atrs10741657),CYP24A1 hydroxyvitamin D, a primary circulating form of vitamin D (P=8.1×10−23 at rs17216707), and two novel loci at AMDHD1 andameasurethatbestreflectsvitaminDstores,isinfluencedby (P=1.9×10−14 at rs10745742) and SEC23A (P=4.7×10−9 at many factors including sun exposure, age, body mass index7, rs8018720) (Table 1; Manhattan plots and QQ-plots for overall dietaryintakeofcertainfoodssuchasfortifieddairyproductsand samplesarepresentedinFig.1,andregionalassociationplotsare oilyfish,supplements,andgeneticfactors8.Theconcentrationof presented in Supplementary Fig. 2). The associations at both 25-hydroxyvitamin D has been reported to be highly heritable, novel loci were confirmed in the two independent in-silico with heritability estimates of 50–80% from classical twin replication cohorts (EPIC: P=1.21×10−8 at rs10745742, P= studies9,10. 5.24×10−4atrs8018720;SOCCS:P=0.03atrs10745742,P=0.04 A genome-wide association study (GWAS) meta-analysis of atrs8018720)withconsistentdirectionofeffectbutslightlylarger serum 25-hydroxyvitamin D11 in 4501 participants of European effect sizes and wider confidence intervals observed in SOCCS ancestry and replication in 2221 samples identified variants in which could be due to the reduced sample size. When analyzing threeloci(groupcomponent(GC),7-dehydrochlesterolreductase thetworeplicationdatasetstogetherwiththediscoverydataset, (NADSYN1/DHCR7), and 25-hydroxylase (CYP2R1)). A larger theP-valuesinpooledsamplesbecamemoresignificant(P = GWAS conducted by the SUNLIGHT consortium in 16,125 2.10×10−20 at rs10745742, P =1.11×10−11 at rs80p1o8ol7ed20) pooled European ancestry individuals, with a replication sample of (Table 1). We also found more than one distinct signal arising 17,871, replicated these three loci and discovered one additional from variants at the GC, CYP2R1, and AMDHD1 loci through locus (CYP24A1)8. However, despite these loci being in or near conditionalandjointanalysis,butnotfortheNADSYN1/DHCR7, genes encoding proteins involved in vitamin D synthesis, the CYP24A1, and SEC23A loci where only one primary associated associatedvariantscollectivelyexplainonlyasmallfractionofthe SNP was identified (Supplementary Table 2). variance in 25-hydroxyvitamin D concentrations (~5%)8,11,12. Therefore,toextendourpreviousfindingsandbetterunderstand SNP by dietary vitamin D intake interaction. In addition to the genetic architecture underlying serum 25-hydroxyvitamin D, performing the marginal effect meta-analysis using all samples, as well as test for interactions between dietary vitamin D intake wealsotestedamodelwithSNPsanddietaryvitaminDintakeas and genetic factors, we conducted a large-scale GWAS meta- main effects and a term for their interaction in a subset of analysis on this important vitamin. samples. Diet questionnaires, including vitamin D intake, were Our GWAS with a 79,366 discovery sample and a 40,562 replicationsamplereplicatesfourpreviouslociandidentifiestwo available for a subset of 13 cohorts and an additional 2 cohorts thatwerenotincludedintheoverallmeta-GWASanalysis(atotal nfuerwthgerenfientidc leovciidefonrcesefrourmalsehvaelrsedofg2en5-ehtiycdrboavsixsyvbietatwmeiennDc.irWcue- of 15 cohorts, N=41,981). We performed a GWAS explicitly allowing for an interaction between vitamin D intake and SNP lating 25-hydroxyvitamin D and autoimmune diseases. Our genotypes,inwhichdietaryvitaminDwascodedasacontinuous analyses suggest a relatively modest SNP-heritability rate of 25- variable. We performed two tests: (i) a 1 degree-of-freedom hydroxyvitamin D when considering only common variants. interactiontestbetweeneachSNPandvitaminDintake,and(ii) Largerstudiesarerequiredtoidentify additionalcommonSNPs, a 2 degree-of-freedom joint test of main genetic and interaction andtoexploretheroleofrareorstructuralvariants.Thegenetic instruments identified by our results could be used in future effects. However, for comparison purposes, we also performed, (iii) a standard test of marginal genetic effect after adjusting for Mendelian Randomization analyses of the association between vitaminDintakeinthesamesub-samples(SupplementaryFig.3, vitamin D and complex traits. and Supplementary Fig. 4). The marginal genetic effect analyses confirmedexistingassociationsignalsatGC(leadSNPrs2282679, in complete linkage disequilibrium with the lead SNP rs3755967 Results identified from meta-GWAS using all individuals), CYP2R1, Study description and GWAS. This study represents an expan- NADSYN1/DHCR7 (lead SNP rs4944062, in complete linkage sion of our previous SUNLIGHT consortium GWAS8. Here, we disequilibrium with the lead SNP rs12785878 identified from combine the 5 discovery cohorts and 5 in-silico replication meta-GWAS using all individuals) and CYP24A1, as well as the cohorts from that study, and augment these with 21 additional novel association at AMDHD1 (P=5.7×10−9, Supplementary cohorts that have joined the SUNLIGHT consortium since 2010 Table 3). The joint analysis also identified the five genes above, (study characteristics are described in Supplementary Table 1, butwithlesssignificantP-values.Forinstance,theassociationat SupplementaryNote1).Incontrasttothepreviousmeta-analysis AMDHD1achievedonlysuggestivegenome-widesignificance(P wstotahtgaiclehso,fwiunepvoptloevre7fdo9r,3md6ie6sdcionavdefiirvyris,dtuisantl-assgiaelnicddoisrceaopnvldiecraydteemd-nenotoavv-oaenlgafilenynsdoiistnygopsnininga sv=iag1rn.i2aifi×nc1tsa0n−at7t,ignTeanbmolmeare2g-i)wn.aiTdleheefsfieigncnttiefirtcaeacsnttisco,enthleteevsetlle.daAdidmSnoNonPtgitdihneenCt5iYfySPN2aRnP1ys two independent separate in-silico data sets (40,562 individuals showednominalsignificanceforinteractionwithdietaryvitamin pcaoslosleltesscstaeandnddbgyceonEnoPtmrIoCilcfaocnordnpt2or1po9ul5lianitnfliodantiivosidtnruafatailcfistcocaortsliloefnoctr,ewedaecbehyxaScmoOniCntrCeidbSu)Q.tiTQnog- 0Do.b7s4ei;nrvtraeskd1e0f7o4(rr5ts7h14e027o,4tP1h6e=5r70S,.N64PP;s=r(s0r1s.7022221886)2,7607b79u,,tPP=n=o00..44i65n);t.errsRa4ec9pt4ieo4an0t6sin2g,wPtehr=ee cohort prior to meta-analysis. We did not observe evidence for widespread inflation (median λ =0.92; only 1/31 samples with analysis using a tertile coding for vitamin D instead of a con- λ >1.01), indicating that ourGGCWAS results were not inflated tinuous coding did not qualitatively change the results. GC bypopulationstratificationorcrypticrelatedness(Supplementary Fig. 1). Despite the slightlydeflatedλ observed in someof the SNP-heritabilityof25-hydroxyvitaminD.Wefurtherevaluated GC constituent cohorts most probably due to over-correction of test the SNP-heritability, defined as the heritability explained by statistics, our λ of 0.99 in all samples indicated appropriate GWASSNPsof25-hydroxyvitaminD,usingLDscoreregression GC 2 NATURECOMMUNICATIONS| (2018) 9:260 |DOI:10.1038/s41467-017-02662-2|www.nature.com/naturecommunications ARTICLE NATURECOMMUNICATIONS|DOI:10.1038/s41467-017-02662-2 Table1Singlenucleotidepolymorphismsidentifiedingenome-wideanalysesforcirculating25-hydroxyvitaminDconcentrations Gene SNP Chromosome:Position Effect/reference Allelefrequency Meta-GWASestimates allele Effect(Beta) StandardError P-value Firststagediscoverymeta-GWAS(N=79,366) GC rs3755967 4:72828262 T/C 0.28 −0.089 0.0023 4.74E–343 NADSYN1/DHCR7 rs12785878 11:70845097 T/G 0.75 0.036 0.0022 3.80E–62 CYP2R1 rs10741657 11:14871454 A/G 0.4 0.031 0.0022 2.05E–46 CYP24A1 rs17216707 20:52165769 T/C 0.79 0.026 0.0027 8.14E–23 AMDHD1 rs10745742 12:94882660 T/C 0.4 0.017 0.0022 1.88E–14 SEC23A rs8018720 14:38625936 C/G 0.82 −0.017 0.0029 4.72E–09 Replicationdataset1:samplescollectedbyEPIC(N=40,562) AMDHD1 rs10745742 12:94882660 T/C 0.41 0.041 0.0071 1.21E–08 SEC23A rs8018720 14:38625936 C/G 0.83 −0.032 0.0093 5.24E–04 Replicationdataset2:additionalcontrolsamplescollectedbySOCCS(N=2195) AMDHD1 rs10745742 12:94882660 T/C 0.37 0.045 0.021 0.03 SEC23A rs8018720 14:38625936 C/G 0.81 −0.051 0.026 0.04 Pooledanalysis(discoverymeta-GWAS+replication1+replication2)(N=122,123) AMDHD1 rs10745742 12:94882660 T/C 0.39 0.019 0.002 2.10E–20 SEC23A rs8018720 14:38625936 C/G 0.82 −0.019 0.0027 1.11E–11 Inthepooledanalysis,Pheterogeneity=0.003forAMDHD1rs10745742;Pheterogeneity=0.14forSEC23Ars8018720. a GC NADSYN1/DHCR7 Know 30 CYP2R1 Novel 25 CYP24A1 e) u p – val 20 AMDHD1 g (10 15 –lo 10 SEC23A 5 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6789012 1 1 1 1 1 1 1111222 Chromosome b e u al d p-v 200 (cid:2) = 0.99 e ect orr 0 c 1 g o 100 –l d e erv 50 bs O 0 0 1 2 3 4 5 6 Expected –log10 corrected p-value Fig.1Genome-wideassociationofcirculating25-hydroxyvitaminDgraphedbychromosomepositionsand−log10P-value(Manhattanplot),andquantile- quantileplotofallSNPsfromthemeta-analysis(QQ-plot).aManhattanplot:TheP-valueswereobtainedfromthesinglestagefixed-effectsinverse varianceweightedmeta-analysis.TheYaxisshows−log P-values,andtheXaxisshowschromosomepositions.Horizontalgraydashlinerepresentsthe 10 thresholdsofP=5×10−8forgenome-widesignificance.Knownlociwerecoloredcodedasred,andnovellociwerecolorcodedasgreen.bQQ-plot:TheY axisshowsobserved−log P-values,andtheXaxisshowstheexpected−log P-values.EachSNPisplottedasablackdot,andthedashlineindicatesnull 10 10 hypothesisofnotrueassociation.DeviationfromtheexpectedP-valuedistributionisevidentonlyinthetailarea,withalambdaof0.99,suggestingthat populationstratificationwasadequatelycontrolled (see Methods). The overall observed heritability of 25- loci,theheritabilitydecreasedto4.70%(SE:0.72%).Theestimate hydroxyvitamin D estimated by using all common SNPs further decreased to 1.73% (SE: 0.32%) after excluding all SNPs (2,579,296 after QC) was 7.54% (standard error (SE): 1.88%). that reached nominal significance (156,675 SNPs with P≤0.05). After excluding genome-wide significant SNPs (533 SNPs with These results indicate that common variants tagged by GWAS P≤5×10−8) from six loci and all SNPs within ±500kb of those chipsexplainamodestfractionofoverallvariabilityincirculating NATURECOMMUNICATIONS| (2018) 9:260 |DOI:10.1038/s41467-017-02662-2|www.nature.com/naturecommunications 3 ARTICLE NATURECOMMUNICATIONS|DOI:10.1038/s41467-017-02662-2 Table2 Resultsfrom the SNP-by-dietaryvitaminDintakeinteraction analysis Gene SNP Chromosome: Effect/ Allele SNP-by-dietaryvitaminDintakeInteractionanalysis Position Reference Frequency Main Interaction P-valuefor P-value Allele Genetic Effect interaction forjoint Effect test Effect Standard Effect Standard (Beta_G) Error (Beta_Int) Error Firststagediscoverymeta-GWAS(N=79,366) GC rs3755967 4:72828262 T/C 0.28 −0.082 0.0042 −2.01E–05 1.67E–05 0.23 2.92E–171 rs2282679* 4:72827247 T/G 0.28 0.085 0.004 1.20E–05 1.60E–05 0.45 1.40E–187 NADSYN1/ rs12785878 11:70845097 T/G 0.75 0.033 0.0039 6.61E–06 1.62E–05 0.68 3.52E–29 DHCR7 rs4944062* 11:70864942 T/G 0.75 0.034 0.004 5.30E–06 1.60E–05 0.74 1.90E–31 CYP2R1 rs10741657 11:14871454 A/G 0.4 0.03 0.0035 3.21E–05 1.46E–05 0.028 2.23E–38 CYP24A1 rs17216707 20:52165769 T/C 0.79 0.025 0.0048 1.39E–05 1.88E–05 0.46 1.32E–14 AMDHD1 rs10745742 12:94882660 T/C 0.4 0.016 0.0036 −7.05E–06 1.49E–05 0.64 1.20E–07 SEC23A rs8018720 14:38625936 C/G 0.82 −0.013 0.0051 −2.40E–05 2.06E–05 0.24 1.94E–05 *TopSNPsidentifiedintheSNP-by-dietaryvitaminDintakeinteractionanalysis,performedinasubsetofindividuals.ForGCandNADSYN1/DHCR7,thetopSNPsidentifiedthroughthemarginaleffect regressionmeta-analysisusingallindividualswereinhighlinkagedisequilibriumwiththetopSNPsidentifiedthroughtheSNP-by-dietaryvitaminDintakeinteractionanalysisusingasubsetofindividuals (r2forrs3755967andrs2282679:1.0;r2forrs12785878andrs4944062:1.0).Beta_GindicatesthemaineffectoftheSNP,Beta_IntindicatestheinteractioneffectofSNP-by-dietaryvitaminDintake DHS,8.5-foldenrichment,P=0.02),transcriptionfactorbinding sites (5.7-fold enrichment, P=0.048), super-enhancers (1.9-fold Type enrichment, P=0.04), and all four histone marks were enriched NPs 2244aannnnoottaattiioonnss_500 bp (bothversionsofH3K27ac(oneversionprocessedbyHniszetal., S op. 20 and another version used by the Psychiatric Genomics Con- Pr sortium (PGC), H3K4me1, H3K4me3 (500bp), H3K29ac (500 2/ p.H bp)).Wealsoobserveddepletionforrepressedregions(0.06-fold Pro enrichment, P=0.006). However, none of those annotations = 10 nt ** withstood multiple-testing corrections (Bonferroni corrected P- e hm ** threshold: 0.05/24) except for the active enhancer histone mark nric H3K27ac (PGC) (4.2-fold enrichment, P=8×10−4) and E 0 H3K4me1 (1.8-fold enrichment, P=0.0019). Weak enhancer Conserved TSS Fetal DHS TFBS H3K27ac (PGC) H3K27ac H3K4me1 H3K4me3 Super enhancer H3K27ac (Hnisz) Repressed ef1eonn0lrrWdiibccreehhonmmsarudieebcnnhscttemes,qllwueP-nteey=ntrp,et0elPy.i0ng=p0rt1e2ohr7.uef2)op,×irsm1m.a0mnAe−dd5us)nc,sCeehglNloaa-snwSttydrnpo(he3ii-nen.s6mtpe-Tfesaotcatiloibndfiplaceoleai3nteni,trsaiisctcluhyhteseimissssteou(bn4pey.ts4,ut-(hsf4Poir.n3el=dge- Functional categories 0.0039). There was also significant enrichment for liver, kidney, Fig.2Heritabilityenrichmentofthetop12genomicfunctionalelements. andconnectiveandbonetissues,buttheseresultsdidnotsurvive WepartitionedtheSNP-heritabilityofserum25-hydroxyvitaminD multiple-testing corrections. When further analyzing 220 cell- concentrationsinto24publiclyavailablegenomicfunctionalelementsusing type-specific annotations, we observed the most significant LD-scoreregression.Weplottedtheenrichment(Yaxis)foreachofthe12 enrichment in CD19 cells (approximately 8-fold enrichment, topannotations(asshowninXaxis)intoabarchart.Graybarsandblue P~0.001),followedbyCD20cells(6.4-foldenrichment,P=0.003) barsrepresenttheannotationswithandwithoutthe500base-pair and CD3 cells (7.8-fold enrichment, P=0.01) (Supplementary windows.Theheightofeachbarrepresentsmagnitudeofenrichment. Data 1). SignificantestimatesofenrichmentthatpassedBonferronicorrections (P-valueforenrichment<0.05/24)aremarkedwithdoublestars.TSS Genetic correlations between 25-hydroxyvitamin D and traits. transcriptionstartsites,DHSDNaseIhypersensitivesites,TFBS We continued to assess the genetic correlation between 25- transcriptionfactorbindingsites,Repressedrepressedregions hydroxyvitaminDandeachofthe37traitswithpubliclyavailable GWASsummarystatisticsdata(SupplementaryTable5).Noneof 25-hydroxyvitaminD,andthatanappreciableproportionofthis the genetic correlations remained significant after Bonferroni SNP-heritability is explained by the six genetic regions of asso- ciated SNPs identified through GWAS. correction (corrected P-threshold: 0.05/37, Fig. 3). Without multiple-testing correction, there were some correlations with nominal statistical significance. For example, ever smoking Partitioningthetotalheritabilityof25-hydroxyvitaminD.We (r (SE): −0.17 (0.073), P=0.019), primary biliary cirrhosis g next partitioned the heritability by functional elements using (r (SE): −0.18 (0.076), P=0.019) and BMI adjusted waist-hip- g baseline model with 24 publicly available annotations (see ratio (r (SE): −0.10 (0.050), P=0.042) were observed to be g Methods), and observed large and significant enrichment for inversely correlated with 25-hydroxyvitamin D; whereas lung severalfunctionalcategories(Fig.2,SupplementaryTable4).For function (r (SE): 0.14 (0.046), P=0.0036) showed a positive g example, we found the largest enrichment in weak enhancers, correlation with 25-hydroxyvitamin D. Subsequent directional with 2.1% of SNPs explaining 42.3% of the overall heritability genetic correlation analysis did not reveal any apparent putative (20-fold enrichment, P=0.02), followed by conserved regions causal relationship of 25-hydrovyvitamin D with other traits, (13.8-foldenrichment,P=0.03),openchromatin(asreflectedby except for a potential link between 25-hydroxyvitamin D and 4 NATURECOMMUNICATIONS| (2018) 9:260 |DOI:10.1038/s41467-017-02662-2|www.nature.com/naturecommunications ARTICLE NATURECOMMUNICATIONS|DOI:10.1038/s41467-017-02662-2 Table3 Heritabilityenrichment of ten groupedcell types Category ProportionofSNPs(%) Proportionofh2 (%) Enrichment(standarderrors) P-value g Kidney 4.26 27.27 6.4(2.44) 0.027 Liver 7.22 37.68 5.22(1.55) 0.01 Gastrointestinal 16.77 72.88 4.35(0.97) 0.0017 Immuneandhematopoietic 23.34 100.17 4.29(0.76) 2.20E-05 Centralnervoussystem 14.88 54.09 3.64(0.87) 0.0039 Cardiovascular 11.11 35.74 3.22(1.26) 0.078 Connectivetissue/bone 11.5 35.65 3.1(1.04) 0.037 Adrenal/pancreas 9.36 26.17 2.8(1.31) 0.18 Other 20.27 56.68 2.8(0.98) 0.076 SkeletalMuscle 10.38 14.29 1.38(1.25) 0.76 BlackboldfontindicatessignificantP-valuesaftermultiplecorrections(P<0.05/10) HDL (Supplementary Table 6). However, with only six cause craniolenticulosutural dysplasia, a disease characterized by 25-hydroxyvitamin D associated SNPs included in the analysis, craniofacialandskeletalmalformationsuchasdelayinclosureof we consider an overall null directional correlation as our main fontanels, sutural cataracts and facial dysmorphisms, due to finding, and further well-designed large-scale Mendelian rando- defective collagen secrection13,14. The second novel locus is mization analyses are warranted. AMDHD1 (amidohydrolase domain containing 1). This gene Finally, we analyzed the 220 cell-type-specific annotations in encodes an enzyme involved in the histidine, lysine, phenylala- each of the 37 traits and compared the cell-type-specific nine, tyrosine, proline and tryptophan catabolic pathway. Muta- enrichments for 25-hydroxyvitamin D to the enrichments for tions in AMDHD1 are found to be associated with atypical these traits. The enrichment pattern for 25-hydroxyvitamin D lipomatoustumor,acancerofconnectivetissuesthatresemblefat differed notably from the patterns for psychiatric diseases and cells15. metabolic related traits. Psychiatric diseases showed enrichment OurSNP-heritabilityresultssuggestthat25-hydroxyvitaminD for histone marks specific to CNS cell types, and metabolic has a modest overall heritability due to common genome-wide diseases showed enrichment for gastrointestinal cell types, while SNPs of 7.5%, and that an appreciable proportion (2.84% out of these annotations were depressed in 25-hydroxyvitamin D. 7.5%,i.e.,38%)ofthistotalcouldbeexplainedbyknowngenetic Conversely, 25-hydroxyvitamin D showed similar patterns with regionsidentifiedthroughGWAS.Ourfindingsareinlinewitha autoimmuneinflammatorydiseases,wheremultipleimmunecell previouspublishedreport(byHirakietal.12)whichestimatedthe types were enriched. We consistently observed that 25- variance in circulating 25-hydroxyvitamin D explained by SNPs hydroxyvitamin D was clustered with autoimmune diseases in a total of 5575 individuals12. According to that report, by (Supplementary Fig. 5). employing a linear mixed model fitting the additive genetic matrix created from all genotyped and imputed SNPs, the pro- Discussion portionofvarianceexplainedwas8.9%;byemployingapolygenic VitaminDinadequacy hasbeenlinkedtomanydiseasessuch as score approach comprised of the then GWAS-discovered SNPs cancer, autoimmune disorder and cardiovascular conditions in (GC, CYP2R1, DHCR7/NADSYN1), the proportion of variance additiontomusculoskeletaldiseases,whichhasledtosubstantial explained was 5%. Both of these estimates were close to ours. In interest in the determinants of vitamin D status, especially its Hiraki et al., the known 25-hydroxyvitamin D associated envir- genetic components. We have performed a large 25- onmental factors such as age, BMI, season of blood drawn, hydroxyvitamin D meta-GWAS involving 31 studies with a vitaminDdietaryintake,vitaminDsupplementintake,regionof total of 79,366 individuals. Our results recapitulated several pre- residence and ethnicity, explained ~18% of the observed var- viously reported findings. First of all, we confirmed the role for iance12. Our results, in agreement with these findings, suggest common genetic variants in regulation of circulating 25- thatalthoughthereappears tobesomepolygenicsignals outside hydroxyvitamin D concentrations. Our study validated three of the identified regions, the remaining common effects may be loci, GC, NADSYN1/DHCR7, and CYP2R1, all were established small. There also may be low frequency variants with larger 25-hydroxyvitamin D risk loci identified through two earlier effects that were not investigated here. For example, while this GWASs8,11. In addition, we were able to confirmthe association paper wasunderreview,arelated studyidentifiedlow-frequency of a locus containing CYP24A1 with 25-hydroxyvitamin D con- (MAF=2.5%) synonymous coding variant rs117913124_A at centrations using our large sample size, which highlights the CYP2R1conferringalargeeffecton25-hydroxyvimtainDlevels, importance of this protein in the degradation of vitamin D whichwasfourtimesgreaterinmagnitudeandindependentofa molecule, by catalyzing hydroxylation reactions at the side chain previously described association for a common variant of 1,25-dihydroxyvitamin D, the physiologically active form (rs10741657) near CYP2R116. (hormonal form) of vitamin D. Significant finding at this locus Resultsoftwinandfamilialstudieshaverevealedasubstantial was only shown in the pooled analyses involving both discovery geneticbasisinthevariabilityofcirculating25-hydroxyvitaminD and replication samples in an earlier GWAS8. levels, with estimates of heritability reaching as high as We extended previously reported findings by identifying two 86%9,10,17–19.Theseestimates,however,seemtobeinfluencedby additional new loci. SEC23A (Sec23 Homolog A, coat protein environmental conditions.Forexample,ina studyconducted by complex II (COPII) component) encodes a member of Orton et al. with 40 monozygotic and 59 dizygotic twin pairs, SEC23 subfamily. In eukaryotic cells, secreted proteins are syn- bloods were collected at the end of winter and a heritability of thesized in the endoplasmic reticulum (ER), packaged into 77% was reported10. Similarly, the study conducted by Karohl COPII-coatedvesicles,andtraffictotheGolgiapparatus.Aspart et al. with 310 monozygotic and 200 dizygotic male twins of COPII complex, SEC23 plays a role in promoting ER-Golgi observedaheritabilityof70%duringwinter,whereasinsummer, protein trafficking. SEC23A mutations have been reported to serum 25-hydroxyvitamin D concentrations appeared to be NATURECOMMUNICATIONS| (2018) 9:260 |DOI:10.1038/s41467-017-02662-2|www.nature.com/naturecommunications 5 ARTICLE NATURECOMMUNICATIONS|DOI:10.1038/s41467-017-02662-2 Genetic correlation Traits (95%CI) p-value Significance Autoimmune/inflammatory diseases Age-related macular degeneration –0.02 (–0.1, 0.06) 0.57 Celiac Disease –0.02 (–0.17, 0.15) 0.89 Crohn’s Disease –0.07 (–0.19, 0.05) 0.25 Lupus 0 (–0.15, 0.14) 0.98 Multiple Sclerosis –0.17 (–0.45, 0.1) 0.21 Primary biliary cirrhosis –0.18 (–0.33, –0.03) 0.019 * Rheumatoid Arthritis 0.05 (–0.08, 0.19) 0.44 Ulcerative Colitis 0.04 (–0.1, 0.18) 0.59 UKBiobank Asthma –0.01 (–0.11, 0.1) 0.9 UKBiobank Eczema –0.01 (–0.12, 0.1) 0.91 Inflammatory Bowel Disease –0.02 (–0.13, 0.09) 0.71 Alzheimer’s –0.08 (–0.28, 0.11) 0.39 Psychiatric disorder/traits Anorexia –0.03 (–0.15, 0.1) 0.7 Autism 0.03 (–0.11, 0.17) 0.64 Bipolar Disorder 0.04 (–0.11, 0.18) 0.63 Depressive Syndrome 0.04 (–0.08, 0.17) 0.49 Neuroticism 0.02 (–0.07, 0.11) 0.61 Schizophrenia 0 (–0.08, 0.08) 1 Subject Well Being 0.14 (–0.1, 0.38) 0.25 Metabolism related traits Coronary Artery Disease –0.03 (–0.16, 0.1) 0.66 Fasting Glucose 0 (–0.12, 0.12) 0.98 HDL 0.07 (–0.04, 0.19) 0.21 LDL 0.06 (–0.07, 0.18) 0.36 Triglycerides –0.06 (–0.16, 0.03) 0.18 Type 2 Diabetes –0.08 (–0.22, 0.06) 0.26 UKBiobank Hypertension 0.02 (–0.05, 0.1) 0.54 Others Ever Smoked –0.17 (–0.32, –0.03) 0.019 * UKBiobank Age at Menarche –0.07 (–0.02, 0.15) 0.13 UKBiobank Age at Menopause –0.07 (–0.19, 0.05) 0.25 UKBiobank BMI –0.03 (–0.11, 0.05) 0.45 UKBiobank Diastolic 0.02 (–0.06, 0.09) 0.63 UKBiobank FEV1FVC –0.01 (–0.08, 0.06) 0.69 UKBiobank FVC 0.14 (0.04, 0.23) 0.0036 * UKBiobank Heel TScore –0.02 (–0.09, 0.05) 0.64 UKBiobank Height 0.06 (–0.01, 0.12) 0.078 UKBiobank Systolic –0.01 (–0.08, 0.06) 0.8 UKBiobank Waist-Hip Ratio –0.1 (–0.2, 0) 0.042 * –0.5 –0.25 0 0.25 0.5 Fig.3Geneticcorrelationsbetween25-hydroxyvitaminDand37traits.WecollectedGWASsummarystatisticsof37diseasesandtraitsspanningawide rangeofphenotypes(autoimmuneinflammatorydiseases,psychiatricdisorders,metabolictraits,andanthropometricindex)frompubliclyavailable resources,andestimatedtheirsharedgeneticsimilaritieswithserum25-hydroxyvitaminDlevels.Weplottedthegeneticcorrelationtogetherwith95% confidenceintervalsusingabluesquareandgrayhorizontallines.Redverticallineindicatesnogeneticcorrelation(r =0).Statisticalsignificancewas g definedasP-value<0.05.NoneofthepairwisecorrelationspassedBonferronicorrections entirely determined by non-genetic factors (heritability: 0%)9. studies9,10, but our estimate of 7.5%, calculated using common Comparable estimates were also identified in a slightly larger genome-wide SNPs, is far lower than reported heritability from studyconductedbyMillsetal.(winter:90%vs.summer:56%)18. twin and family based studies. In addition to potentially inflated Consistent with season dependency, sex differences were also estimates from twin studies, the difference may reflect the pro- observed (males: 86% vs. females: 17%)17. While these estimates portion of heritability explained by rare SNPs or structural var- should be treated with caution due to small samples and related iants thatwere not included in our data,and the potential gene- imprecision, they confirm the substantial variation in 25- geneinteractionsthatremaintobeidentified.Thecombinationof hydroxyvitamin D levels by season (as shown previously20) and our samples from all seasons is also likely to decrease the prob- illustrate that heritability estimates derived from a homogenous ability of finding genetic variants, and hence deflate heritability source may be highly inflated. In a relevantly well-powered twin estimates. study with a total of ~2100 female twins, the heritability of 25- Through partitioning the SNP-heritability of serum 25- hydroxyvitamin D was calculated to be 40%, indicating a larger hydroxyvitamin D levels, we observed a significant enrichment proportion of variance explained by non-genetic factors21. Her- in immune and hematopoietic tissues; likewise, the cell-type- itability estimates obtained using GWAS SNPs have typically specific analysis revealed clustering of 25-hydroxyvitamin D and beenfound tobeapproximately half ofthosefromclassicaltwin autoimmunediseases,indicatingthatthesetraitsshareamajority 6 NATURECOMMUNICATIONS| (2018) 9:260 |DOI:10.1038/s41467-017-02662-2|www.nature.com/naturecommunications ARTICLE NATURECOMMUNICATIONS|DOI:10.1038/s41467-017-02662-2 ofcommoncelltypes.ThelinkbetweenvitaminDdeficiencyand samplesinourpreviousGWASpublication(the1958BritishBirthCohort increased risk for autoimmune inflammatory diseases has long (1958BC),theCardiovascularHealthStudy(CHS),theFraminghamHeartStudy been recognized by epidemiological investigations22,23. Although (FHS),theGothenburgOsteoporosisandObesityDeterminantsstudy(GOOD), theHealth,Aging,andBodyCompositionstudy(HealthABC),theIndiana theunderlyingmechanismsremainunclear,itisnowevidentthat Womencohort,theNorthFinlandBirthCohort1966(NFBC1966),theOldOrder vitamin D is involved in many biological processes that regulate AmishStudy(OOA),theRotterdamStudy(RS),andtheTwinsUK),andan both innate and adaptive immune responses, through ligand- additional21cohortswereincludedforthecurrentanalysis(theAlpha-Toco- receptor binding, activation, interaction with response elements pherol,Beta-CaroteneCancerPreventionStudy(ATBC),theAtherosclerosisRisk inCommunitiesStudy(ARIC),theAtheroGeneregistry,B-vitaminsforthePre- inthepromoterregionsofdifferentgenes,andeventuallyleadto ventionOfOsteoporoticFractures(B-PROOF),theEpidemiologyofDiabetes functional changes in a wide variety of immune cells including InterventionsandComplications(EDIC),theCase-ControlStudyforMetabolic Th1, Th2, Th17, T regulatory and natural killer T cells22,23. The Syndrome(GenMets),theHelsinkiBirthCohortStudy(HBCS),theHealthPro- sharedcelltypeenrichmentsbetweenvitaminDandautoimmune fessionalFollow-upStudy(HPFS,nestedacoronaryheartdiseasecase-control study),theInvecchiareinChiantiStudy(InChianti),theCooperativeHealth diseasesobservedinourstudy,furthersuggestthatvitaminDnot ResearchintheregionAugsburg(KORA),theLeidenLongevityStudy(LLS),the only affects autoimmune diseases through its direct effect (as a LudwigshafenRiskandCardiovascularHealthStudy(LURIC),theMulti-Ethnic ligand), but also through their shared genetic etiology. Thus, StudyofAtherosclerosis(MESA),theNijmegenBiomedischeStudie(NBS),the individualswithvitaminDdeficiencymaybemoresusceptibleto Nurses’HealthStudy(NHS,nestedabreastcancercase-controlstudy,andatype2 diabetescase-controlstudy),theOrkneyComplexDiseaseStudy(ORCADES),the these disorders, both because of environmental and genetic influences. Prostate,Lung,Colorectal,andOvarianCancerScreeningTrial(PLCO),the PROspectiveStudyofPravastatinintheElderlyatRisk(PROSPER),theStudyof Ourgenome-wideinteractionanalysisbetweengeneticvariants HealthinPomerania(SHIP),theScottishColorectalCancerStudy(SOCCS),the and dietary intake of vitamin D did not identify new signals. All CardiovascularRiskinYoungFinnsStudy(YFS),andmoresamplesfromtheRS significant associationsobserved in thejoint test of maingenetic (RSI,RSII,andRSIII)).Fulldescriptionsofallparticipatingcohorts,detailsof and interaction effects were of equal or higher significance level genotypingplatformsused,numberofSNPs,andthemeasurementsofserum25- hydroxyvitaminDconcentrationsineachcohortareshowninSupplementary (i.e., lower P-values) in the GWAS of marginal genetic effect Table1andSupplementaryNote1.Writteninformedconsentwasobtainedfrom performed in the same individuals, indicating no major con- allparticipantsintheincludedcohorts,andthestudyprotocolswerereviewedand tribution of interaction effects at these loci. Indeed, only one of approvedbylocalinstitutionalreviewboards. thetop5locifromtheoverallmarginalGWASshowednominally significant interaction effect, and none passed Bonferroni cor- Powercalculation.Ourlargesamplesizeprovidedgoodstatisticalpowerfor associationanalysis.Atthegenome-widesignificancethresholdof5×10−8,witha rections.Whilesmallergene-dietinteractioneffectsremaintobe discoverysamplesizeof75,000,ourstudyhad85%powertodetectagenetic discovered, our results provide some evidence against large variant(singlenucleotidepolymorphism,SNP)accountingfor0.06%ofthetotal interactions between common SNPs and dietary vitamin D varianceinserum25-hydroxyvitaminDconcentrations,and99%powertodetecta intake. Still, one cannot completely rule out the possibility of variantthatexplained0.1%ofthetotalvariance.Wealsohadpowertodetectgene- interaction, but only conclude that genetic effects appear stable environmentinteractioneffectsevensmallerthantheobservedmarginaleffects.In thecasewhereaSNPhasnomarginaleffectoncirculating25-HydroxyvitaminD withinvitaminDintakerangeinthepopulationsstudied.Indeed, concentrations(andsocouldnothavebeendiscoveredviathemarginalGWAS), asforanygene-environmentinteractiontests,statisticalpoweris wehad80%powertodetectaninteractionthatexplained0.07%ofthetotal highly dependent on the variance of exposure in the samples variancein25-hydroxyvitaminDconcentrations. analyzed24, and interactions would remain unobserved if the exposure is homogeneous among individuals. Also, we were not Associationanalysis.Genome-wideanalyseswereperformedwithineachcohort abletocapturevitaminDsupplementationadequatelytoinclude accordingtoauniformanalysisplan.Wefitadditivegeneticmodelsusinglinear regressiononnatural-logtransformed25-hydroxyvitaminD,andadjustedthe this in the dietary intake variable, and were not able to estimate modelsformonthofsamplecollection(12categories),age,sex,andbodymass sunlightexposureasasourceofvitaminDproductionintheskin. index,andprincipalcomponentscapturinggeneticancestry.Furtheradjustments Serum 25-hydroxyvitamin D concentrations are mainly includedcohort-specificvariables,suchasgeographicallocationandassaybatch, determinedbymodifiableenvironmentalfactors,andcontraryto whererelevant.Forparticipatingstudieswithacase-controldesign,weanalyzed estimates from previous twin studies, our large-scale analyses casesandcontrolsseparately.Weperformedafixed-effectsinversevariance weightedmeta-analysisacrossthecontributingcohorts,asimplementedinthe suggest a SNP-heritability rate that is relatively modest in mag- softwareMETAL26,withcontrolforpopulationstructurewithineachcohortand nitude when considering common variants. Our study also qualitycontrolthresholdsofminorallelefrequency(MAF)>0.05,imputationinfo showed that common genetic variants are unlikely to have a score>0.8,Hardy-Weinbergequilibrium(HWE)>1×10−6,andaminimumof strong modifying effect on increases in 25-hydroxyvitamin D twostudiesand10,000individualscontributingtoeachreportedSNP-phenotype association.WeregardedP-values<5×10−8asgenome-widesignificant. followingtypicaldietaryintakes,suggestingthatconsiderationof geneticbackgroundisnotrequiredwhendeterminingpopulation Replicationstudy.Wereplicatedtheidentifiednovellociintwoindependentdata based vitamin D intake recommendations. However, our results setsforwhichgenotypedatawereavailable:theEuropeanProspectiveInvestigation support the role of vitamin D in immunological diseases as we intoCancerandNutrition(EPIC)studywith40,562individualsacrosstwonested observedfromcell-type-specificanalysisforclusteringofvitamin case-controlstudies(EPIC-InterActandEPIC-CVD)andthecohort-wideEPIC- D and autoimmune diseases, and the evidence for signal Norfolkstudy(SupplementaryNote1);andacohortof2195individuals(all enrichment for immune and hematopoietic tissues. These find- controls)additionallycollectedaspartoftheSOCCSthatwerenotincludedinour discoverystage.Asforthephenotype,EPICindividualswereassayedforplasma ings are in line with previous Mendelian Randomization studies 25-hydroxyvitaminD andSOCCSindividualswereassayedfortotal25- 3 whichfoundaputativecausalassociationbetweenvitaminDand hydroxyvitaminD.Weperformedtheassociationanalysisinasimilarmanner, autoimmune diseases such as multiple sclerosis1,2 and type 1 adjustedforage,sex,timeofsamplecollection,andstudycenterwhererelevant. diabetes25. The additional genetic instruments identified by our WeregardedP-value<0.05inthereplicationsamples,andP-value<5×10−8inthe pooledanalysisassuccessfulreplication. results could also be used in future Mendelian Randomization analysesoftheassociationbetweenvitaminDandcomplextraits. Conditionalanalysis.Afteridentifyingtheprimaryassociatedvariantateachlocus selectedaccordingtothestrengthofitsassociation,wefurthertestedwhetherthere wereanyotherSNPssignificantlyassociatedwith25-hydroxyvitaminDafter Methods accountingfortheeffectofleadSNP.Wethusperformedastepwisemodel Studycohorts.WeexpandedourpreviousSUNLIGHTconsortiumGWAS,and selectionprocedureforthosechromosomeswhereasignificantvariantwaspre- undertookalarge,multicenter,genome-wideassociationstudyof31cohortsin viouslyidentified.WestartedwiththemostsignificantlyassociatedSNP,scanning Europe,CanadaandUSA.Ourfirststagediscoverymeta-analysisconsistedof throughthewholechromosome,selectingadditionalindependentlyassociated 79,366samplesofEuropeandescentdrawnfrom31epidemiologicalcohorts. SNPsusingastepwiseprocedure,oneatatime,basedontheirconditionalP- Amongthose31cohorts,tenwereusedasdiscoveryandin-silicoreplication values.Finally,wefitallselectedSNPintoonemodeltoestimatetheirjointeffects. NATURECOMMUNICATIONS| (2018) 9:260 |DOI:10.1038/s41467-017-02662-2|www.nature.com/naturecommunications 7 ARTICLE NATURECOMMUNICATIONS|DOI:10.1038/s41467-017-02662-2 WeusedGCTA-COJOsoftwaretoaccommodateoursummarylevelGWAS GenomicsConsortium(PGC)38);openchromatin,asreflectedbyDNaseI data27,andtheCancerGeneticMarkerofSusceptibility(CGEMS)GWASwith hypersensitivitysites(DHSsandfetalDHSs)33,obtainedasacombinationof 2287individualsofEuropeandescentand2,543,887genotypedandimputed EncyclopediaofDNAElements(ENCODE)andRoadmapEpigenomicsdata,and (HapMap22)SNPsasreferencepanel. processedbyTrynkaetal.36;combinedchromHMMandSegwaypredictions obtainedfromHoffmanetal.39,whichleverageonmanyannotationstopartition thegenomeintosevenunderlyingchromatinstates(theCCCTC-bindingfactor SNP-by-dietinteraction.Weperformedagenome-wideassociationscreeningof (CTCF),promoter-flanking,transcribedregion,transcriptionstartsite(TSS), circulating25-hydroxyvitaminDwhileaccountingforpotentialinteractioneffect strongenhancer,weakenhancer,andtherepressedregion);regionsthatare betweenSNPanddietaryvitaminDintake.Ourtestsincorporatinggene-diet conservedinmammals,providedbyLindblad-Tohetal.40andpost-processedby interactionwerebasedonthefollowingmodel: WardandKellis41;super-enhancers,whicharelargegroupsofputativeenhancers lnð25ðOHÞDÞ¼β þβ ´Gþβ ´Eþβ ´G´Eþβ ´Z withhighlevelsofactivity,providedbyHniszetal.37;FANTOM5enhancers 0 1 2 3 Z mappedbyusingcapanalysisofgeneexpressionintheFANTOM5panelof samples,obtainedfromAnderssonetal.42;digitalgenomicfootprint(DGF)and transcriptionfactorbindingsite(TFBS)annotationsdownloadedfromENCODE35 whereGisaSNPthatwascodedadditively,EistherawvitaminDintake, measuredonacontinuousscale.Theparametersβ ,β ,β ,andβ arethe andpost-processedbyGusevetal.33.Weincluded500-bpwindowsaroundeachof 0 1 2 3 the24mainannotationsinthebaselinemodel,and100-bpwindowsaroundChIP- intercept,themaineffectofSNP,themaineffectofdietaryvitaminDintake,and seqwhenappropriate,topreventupwardbiasofestimatesgeneratedby theinteractioneffectbetweenGandE.Themodelalsoincludedthesame enrichmentinthenearbyregions. covariatesZasforthemarginaleffectscreening,theeffectsofwhichwerecaptured intheparameterβ .Weconsideredbothastandard1degree-of-freedomtestof Inadditiontothebaselinemodelusing24mainannotations,wealsoperformed interactioneffect(iZ.e.,nullhypothesisofβ ¼0),andajoint2degree-of-freedom cell-type-specificanalysesusingannotationsofthefourhistonemarks(H3K4me1, 3 H3K4me3,H3K9acandH3K27ac).Eachcell-type-specificannotationcorresponds testofmaingeneticeffectplusgene-by-dietinteraction(i.e.,nullhypothesisof β ¼0andβ ¼0).Forcomparisonpurposes,wealsoconsideredamodel toahistonemarkinasinglecelltype(forexample,H3K27acinadiposenuclei 1 3 tissues),andtherewasatotalof220suchannotations.Wefurthersubdividedthese adjustingforvitaminDintakebutnotmodelinginteraction(i.e.,notincludingthe β ´G´Eterm)usingthesamesubsetofindividuals. 220cell-type-specificannotationsinto10categoriesbyaggregatingthecell-type- 3 specificannotationswithineachgroup(forexample,SNPsrelatedwithanyofthe VitaminDintakewasavailablefor15cohortsonatotalof41,981individuals.It fourhistonemodificationsinanyhematopoieticandimmunecellswereconsidered includedboththepopulationbasedcohorts(ARIC,1958BC,B-PROOF,FHS, asonebigcategory).Whengeneratingthecell-type-specificmodels,weaddedeach HealthABC,MESA,NFBC,RS,RSIII,andYFSaspartoftheoverallMeta-GWAS, annotationindividually(oneatatime)tothebaselinemodel,creatingseparate plustwoadditionalcohorts,theProspectiveInvestigationoftheVasculaturein modelstocontrolforoverlapwiththegenomicfunctionalelementsinthefull UppsalaSeniors(PIVUS),andtheUppsalaLongitudinalStudyofAdultMen baselinemodelbutnotoverlapwiththeothercelltypes. (ULSAM),genotypedoncustomarraythatwerenotincludedintheoverallmeta- WeadditionallyassembledthesummarystatisticsfromGWASof37traitsor GWASbutwereincludedinthisSNP-by-dietinteractionanalysis),andcase-control diseasesperformedinindividualsofEuropeandescent,whicharepublicly studies(HPFS(HPFS_CHD),NHS(NHS_BRCA,NHS_T2D),andSOCCS).Forthe available38,43–55orappliedfromtheUKBiobank.Thesestudiesspanawiderange latterstudies,allanalyseswereperformedseparatelyincasesandcontrols.The ofphenotypes,fromanthropometricindicessuchasheight,weight,BMI,tomental aforementionedinteractionmodelwasappliedtoeachoftheincludedcohorts,and study-specificresultsweremeta-analyzedusinginverse-varianceweightedsumof disorders(forexampledepressivesyndromeandschizophrenia)toautoimmune effectestimatesasimplementedinMETAL26.Forthe2degree-of-freedomtestwe andinflammatorydiseases(forexamplerheumatoidarthritisandceliacdiseases). usedjointframeworkdescribedintwopreviouspublishedpapers28,29.Quality Wecalculatedthepairwisegeneticcorrelation(rg,crosstraitheritability)between controlfilteringwasperformedoneachstudybeforemeta-analysis.OnlySNPswith 25-hydroxyvitaminDandeachofthe37traits.Wefurtherconductedthesame imputationinfoscore>0.8,MAF>0.05,HWE>1×10−6,andaminimumoftotal cell-type-specificanalysisforeachtrait,andplottedbeta-coefficientz-scorematrix, samplesizeinthemeta-analysis>10,000wereretained. constructedfromthetotal220annotationsby37traits,intofourheat-mapsbased onthefourhistonemarks. Finally,inadditiontothegeneticcorrelationanalysiswhichreflectsshared LinkageDisequilibriumscoreregression.Weperformedlinkagedisequilibrium geneticfactorsacrossdifferenttraitsbutdoesnotinformdirection,wealso scoreregression(LDSC)analysistoestimatetheSNP-heritabilityofserum25- attemptedtoidentifydirectionsofsuchcorrelationusinganalgorithmproposedby hydroxyvitaminDconcentrations30,31.Thismethodisbasedonavalidatedrela- Pickrelletal.56.ThemethodadoptsasimilarintuitionastheMendelian tionshipbetweenLDscoreandχ2-statistics: Randomizationapproach,where,ifatraitXinfluencestraitY,thenSNPs Ehχ2ji(cid:2)NMjh2gljþ1 itinnraflfliuutseennshcceionduglbdXybsmeheoccouhrldraenalialsstmeodsi.niFflnuudreetnphceeenr,dYse,innatcneodfYtXhd,eogSeeNsnPent-oisctpviencaflirfiiuacennetfscfeetchXta,tsibiznuefltsucfoeonrucltdeheYbtewdoo h i notnecessarilyinfluenceX.Basedonthisintuition,themethodproposestwo whereE χ2 denotestheexpectedχ2-statisticsfortheassociationbetween “causal”modelsandtwo“non-causal”models,andcalculatestherelativelikelihood j ratioofthebestnon-causalmodelcomparedtothebestcausalmodel.We onuutmcobmeresoanfdvaSrNianPtsj,aNndjisljtdheenosttuedsythseamLDplsecsoirzeeoafvSaNilaPbljedfeofirnSeNdPasj,ljM¼iPsthr2eðtj;oktaÞl. sdiegtneirfimciannetd(Psi<gn5ifi×c1a0n−t8)SNSNPPssfoarndeapchrugnievdenthteranitumbybeserslebctaesdedgeonnotmheei-rwLidDe-pattern LDSCcalculatesheritabilityusingonlysummary-leveldatainsteadofinkdividual intheEuropeanpopulationsinPhase1of1000GenomeProject.Wescanned genotypes,andiscomputationallycosteffectiveatlargesamplesizes.Weusedthe throughallpairsof25-hydroxyvitaminDandtraitstoidentifydirectional sauvmailmabalreyinstaattisletiacsstf2rosmtud2ie5s-haynddroaxsyavmitapmleisnizDeomfeattal-eGasWt1A0S,0r0e0s.uWltse,wfiristhtaSnNalPyszed correlations.Weconsiderpairsoftraitswithlikelihoodrationon-causalvs.causal< 0.05ashavingevidenceofdirectionalcorrelations. theSNP-heritabilitybyusing(1)SNPsacrosstheentiregenomethatpassedquality control;(2)SNPsexcludingthetopassociations(SNPsreachinggenome-wide significance,P≤5×10−8),aswellasallSNPswithin±500kbofthetophitsinthe region;and(3)SNPsexcludingthenominallysignificantassociations(P≤0.05).We Dataavailability.TheGWASsummarystatisticsonserumcirculatingvitaminD subsequentlypartitionedtheheritabilitythroughthreedifferentmodels:(1)afull concentrationsisavailableatdbGaphttps://drive.google.com/drive/folders/ baselinemodelincludingthe24publiclyavailablemainannotationsthatarenot 0BzYDtCo_doHJRFRKR0ltZHZWZjQ;allrelevantdataareavailablefromthe specifictoanycelltype,the500-bpwindowsaroundeachannotation,aswellas authorsuponrequest. 100-bpwindowsaroundchromatinimmunoprecipitationandsequencingpeaks (ChIP-seq)whenappropriate.Thisresultedinatotalof52overlappingfunctional Received: 21 July2017 Accepted: 15December 2017 categoriesinthefullbaselinemodel;(2)acell-type-specificmodelincluding10cell typegroups:adrenalandpancreas,centralnervoussystem(CNS),cardiovascular, connectiveandbone,gastrointestinal,immuneandhematopoietic,kidney,liver, skeletalmuscle,andother;(3)acell-type-specificmodelincluding220cell-type- specificannotationsforthefourhistonemarkswithputativeenhancerorpromoter functions,H3K4me1,H3K4me3,H3K9ac,andH3K27ac. Detailsofthe24publiclyavailableannotations,the220cell-type-specific References annotations,aswellasthe10celltypegroupsweredescribedbyFinucaneetal.31. Briefly,the24annotationsincludedcoding,UTR(3′UTRand5′UTR),promoter 1. Mokry,L.E.etal.VitaminDandriskofmultiplesclerosis:amendelian andintronicregions,acquiredfromtheUCSCGenomeBrowser32andpost- randomizationstudy.PLoSMed.12,e1001866(2015). processedbyGusevetal.33;thethreehistonemarks(mono-methylation 2. Rhead,B.etal.Mendelianrandomizationshowsacausaleffectoflowvitamin (H3K4me1)ofhistoneH3atlysine4,tri-methylation(H3K4me3)ofhistoneH3at Donmultiplesclerosisrisk.Neurol.Genet.2,e97(2016). lysine4,andacetylationofhistoneH3atlysine9(H3K9ac)processedbyTrynka 3. Martineau,A.R.etal.VitaminDsupplementationtopreventacuterespiratory etal.34–36andtwoversionsofacetylationofhistoneH3atlysine27(H3K27ac,one tractinfections:systematicreviewandmeta-analysisofindividualparticipant versionprocessedbyHniszetal.37,anotherversionusedbythePsychiatric data.Br.Med.J.356,i6583(2017). 8 NATURECOMMUNICATIONS| (2018) 9:260 |DOI:10.1038/s41467-017-02662-2|www.nature.com/naturecommunications ARTICLE NATURECOMMUNICATIONS|DOI:10.1038/s41467-017-02662-2 4. Pilz,S.,Verheyen,N.,Grübler,M.R.,Tomaschitz,A.&März,W.VitaminD 34.RoadmapEpigenomicsConsortium.etal.Integrativeanalysisof111reference andcardiovasculardiseaseprevention.Nat.Rev.Cardiol.13,404–417(2016). humanepigenomes.Nature518,317–330(2015). 5. Garland,C.F.etal.TheroleofvitaminDincancerprevention.Am.J.Public 35.ENCODEProjectConsortium.AnintegratedencyclopediaofDNAelementsin Health96,252–261(2006). thehumangenome.Nature489,57–74(2012). 6. FernandesdeAbreu,D.A.,Eyles,D.&Féron,F.VitaminD,aneuro- 36.Trynka,G.etal.Chromatinmarksidentifycriticalcelltypesforfinemapping immunomodulator:implicationsforneurodegenerativeandautoimmune complextraitvariants.Nat.Genet.45,124–130(2013). diseases.Psychoneuroendocrinology34Suppl1,S265–277(2009). 37.Hnisz,D.etal.Super-enhancersinthecontrolofcellidentityanddisease.Cell 7. Lagunova,Z.,Porojnicu,A.C.,Lindberg,F.,Hexeberg,S.&Moan,J.The 155,934–947(2013). dependencyofvitaminDstatusonbodymassindex,gender,ageandseason. 38.SchizophreniaWorkingGroupofthePsychiatricGenomicsConsortium. AnticancerRes.29,3713–3720(2009). Biologicalinsightsfrom108schizophrenia-associatedgeneticloci.Nature511, 8. Wang,T.J.etal.CommongeneticdeterminantsofvitaminDinsufficiency:a 421–427(2014). genome-wideassociationstudy.LancetLond.Engl.376,180–188(2010). 39.Hoffman,M.M.etal.Integrativeannotationofchromatinelementsfrom 9. Karohl,C.etal.HeritabilityandseasonalvariabilityofvitaminD ENCODEdata.NucleicAcidsRes.41,827–841(2013). concentrationsinmaletwins.Am.J.Clin.Nutr.92,1393–1398(2010). 40.Lindblad-Toh,K.etal.Ahigh-resolutionmapofhumanevolutionary 10.Orton,S.-M.etal.EvidenceforgeneticregulationofvitaminDstatusintwins constraintusing29mammals.Nature478,476–482(2011). withmultiplesclerosis.Am.J.Clin.Nutr.88,441–447(2008). 41.Ward,L.D.&Kellis,M.Evidenceofabundantpurifyingselectioninhumans 11.Ahn,J.etal.Genome-wideassociationstudyofcirculatingvitaminDlevels. forrecentlyacquiredregulatoryfunctions.Science337,1675–1678(2012). Hum.Mol.Genet.19,2739–2745(2010). 42.Andersson,R.etal.Anatlasofactiveenhancersacrosshumancelltypesand 12.Hiraki,L.T.etal.Exploringthegeneticarchitectureofcirculating25- tissues.Nature507,455–461(2014). hydroxyvitaminD.Genet.Epidemiol.37,92–98(2013). 43.Boraska,V.etal.Agenome-wideassociationstudyofanorexianervosa.Mol. 13.Boyadjiev,S.etal.Cranio-lenticulo-suturaldysplasiaassociatedwithdefectsin Psychiatry19,1085–1094(2014). collagensecretion.Clin.Genet.80,169–176(2011). 44.GlobalLipidsGeneticsConsortium.etal.Discoveryandrefinementofloci 14.Boyadjiev,S.A.etal.Cranio-lenticulo-suturaldysplasiaiscausedbyaSEC23A associatedwithlipidlevels.Nat.Genet.45,1274–1283(2013). mutationleadingtoabnormalendoplasmic-reticulum-to-Golgitrafficking.Nat. 45.Bentham,J.etal.Geneticassociationanalysesimplicateaberrantregulationof Genet.38,1192–1197(2006). innateandadaptiveimmunitygenesinthepathogenesisofsystemiclupus 15.Myung,J.K.etal.Well-differentiatedliposarcomaoftheoesophagus: erythematosus.Nat.Genet.47,1457–1464(2015). clinicopathological,immunohistochemicalandarrayCGHanalysis.Pathol. 46.Okada,Y.etal.Geneticsofrheumatoidarthritiscontributestobiologyand Oncol.Res.17,415–420(2011). drugdiscovery.Nature506,376–381(2014). 16.Manousaki,D.etal.Low-frequencysynonymouscodingvariationinCYP2R1 47.Okbay,A.etal.Geneticvariantsassociatedwithsubjectivewell-being, haslargeeffectsonvitaminDlevelsandriskofmultiplesclerosis.Am.J.Hum. depressivesymptoms,andneuroticismidentifiedthroughgenome-wide Genet.101,227–238(2017). analyses.Nat.Genet.48,624–633(2016). 17.Arguelles,L.M.etal.Heritabilityandenvironmentalfactorsaffectingvitamin 48.Jostins,L.etal.Host-microbeinteractionshaveshapedthegeneticarchitecture DstatusinruralChineseadolescenttwins.J.Clin.Endocrinol.Metab.94, ofinflammatoryboweldisease.Nature491,119–124(2012). 3273–3281(2009). 49.Cross-Disorder,GroupofthePsychiatricGenomicsConsortiumIdentification 18.Mills,N.T.etal.Heritabilityoftransforminggrowthfactor-β1andtumor ofrisklociwithsharedeffectsonfivemajorpsychiatricdisorders:agenome- necrosisfactor-receptortype1expressionandvitaminDlevelsinhealthy wideanalysis.LancetLond.Engl.381,1371–1379(2013). adolescenttwins.TwinRes.Hum.Genet.Off.J.Int.Soc.TwinStud.18,28–35 50.Cordell,H.J.etal.Internationalgenome-widemeta-analysisidentifiesnew (2015). primarybiliarycirrhosisrisklociandtargetablepathogenicpathways.Nat. 19.Livshits,G.,Karasik,D.&Seibel,M.J.Statisticalgeneticanalysisofplasma Commun.6,8019(2015). levelsofvitaminD:familialstudy.Ann.Hum.Genet.63,429–439(1999). 51.Schunkert,H.etal.Large-scaleassociationanalysisidentifies13new 20.Yu,H.-J.,Kwon,M.-J.,Woo,H.-Y.&Park,H.Analysisof25-hydroxyvitamin susceptibilitylociforcoronaryarterydisease.Nat.Genet.43,333–338 Dstatusaccordingtoage,gender,andseasonalvariation.J.Clin.Lab.Anal.30, (2011). 905–911(2016). 52.Morris,A.P.etal.Large-scaleassociationanalysisprovidesinsightsintothe geneticarchitectureandpathophysiologyoftype2diabetes.Nat.Genet.44, 21.Hunter,D.etal.Geneticcontributiontobonemetabolism,calciumexcretion, 981–990(2012). andvitaminDandparathyroidhormoneregulation.J.BoneMiner.Res.Off.J. Am.Soc.BoneMiner.Res.16,371–378(2001). 53.PsychiatricGWASConsortiumBipolarDisorderWorkingGroup.Large-scale genome-wideassociationanalysisofbipolardisorderidentifiesanew 22.Agmon-Levin,N.,Theodor,E.,Segal,R.M.&Shoenfeld,Y.VitaminDin systemicandorgan-specificautoimmunediseases.Clin.Rev.AllergyImmunol. susceptibilitylocusnearODZ4.Nat.Genet.43,977–983(2011). 45,256–266(2013). 54.Dubois,P.C.A.etal.Multiplecommonvariantsforceliacdiseaseinfluencing immunegeneexpression.Nat.Genet.42,295–302(2010). 23.Yang,C.-Y.,Leung,P.S.C.,Adamopoulos,I.E.&Gershwin,M.E.The 55.Thorgeirsson,T.E.etal.SequencevariantsatCHRNB3-CHRNA6and implicationofvitaminDandautoimmunity:acomprehensivereview.Clin. Rev.AllergyImmunol.45,217–226(2013). 56.CPiYckPr2eAll,6J.afKfe.cettsaml.oDkeintegctbioenhaavniodr.inNteartp.rGeteanteiot.n4o2f,s4h4a8r–e4d5g3en(2e0ti1c0i)n.fluenceson 24.GAescnheta.rdE,pHid.emAiople.r4sp0e,c6t7iv8e–6o8n8in(2te0r1a6c)t.ioneffectsingeneticassociationstudies. 42humantraits.Nat.Genet.48,709–717(2016). 25.Cooper,J.D.etal.InheritedvariationinvitaminDgenesisassociatedwith predispositiontoautoimmunediseasetype1diabetes.Diabetes60,1624–1631 Acknowledgements (2011). AfulllistofacknowledgementscanbefoundinSupplementaryNote2. 26.Willer,C.J.,Li,Y.&Abecasis,G.R.METAL:fastandefficientmeta-analysisof genomewideassociationscans.Bioinforma.Oxf.Engl.26,2190–2191 (2010). Author contributions 27.Yang,J.etal.Conditionalandjointmultiple-SNPanalysisofGWASsummary C.P.,E.H.,M.I.M.,E.A.S.,P.L.L.,E.B.,D.A.,S.J.W.,N.D.F.,W.H.,L.C.P.G.M.D.G., statisticsidentifiesadditionalvariantsinfluencingcomplextraits.Nat.Genet. N.M.V.S.,N.v.V.,J.B.R.,B.K.,T.J.W.,D.P.K.,R.S.V.,C.O.,M.L.,J.G.E.,S.B.K.,M.B.,E.S., 44,369–375(2012). I.H.D.B.,J.I.R.,S.S.R.,M.J.,P.K.,J.F.W.,L.L.,K.M.,L.Z.,H.C.,E.T.,S.M.F.,M.G.D.,T.L., 28.Aschard,H.,Hancock,D.B.,London,S.J.&Kraft,P.Genome-widemeta- M.K.,O.T.R.,V.M.,M.A.I.,J.W.J.,N.J.W.,C.L.,N.G.F.,K.K.,A.B.,andJ.D.designedand analysisofjointtestsforgeneticandgene-environmentinteractioneffects. managedindividualstudies.C.P.,E.H.,M.I.M.,E.A.S.,P.L.L.,D.A.,S.J.W.,W.H., Hum.Hered.70,292–300(2010). N.M.V.S.,A.E.,J.B.R.,R.S.V.,C.O.,L.V.,M.L.,J.G.E.,S.B.K.,M.B.,D.V.H.,I.H.D.B., 29.Manning,A.K.etal.Meta-analysisofgene-environmentinteraction:joint J.I.R.,S.S.R.,J.F.W.,L.L.,E.I.,K.M.,H.C.,E.T.,S.M.F.,M.G.D.,T.L.,M.K.,O.T.R.,V.M., estimationofSNPandSNP×environmentregressioncoefficients.Genet. M.A.I.,N.S.,J.W.J.,N.J.W.,C.L.,N.G.F.,K.K.,A.B.,andJ.D.collecteddata.E.B.,A.E., Epidemiol.35,11–18(2011). C.O.,M.L.,Y.L.,M.B.,E.M.K.,J.I.R.,S.S.R.,J.F.W.,L.L.,E.I.,K.M.,S.T.,S.M.F.,M.G.D., 30.Bulik-Sullivan,B.K.etal.LDscoreregressiondistinguishesconfoundingfrom T.L.,L.L.,J.W.J.,N.J.W.,C.L.,A.B.,andJ.D.performedthegenotyping.C.P.,D.B.,E.H., polygenicityingenome-wideassociationstudies.Nat.Genet.47,291–295 M.I.M.,W.T.,E.B.,N.M.V.S.,A.E.,J.D.,C.O.,L.V.,M.L.,K.K.L.,J.D.,E.M.K.,J.I.R., (2015). S.S.R.,J.F.W.,C.H.,E.I.,K.M.,S.T.,A.G.U.,F.R.,L.Z.,S.M.F.,M.G.D.,A.M.V.,T.L.,L.L., 31.Finucane,H.K.etal.Partitioningheritabilitybyfunctionalannotationusing M.A.I.,N.S.,N.J.W.,C.L.,A.B.,andJ.D.preparedthegenotypedata.D.B.,E.H.,M.I.M., genome-wideassociationsummarystatistics.Nat.Genet.47,1228–1235(2015). E.A.S.,P.L.L.,A.E.,J.B.R.,S.B.,R.S.V.,C.O.,L.V.,M.L.,J.G.E.,D.K.H.,D.V.H.,E.M.K., 32.Kent,W.J.etal.ThehumangenomebrowseratUCSC.GenomeRes.12, I.H.D.B.,A.C.W.,J.F.W.,L.L.,K.M.,M.C.Z.,A.G.U.,F.R.,L.Z.,E.T.,S.M.F.,M.G.D., 996–1006(2002). A.M.V.,E.T.,L.L.,N.J.W.,C.L.,N.G.F.,A.B.,andJ.D.preparedthephenotypedata.D.B., 33.Gusev,A.etal.Partitioningheritabilityofregulatoryandcell-type-specific E.H.,M.I.M.,J.B.R.,T.J.W.,D.P.K.,Y.H.,C.L.,A.C.W.,C.R.C.,P.F.O.,M.J.,X.J.,H.A., variantsacross11commondiseases.Am.J.Hum.Genet.95,535–552(2014). N.J.W.,C.L.,N.G.F.,A.B.,andJ.D.developedtheanalysisplan.A.Z.,D.B.,E.H.,M.I.M., NATURECOMMUNICATIONS| (2018) 9:260 |DOI:10.1038/s41467-017-02662-2|www.nature.com/naturecommunications 9 ARTICLE NATURECOMMUNICATIONS|DOI:10.1038/s41467-017-02662-2 P.L.L.,W.T.,L.C.P.G.M.D.G.,N.v.V.,A.E.,J.B.R.,B.K.,T.J.W.,J.D.,D.P.K.,Y.H.,C.L., Competinginterests:Theauthorsdeclarenocompetingfinancialinterests. D.K.H.,I.H.D.B.,A.C.W.,J.I.R.,S.S.R.,C.R.C.,P.F.O.,M.J.,X.J.,H.A.,M.C.Z.,A.G.U., F.R.,L.B.,N.J.W.,C.L.,andN.G.Freviewedtheanalysisplan.D.B.,E.H.,M.I.M.,L.Y., Reprintsandpermissioninformationisavailableonlineathttp://npg.nature.com/ W.T.,A.E.,J.B.R.,Y.H.,C.L.,Y.Z.,K.K.L.,J.D.,A.C.W.,P.F.O.,A.C.,X.J.,H.A.,P.K.J., reprintsandpermissions/ C.H.,S.T.,L.B.,L.Z.,E.T.,E.T.,L.L.,J.Z.,andM.Tanalyzedthedata.D.B.,Y.H.,P.F.O., andH.Aperformedthemeta-analysis.Y.H.andX.J.performedthepathwayandother Publisher'snote:SpringerNatureremainsneutralwithregardtojurisdictionalclaimsin analyses.C.P.,E.H.,M.I.M.,E.A.S.,P.L.L.,L.Y.,W.T.,E.D.M.,E.B.,L.C.P.G.M.D.G., publishedmapsandinstitutionalaffiliations. N.v.V.,A.E.,J.B.R.,T.J.W.,J.D.,D.P.K.,Y.H.,P.F.O.,M.J.,X.J.,H.A.,E.I.,K.M.,S.T., M.C.Z.,A.G.U.,F.R.,L.B.,L.Z.,E.T.,N.J.W.,andN.G.Finterpretedresults.E.H.,T.J.W., D.P.K.,L.A.C.,R.S.V.,Y.H.,I.H.D.B.,J.I.R.,S.S.R.,M.J.,P.K.,A.G.U.,F.R.,N.S.,and J.W.J.supervisedtheoverallstudydesign.E.H.,J.B.R.,T.J.W.,D.P.K.,Y.H.,P.F.O.,M.J., Open Access This article is licensed under a Creative Commons X.J.,andH.A.wrotethemanuscript.C.P.,E.H.,M.I.M.,E.A.S.,P.L.L.,L.Y.,W.T.,E.D.M., Attribution 4.0 International License, which permits use, sharing, E.B.,D.A.,S.J.W.,N.D.F.,W.H.,L.C.P.G.M.D.G.,N.M.V.S.,N.v.V.,J.B.R.,B.K.,T.J.W., adaptation,distributionandreproductioninanymediumorformat,aslongasyougive J.D.,D.P.K.,D.K.,S.B.,R.S.V.,Y.H.,C.L.,Y.Z.,C.O.,L.V.,M.L.,J.G.E.,M.K.S.,D.K.H., appropriatecredittotheoriginalauthor(s)andthesource,providealinktotheCreative M.P.,M.J.E.,E.M.K.,S.P.,I.H.D.B.,A.C.W.,J.I.R.,S.S.R.,C.R.C.,P.F.O.,M.J.,P.K.,X.J., Commonslicense,andindicateifchangesweremade.Theimagesorotherthirdparty H.A.,P.K.J.,J.F.W.,C.H.,L.L.,E.I.,K.M.,S.T.,H.V.,H.W.,L.Z.,E.T.,T.S.,E.T.,T.L.,L.L., materialinthisarticleareincludedinthearticle’sCreativeCommonslicense,unless M.K.,O.T.R.,V.M.,M.A.I.,N.S.,J.W.J.,N.J.W.,C.L.,N.G.F.,J.Z.,T.G.,K.K.,J.L.,A.B., indicatedotherwiseinacreditlinetothematerial.Ifmaterialisnotincludedinthe J.D.,E.S.,C.G.,W.M.,M.d.H.,andM.T.reviewedthemanuscript.E.H.,M.I.M.,E.A.S.,T. article’sCreativeCommonslicenseandyourintendeduseisnotpermittedbystatutory J.W.,D.P.K.,L.A.C.,R.S.V.,L.F.,M.P.,M.J.,P.K.,M.C.Z.,A.G.U.,F.R.,L.B.,T.S.,andM. regulationorexceedsthepermitteduse,youwillneedtoobtainpermissiondirectlyfrom A.I.overseetheconsortium. thecopyrightholder.Toviewacopyofthislicense,visithttp://creativecommons.org/ licenses/by/4.0/. Additional information SupplementaryInformationaccompaniesthispaperathttps://doi.org/10.1038/s41467- ©TheAuthor(s)2018 017-02662-2. Xia Jiang1,2, Paul F. O’Reilly3, Hugues Aschard 1,4, Yi-Hsiang Hsu5,6,7, J. Brent Richards 8, Josée Dupuis9,10, Erik Ingelsson11,12, David Karasik5, Stefan Pilz13, Diane Berry14, Bryan Kestenbaum15, Jusheng Zheng16, JiananLuan16,EleniSofianopoulou17,ElizabethA.Streeten18,DemetriusAlbanes19,PamelaL.Lutsey20,LuYao20, Weihong Tang20, Michael J. Econs21, Henri Wallaschofski22,23, Henry Völzke23,24, Ang Zhou25, Chris Power14, MarkI.McCarthy 26,27,28,ErinD.Michos29,30,EricBoerwinkle31,StephanieJ.Weinstein19,NealD.Freedman19, Wen-Yi Huang32, Natasja M. Van Schoor33, Nathalie van der Velde34,35, Lisette C.P.G.M.de Groot 36, Anke Enneman34, L. Adrienne Cupples9,10, Sarah L. Booth37, Ramachandran S. Vasan10, Ching-Ti Liu 9, Yanhua Zhou9, Samuli Ripatti38, Claes Ohlsson39, Liesbeth Vandenput39, Mattias Lorentzon40, Johan G. Eriksson41,42, M. Kyla Shea37, Denise K. Houston43, Stephen B. Kritchevsky43, Yongmei Liu44, Kurt K. Lohman45, Luigi Ferrucci46, Munro Peacock21, Christian Gieger47, Marian Beekman 48, Eline Slagboom48, Joris Deelen 48,49, Diana van Heemst50, Marcus E. Kleber 51, Winfried März51,52,53, Ian H. de Boer54, Alexis C. Wood55, Jerome I. Rotter56, Stephen S. Rich57,58, Cassianne Robinson-Cohen59, Martin den Heijer60, Marjo-Riitta Jarvelin61,62,63,64, Alana Cavadino14,65, Peter K. Joshi 66, James F. Wilson 66,67, Caroline Hayward 67, Lars Lind12, Karl Michaëlsson68, Stella Trompet50,69, M. Carola Zillikens60, Andre G. Uitterlinden34,60, Fernando Rivadeneira 34,60, Linda Broer60, Lina Zgaga70, HarryCampbell66,71,EvropiTheodoratou66,71,SusanM.Farrington 71,MariaTimofeeva71,MalcolmG.Dunlop71, Ana M. Valdes72,73, Emmi Tikkanen74, Terho Lehtimäki75,76, Leo-Pekka Lyytikäinen 75,76, Mika Kähönen77,78, Olli T. Raitakari79,80, Vera Mikkilä81, M. Arfan Ikram 34, Naveed Sattar82, J. Wouter Jukema 69,83, Nicholas J. Wareham16, Claudia Langenberg16, Nita G. Forouhi16, Thomas E. Gundersen84, Kay-Tee Khaw17, Adam S. Butterworth17, John Danesh17,85, Timothy Spector72, Thomas J. Wang86, Elina Hyppönen14,25, Peter Kraft1 & Douglas P. Kiel5,6,7 1PrograminGeneticEpidemiologyandStatisticalGenetics.DepartmentofEpidemiology,HarvardT.H.ChanSchoolofPublicHealth,677Huntington Avenue,Boston02115,MA,USA.2UnitofCardiovascularEpidemiology,InstituteofEnvironmentalMedicine,KarolinskaInstitutet,Nobelsvagen13, Stockholm17177,Sweden.3DepartmentofSocialGenetic&DevelopmentalPsychiatry,King’sCollegeLondon,InstituteofPsychiatry,DeCrespigny Park,LondonSE58AF,UK.4CentredeBioinformatique,BiostatistiqueetBiologieIntégrative(C3BI),InstitutPasteur,Paris75724,France.5Institute forAgingResearch,HebrewSeniorLife,1200CentreStreet,Boston,MA02131,USA.6DepartmentofMedicine,BethIsraelDeaconessMedical CenterandHarvardMedicalSchool,Boston,MA02115,USA.7BroadInstituteofHarvardandMassachusettsInstituteofTechnology,Boston,MA 02142,USA.8DepartmentsofMedicine,HumanGenetics,EpidemiologyandBiostatistics,3755CôteSte-CatherineRoad,SuiteH-413Montréal, QuébecH3T1E2,Canada.9DepartmentofBiostatistics,BostonUniversitySchoolofPublicHealth,CrosstownCenter.801MassachusettsAvenue 10 NATURECOMMUNICATIONS| (2018) 9:260 |DOI:10.1038/s41467-017-02662-2|www.nature.com/naturecommunications
Description: