ebook img

Genome Plasticity of agr-Defective Staphylococcus aureus during Clinical Infection PDF

18 Pages·2017·2.38 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Genome Plasticity of agr-Defective Staphylococcus aureus during Clinical Infection

MOLECULAR GENOMICS crossm Genome Plasticity of agr-Defective Staphylococcus aureus during Clinical Infection DeenaR.Altman,a,bMitchellJ.Sullivan,bKieranI.Chacko,bDivyaBalasubramanian,d TheodoreR.Pak,b WilliamE.Sause,dKrishanKumar,eRobertSebra,b,cGintarasDeikus,b,cOliverAttie,bHannahRose,eMarthaLewis,b YiFulmer,eAliBashir,bAndrewKasarskis,b,cEricE.Schadt,b,cAnthonyR.Richardson,fVictorJ.Torres,dBoShopsin,d,e HarmvanBakelb,c D o aDepartmentofMedicine,DivisionofInfectiousDiseases,IcahnSchoolofMedicineatMountSinai,NewYork w City,NewYork,USA n lo bDepartmentofGeneticsandGenomicSciences,IcahnSchoolofMedicineatMountSinai,NewYorkCity, a NewYork,USA d e cIcahnInstituteforGenomicsandMultiscaleBiology,IcahnSchoolofMedicineatMountSinai,NewYorkCity, d NewYork,USA f r o dDepartmentofMicrobiology,NewYorkUniversitySchoolofMedicine,NewYork,NewYork,USA m eDepartmentofMedicine,DivisionofInfectiousDiseases,NewYorkUniversitySchoolofMedicine,NewYork, h NewYork,USA t t p fDepartmentofMicrobiologyandMolecularGenetics,UniversityofPittsburgh,Pittsburgh,Pennsylvania,USA : / / ia ABSTRACT Therapy for bacteremia caused by Staphylococcus aureus is often inef- i. a fective, even when treatment conditions are optimal according to experimental pro- s m tocols. Adapted subclones, such as those bearing mutations that attenuate agr- . o mediated virulence activation, are associated with persistent infection and patient r g mortality. To identify additional alterations in agr-defective mutants, we sequenced / o and assembled the complete genomes of clone pairs from colonizing and infected n sites of several patients in whom S. aureus demonstrated a within-host loss of agr A p function. We report that events associated with agr inactivation result in agr- r defective blood and nares strain pairs that are enriched in mutations compared to il 6 pairs from wild-type controls. The random distribution of mutations between colo- , 2 nizing and infecting strains from the same patient, and between strains from differ- Received7May2018 Returnedfor 0 modification13June2018 Accepted21July 1 ent patients, suggests that much of the genetic complexity of agr-defective strains 9 2018 results from prolonged infection or therapy-induced stress. However, in one of the b Acceptedmanuscriptpostedonline30July y agr-defective infecting strains, multiple genetic changes resulted in increased viru- 2018 g lence in a murine model of bloodstream infection, bypassing the mutation of agr CitationAltmanDR,SullivanMJ,ChackoKI, u e and raising the possibility that some changes were selected. Expression profiling cor- BalasubramanianD,PakTR,SauseWE,KumarK, s SebraR,DeikusG,AttieO,RoseH,LewisM, t related the elevated virulence of this agr-defective mutant to restored expression of FulmerY,BashirA,KasarskisA,SchadtEE, the agr-regulated ESAT6-like type VII secretion system, a known virulence factor. RichardsonAR,TorresVJ,ShopsinB,vanBakel Thus, additional mutations outside the agr locus can contribute to diversification H.2018.Genomeplasticityofagr-defective Staphylococcusaureusduringclinicalinfection. and adaptation during infection by S. aureus agr mutants associated with poor pa- InfectImmun86:e00331-18.https://doi.org/10 tientoutcomes. .1128/IAI.00331-18. EditorNancyE.Freitag,UniversityofIllinoisat KEYWORDS Staphylococcusaureus,generegulation,genomeanalysis Chicago Copyright©2018Altmanetal.Thisisan open-accessarticledistributedundertheterms Incontrasttoorganismsthatacquiregenesforpathogenesis,Staphylococcusaureus oftheCreativeCommonsAttribution4.0 Internationallicense. appears to have adapted to infection and the hospital environment through AddresscorrespondencetoBoShopsin, virulence-attenuating mutations that partially or completely inactivate the quorum- [email protected],orHarmvanBakel, sensingvirulenceregulatoragr(1–8).Invitro,theAgrquorum-sensingsystemcoordi- [email protected]. natesaswitchfromanestablishmentmode,inwhichgenesforadhesinsandprotective B.S.andH.V.B.areco-seniorauthorsonthis work.D.R.A.andM.J.S.contributedequallyto surface proteins are expressed, to an invasive mode, in which genes for factors that thiswork. promote host cell and tissue destruction are activated (reviewed in reference 9). October2018 Volume86 Issue10 e00331-18 InfectionandImmunity iai.asm.org 1 Altmanetal. InfectionandImmunity agr-deficientmutantsareattenuatedforvirulenceinanimalmodelsofacuteinfection, andagentsthatblockagrfunctionandquorumsensingexhibitanti-infectiveproperties inanimals(10).However,agr-defectiveclinicalisolatesthatare“locked”inalow-cell- density (noninvasive) regulatory state arise during infection, particularly in patients with endocarditis, osteomyelitis, and bacteremia (5, 11–13). In this situation, the agr-defectivemutantsareoftenassociatedwithpersistentinfection,theemergenceof host and synthetic antimicrobial resistance, and poor outcomes, opposite what is expected from animal infection studies and from the in vitro cytotoxic properties of these strains (11, 13–18). Thus, the emergence of naturally occurring agr-defective mutantsduringinfectionprovidesanopportunitytostudyhowthepathogenshiftsto a more persistent state. Moreover, understanding how S. aureus adapts to the chal- lengesofinvasiveinfectioniscentraltomanagingserious,complicateddisease. In the present work, we mapped all genetic changes outside the agr locus that accompany agr mutation in the human host. We examined naturally occurring agr- D defectivemutantsfromapreviouslycharacterizedcollectionof158pairsofpredomi- o w nantly methicillin-susceptible S. aureus (MSSA) clones from nasal carriage and from n infecting sites of the same patient (12, 19). Strain pairs from individual patients were lo a genotypically isogenic based on pulsed-field gel electrophoresis (PFGE) banding pat- d e terns and spa types (12, 19). Although agr-defective mutants were infrequent in the d originalstudypopulation(5%[19]),amongthe158bacteremicpatients,15exhibited fr o agr-defective S. aureus in blood samples. Of these patients, 5 were nasally colonized m with a genotypically isogenic agr-positive (agr(cid:2)) strain, indicating that a within-host h lossofagrfunctionhadoccurred.Moreover,thesepairsprovidedauniquesetofstrains tt p for comparisons that would allow the identification of mutational changes located :/ / outside the agr regulon. Complete genome sequencing was used to compare the 5 ia i. pairsofclonesfromnasalandinfectingsitesthatdemonstratedawithin-hostlossinagr a s functionanduniformlyagr(cid:2)clonepairsfrompatientswithoutaloss. m . o r RESULTS g / Whole-genomesequencingconfirmstherelatednessofcolonizingandinfect- o n ingisolateswithinpatients.Individualclonesfromall5pairsofisolateswithalossof A agr function in the infecting isolate were examined by whole-genome sequencing p (Table1)(thesesampleswerecalledcases).Becausegeneticheterogeneitymaynotbe ril limitedtoagr-defectivestrains,wesequencedpairsofclonalisolatesfrom7additional 6 , subjectsascontrols.Thesecontrolisolatesdidnotdemonstrateawithin-hostlossofagr 2 0 function,buttheywererepresentedbyabacteremiasampleandacolonizationsample. 1 9 Toavoidpotentiallyconfoundingeffectsofmutationsassociatedwiththeadaptation b of hospital-acquired methicillin-resistant S. aureus (MRSA) strains to the health care y environment,whichinsomecasesmayhaveoccurreddecadesago(1,3),weexamined g u bothMSSAandMRSA(seeTableS1inthesupplementalmaterial),sinceunlikeMRSA, e s MSSA clones usually do not disseminate in hospitals (20, 21). Thus, whole-genome t sequencing was expected to provide a broad characterization of the range and potential diversity of mutations associated with human bacteremia. Case and control groupswerebalancedforMSSA/MRSA,eachcontainingtwopatientswithMRSAisolate pairsasdeterminedbythepresenceofmecA.Inanadditional3instances(2casesand 1control),availableisolatesfromthepresumedfocusofinfection(e.g.,pneumoniaor skin and soft tissue infection) were included in the analysis to assess their roles as reservoirsforvariants. ClosedgenomeswereobtainedbyusingPacificBiosciences(PacBio)RS-IIlong-read sequencing for all 27 isolates (5 pairs of case strains, 7 pairs of control strains, and 3 foci),including9distinctplasmidsfrom6patients.AdditionalIlluminasequencingwas performed to address insertion/deletion (indel) errors associated with homopolymer regionsinthePacBiodata,resultinginacorrectionof4to159variantspergenome.A descriptionofstrains,genomesize,sequencequality,andthepresenceofplasmidscan be found in Table S1. Phylogenetic analysis and multisequence alignment of the genomicdataconfirmedthatblood,infectionfocus,andnaresstrainsfromeachpatient October2018 Volume86 Issue10 e00331-18 iai.asm.org 2 GenomePlasticityinInvasiveagr-DefectiveS.aureus InfectionandImmunity Totalno.ofvariantsd (no.ofvariantsincoregenome/no.ofvariantsinaccessorygenome) 362(137/225)5(4/1)68(22/46)8(4/4)5(3/2)28(6/22)28(5/23) 4(0/4)6(3/3)1(1/0)4(4/0)3(2/1)3(2/1)5(1/4)3(2/1) eatand/ormobile mid rep asss ent Plnlo 1000010 10000000 pres o y si bl Inver 0000000 00000001 hvaria blenc wit ao d onizingstrainineachpatient No.ofinsertions/deletions<of5ntNo.ofstructuralvariantsof>5nt IntergenicIntergenicFrameshiftStructuralRepeatVari(I/C/U)(I/C)(I/C)variant(I/C)expansion(I/C)regiOtherebeeee 21/20/52713/135/63/33/410/0/110/00/10/00/004/1/001/21/02/01/102/0/001/00/00/20/001/0/000/10/00/00/000/3/103/40/13/30/100/3/106/01/14/30/10 0/0/000/00/00/01/000/0/011/10/00/01/000/0/000/00/00/00/000/0/000/00/00/00/000/0/000/02/10/00/000/0/000/00/01/10/000/0/000/00/01/20/010/0/000/00/00/00/00 infectionfocus);C,colonizingstrain(nares);U,undeterminedancestry(i.e.,associate on April 6, 2http://iai.asm.org/Downloaded from edtothecol Synonymous(I/C/U)e 21/49/370/0/04/3/370/1/01/1/00/1/10/1/1 0/0/00/0/00/0/00/0/00/0/00/1/00/1/00/0/0 theother. strain(bloodor 019 by g TABLE1Summaryofvariantsininfectingstrainscompar No.ofSNVs NonsynonymousStopgainStoplossStrainagr(I/C/U)(I/C)(I/C)Patienttypestatusaeee Cases(cid:3)53Blood46/48/71/10/0(cid:3)60Blood0/1/00/00/1(cid:3)73Blood5/6/00/00/0(cid:3)117Blood0/0/20/00/0(cid:2)117Focus1/0/00/00/0(cid:3)135Blood1/3/20/00/0(cid:3)135Focus1/3/20/00/0 Controls(cid:2)35Blood0/2/00/00/0(cid:2)36Blood0/2/00/00/0(cid:2)45Blood1/0/00/00/0(cid:2)63Blood2/2/00/00/0(cid:2)108Blood0/0/00/00/0(cid:2)152Blood0/0/00/00/0(cid:2)152Focus0/0/00/00/0(cid:2)158Blood1/1/00/00/0 (cid:2)(cid:3),wildtype;,agrdefective.a UncategorizedSNVinthegeneinonestrainbutnotinthegeneinb Variableregionwithadifferentsequenceatthesameposition.c Variantcountsinthetotal,core,andaccessorygenomes.d AncestryofmutationswasdeterminedbyPAMLanalysis.I,infectinge elements). uest October2018 Volume86 Issue10 e00331-18 iai.asm.org 3 Altmanetal. InfectionandImmunity Chromosome PlasmidsStrain Patient Blood Focus 117 Nares Blood Nares 73 Blood 108 Nares Blood 35 Nares Blood 36 Nares Blood 63 Nares Blood Focus 135 Nares D Blood o 53 w Nares n Blood 45 lo Nares a Blood d e Focus 152 d Nares f r Blood o Nares 60 m Blood h 158 Nares tt p : 0.01 250 Kbp Colinear region, present in all genomes 50 Kbp // Colinear block genomic location ia Colinear region, not present in all genomes i. Colinear region with deletion Start End a s Unaligned region m . FIG1Genomiccomparisonofstudystrainswithblockalignments.ShownisamaximumlikelihoodphylogenetictreebasedoncoregenomeSNVsofallpatient o r clones(left),withagraphicalrepresentationofthecompletegenomealignment(right).Branchesinthephylogenetictreearecoloredaccordingtothepatient g fromwhomeachstrainoriginated.Barsindicatingthenumberofsubstitutionspersiteinthephylogenetictreeorthealignmentblocklengthareshownat / o thebottom.Dottedlinesareincludedinthetreeasguidesanddonotreflectgeneticdistance.Corecolinearblockspresentinallisolategenomesareshown n assolidrectanglesinthemultiplealignmentandarecoloredaccordingtotheblocklocationineachgenometohighlightinversions(keyatthebottom). A Noncoreregionspresentinonlyasubsetofgenomesareeachrepresentedwithauniquestripedfillpattern. p r il 6 , weremorecloselyrelatedtoeachotherthantostrainsfromotherpatients(Fig.1)or 2 0 to 39 reference strains having completely sequenced genomes (obtained from the 1 9 NCBI)(Fig.S1). b Weidentifiedmutationsincasesandcontrolsbycomparingthecompletegenome y ofeachinfectingstrain(i.e.,bloodorinfectionfocus)tothatofthecolonizingstrain(i.e., g u nares)fromthesamepatient.Inaggregate,ouranalysisidentified420singlenucleotide e s variants(SNVs),66indelsof(cid:4)5nucleotides(nt),44largerstructuralvariants(SVs)((cid:5)5 t nt), and 3 plasmid losses across all strain pairs, which we further categorized by type and predicted impact on coding sequences (Table 1). Variants were unevenly distrib- uted across genome pairs (Fig. S2), related to whether they were located within core genomicregionspresentinallsequencedstrainsandcompleteNCBIgenomes(Fig.S1) orwithinaccessorygenomicregionsfoundinonlyasubsetofstrains.Thenumberof variants per megabase was 6.3-fold higher in the accessory genome, suggesting a higher rate of evolution than in the core genome. Notably, variants associated with tandem repeat (TR) regions in the accessory genome, which would not be readily detectedwithoutlong-readsequencing(22),contributedsubstantiallytothenumber ofSNVdifferencesbetweencolonizingandinfectingstrainsofpatient53(101SNVsin 5 TR regions) and patient 73 (34 SNVs in one TR region) with a loss of agr function. Presumably,theSNVsintheseregionsdonotrepresentindependenteventsbutrather resultedfromrepeatexpansionsandcontractions. Thelargestnumbersofcore(n(cid:6)137)andaccessory(n(cid:6)225)variantsbetweenthe blood and nares strains were observed with patient 53 (this patient acquired agr- October2018 Volume86 Issue10 e00331-18 iai.asm.org 4 GenomePlasticityinInvasiveagr-DefectiveS.aureus InfectionandImmunity defective,catheter-associatedbacteremiainanadultintensivecareunit).Thenumber ofvariantsislarge,consideringthatthereportedmutationrateis2.7to3.3mutations per Mb per year for the S. aureus core genome (23, 24). Nevertheless, at least 2 observations support the idea that the two strains arose from a common ancestor in thesameindividualhost.First,theagr-defectiveinfectingandagr(cid:2)colonizingisolates sharedthesamepulsed-fieldgelelectrophoresis(PFGE)andspatypes(TableS1),which werefoundinonly1.3%(n(cid:6)5)ofisolatesfromthetwopatientpopulations(158cases plus229uninfectedcontrols)intheparentstudy(12,19).Mixedinfectionwithsucha raresubtypeisunlikely.Second,genomicsequencinganalysisforpatient53indicated that the agr-defective infecting isolate was much more closely related to the agr(cid:2) colonizingisolatethantoall5genotypicallyrelatedstrainsfromtheparentstudy(Fig. S1),arguingagainstsuperinfectionbyalocallycirculatingclone.Thus,theclonalityof isolates from patient 53 was confirmed, consistent with genotyping results from the original studies (12, 19) and other work indicating that carriage is the most common D originofS.aureusinfection(8,19,25–27). o w Lossofagrfunctionisassociatedwithgenomicdivergenceofcolonizingand n infecting strains. The number of sequence differences between strain pair genomes lo a fromcaseswithalossofagrfunction(range,5to362)wassignificantlyhigherthanfor d e controls(range,1to6)byanonparametricWilcoxontest(P(cid:6)3.25(cid:7)10(cid:3)3),evenafter d excludingfocusstrains(P(cid:6)4.67(cid:7)10(cid:3)3)andpatient53(P(cid:6)1.01(cid:7)10(cid:3)2)fromthe fr o analysis. The increased number of variants accompanying the loss of agr in the m infectingstrainswasapparentinboththecoreandaccessorygenomesandacrossall h variant types. Thus, within-host loss of agr function was associated with increased tt p genetic divergence between the colonizing and infecting subclones. We did not find :/ / significant differences in mutation frequencies between MRSA and MSSA isolates ia i. amongcasesorcontrols.Thevariantpatternofthethreefocalisolatescloselymatched a s that of the blood isolates in most cases (Table 1), consistent with their role as the m clinicallypresumedfocusofinfection. .o r Toaddressthedirectionalityofmutation,wereconstructedtheancestralsequence g / for the set of subclones from each patient using the PAML package (28). Nucleotide o n sequencevariationsbetweenstrainsfromblood,foci,ornareswerecomparedtothe A ancestralsequencetoinferthemutationancestry.Byperformingphylogeneticanalyses p with closely related reference strains (see Fig. S1 in the supplemental material), we ril inferredancestryfor268ofthe420singlenucleotidevariants(Table1andFig.S2).The 6 , remaining144SNVswerelocatedmostlyinaccessorygenomeregions;recombination 2 0 events associated with TRs and mobile genetic elements in these regions preclude 1 9 reliablereconstructionoftheirancestry(24).Likewise,structuralvariantsandindelsthat b are subject to similar constraints were omitted from the PAML analysis; they are y discussedbelow.Analysisofthenumberofsynonymoussubstitutionspersynonymous g u site (dS) (silent) relative to the number of nonsynonymous substitutions per nonsyn- e s onymous site (dN) (amino acid altering) indicated that variants were overall under t negative selection (ratios of 0.58 and 0.32 for blood and nares isolates, respectively). However,dN/dSratioscanbedifficulttointerpretforsequencedataofapopulationin whichvariantshavenotyetfixed(29).Whenconsideringonlymutationsspecifictothe infecting strains, agr-defective strains from cases showed an increased mutational burdenrelativetoagr(cid:2)infectingstrainsfromcontrols(P(cid:6)0.023).Moreover,thecases withalossofagrfunctionalityshowedcomparablenumbersofmutationsincolonizing and infecting strains (Table 1). This suggests that the parental wild-type (WT) strains andagr-defectivevariantsevolvedconcurrently,resultinginsubstantialgeneticdiver- gencebetweenthecolonizingandinfectingisolateswithinagivenpatient. Variations in agr-defective strains impact genes vital to cell processes and virulence. Nonsynonymous SNVs (NS-SNVs) and frameshift indels specific to agr- defectivebloodstrainsoccurredwithingeneswhoseproductsareinvolvedinmetab- olism, cell wall synthesis, and the DNA repair/damage response, along with several stressresponse,regulatory,anddrug/metalresistancegenes(Fig.2;seealsoTableS2 in the supplemental material). All predicted amino acid changes were unique to October2018 Volume86 Issue10 e00331-18 iai.asm.org 5 Altmanetal. InfectionandImmunity RAST classification agrP sSatttariteauninstBlood54- Blood60- Blood73-C aBlood117-s eFocus117+s Blood135V- aFocus135-r iaBlood35+n Blood36t+s Blood45+ Blood63+C Blood108o+n Blood152+tr oFocus152+ls Blood158+ Amino Acids and DerivativesDNA MetabolismCofactors, Vitamins, PG’s, PigmentsCarbohydratesVirulence, Disease and DefenseCell Wall and CapsuleNucleosides and NucleotidesRNA MetabolismProtein MetabolismSecondary MetabolismRespirationRegulation and Cell signaling(Pro)phages, TE’s, PlasmidsMiscellaneousCell Division and Cell CycleFatty Acids, Lipids, and IsoprenoidsStress ResponseSulfur MetabolismMembrane Transport Impact Gene product description serA D-3-phosphoglycerate dehydrogenase agrA Accessory gene regulator protein A atl Bifunctional autolysin precursor pepF1 Oligoendopeptidase F, plasmid fadA 3-ketoacyl-CoA thiolase oppC Oligopeptide transport system permease protein OppC thiE Thiamine-phosphate synthase yciC Putative metal chaperone YciC D atpE ATP synthase subunit c aldC Alpha-acetolactate decarboxylase o yxdL ABC transporter ATP-binding protein YxdL w P_02359 8-amino-7-oxononanoate n mnhB1 Na(+)/H(+) antiporter subunit B1 ilvD Dihydroxy-acid dehydratase lo P_01979 sensory histidine kinase DcuS a P_00163 Xylose isomerase-like TIM barrel d potB Spermidine/putrescine transport system permease e P_01916 sensory histidine kinase DcuS d smc Chromosome partition protein Smc uvrB UvrABC system protein B fr P_02565 putative rhodanese-related sulfurtransferase o aspS Aspartate--tRNA ligase m P_00814 NADH dehydrogenase-like protein P_01911 Nitroreductase family protein h gltS Sodium/glutamate symport carrier protein t bceB Bacitracin export permease protein BceB t p uvrC UvrABC system protein C tpx putative thiol peroxidase :/ P_01a5rc9D2 uArrogpinoirnpeh/oyrrninitohgineen -aIInI tsipyonrtthearse /ia sdrD Serine-aspartate repeat-containing protein D i. ycfH putative deoxyribonuclease YcfH a leuA 2-isopropylmalate synthase s tmk Thymidylate kinase m P_00352 superantigen-like protein . rihA Pyrimidine-specific ribonucleoside hydrolase o manP PTS system mannose-specific EIIBCA component r cls Cardiolipin synthase g P_02052 putative uridylyltransferase / P_00887 2',5' RNA ligase family o hfq RNA-binding protein Hfq n ycjS putative oxidoreductase YcjS P_02307 putative ABC transporter ATP-binding protein A deoB Phosphopentomutase p lacB Galactose-6-phosphate isomerase subunit LacB r P_00164 Isoprenylcysteine carboxyl methyltransferase il lplJ Lipoate-protein ligase LplJ 6 mutS2 Endonuclease MutS2 , carA Carbamoyl-phosphate synthase small chain 2 ywaC GTP pyrophosphokinase YwaC 0 dut Deoxyuridine 5'-triphosphate 1 mprF Phosphatidylglycerol lysyltransferase 9 femA Aminoacyltransferase FemA pbuG Guanine/hypoxanthine permease PbuG b swrC Swarming motility protein SwrC y hlb Phospholipase C precursor miaA tRNA dimethylallyltransferase g P_01134 Putative zinc metalloprotease u P_02236 vancomycin high temperature exclusion protein e hom Homoserine dehydrogenase s P_01635 N-6 DNA Methylase t P_00320 site-specific tyrosine recombinase XerD P_00351 superantigen-like protein 5 P_00764 helix-turn-helix protein mtnN 5'-methylthioadenosine/S-adenosylhomocysteine thrS Threonine--tRNA ligase trpA Tryptophan synthase alpha chain ywqD Tyrosine-protein kinase YwqD yydJ Putative peptide export permease protein YydJ Variant type Impact Gene absent in all patient isolates NS mutation (Stop codon) Deleterious change >=5 No change frameshift indel Deleterious change 2.5-5 Complete gene deletion More than one change Non-deleterious change NS mutation (Infectious isolate) Synonymous change Restorative change NS mutation (Unknown ancestry) Nonsynonymous mutation (in nares) Not scored FIG2MapofSNVsandindelsfoundininfectingstrains.Shownisamutationmatrixofgenes(rows)affectedbyvariantsof(cid:4)5nt thatareuniquetoinfectingstrains(columns)orforwhichanancestralstatecouldnotbedetermined.Genesmutatedinmultiple patients are grouped at the top, and the color key for different mutation types is shown at the bottom. RAST subsystem classificationsassociatedwitheachgeneareshowninthecenter(gray).PROVEANscores(90)werecalculatedforeachnonsyn- onymousmutationtoassesstheimpactofavariantonthebiologicalfunctionoftheencodedproteinandaredisplayedinthe rightmostcolumn,withthekeyshownbelow.Incaseswheremultiplevariantswerefoundinagene,thePROVEANscorewiththe highestabsolutevalueforeachgeneisshown.PG’sprostheticgroups;TE’s,transposableelements;PTS,phosphotransferasesystem. October2018 Volume86 Issue10 e00331-18 iai.asm.org 6 GenomePlasticityinInvasiveagr-DefectiveS.aureus InfectionandImmunity individual strains, suggesting that polymorphisms did not reflect “hot spots” for mu- tation within particular genes. However, although most genes were mutated in only oneofthestrains,three(serA,atl,andpepF1)wereindependentlymutatedindifferent patients(Fig.2),inadditiontotherecurrentagrAmutationsidentifiedpreviously(12). Forexample,twouniqueNS-SNVsinserA,whichencodesanenzymeinvolvedinserine biosynthesis,wereidentifiedinagr-defectivebloodstrainsofpatients45and53.One gene, malL, encoding an oligo-1,6-glucosidase, was recurrently mutated in the agr(cid:2) nares strains of two patients (patients 73 and 158). Parallelism of mutated genes in differentstrainssuggestswithin-hostadaptation. The agr-defective blood strain of patient 53 had a multitude of genetic changes, includinggeneshavingmultiplemutationsandmutationsembeddedinthesamepath- ways.Forexample,swrCwasalteredbyanNS-SNVandbyaninsertion.Likewise,thecflB gene was altered by an insertion, an NS-SNV, and a synonymous mutation. Multiple mutations would be expected if genes are not transcribed and their sequences are not D o subjectedtoselection.However,somegenesharboredprimaryandsecondarymutations w thatarepredictedtobedeleterious,whichmaysignalgeneticinstabilitythatcanenhance n lo adaptationundercertainconditions,suchaswhenselectionfavorsaphenotyperequiring a d acombinationoftwoormoremutationsthatareindividuallyneutralordeleterious(30). e The highly mutated blood strain from patient 53 harbored an NS-SNV in uvrABC, d f whichisapotentialmutatorgenethatisinducedbyDNAdamageaspartoftheSOS ro regulon (31, 32). In order to assess whether the uvrABC mutation could have contrib- m uted to the extensive genetic differences between the blood and nares strains, we h t t assessedthefrequencyofmutationtorifampinresistanceinpatient53.Incontrastto p : thecomparisonofcontrolisogenicWTandmutS-inactivatedhypermutatorstrains,the // ia agr-defectivestrainanditsparentstrainshowedsimilarmutationfrequenciesinvitro, i. a (cid:8)1mutationper107cells(Fig.S3),indicatingthatthegeneticdiversificationbetween s m thebloodandnaresstrainsfrompatient53wasunrelatedtoauvrABCmutation. . o Structural variants in agr-defective strains. Our high-quality complete genome r g assemblies enabled the identification of structural variants and plasmid losses that / o distinguishedbloodfromnaresstrains(Table2;seealsoTableS3inthesupplemental n material). Structural variants consisted of deletions of prophage and insertion se- A quences,tandemrepeatcontractionsandexpansions,andindeleventsof(cid:5)5bp.The pr ancestral state for indels and SVs could not be determined by using sequence align- il 6 ments;however,SVsweremorecommon(28versus8)amongpatientswithalossof , 2 agr function (Table 2). Moreover, phage-associated gene loss was more frequently 0 1 observed in agr-defective infecting strains. For example, nares and blood strains of 9 patient 135 differed by a 43,757-bp prophage similar to Staphylococcus phage SA13, b y whichcontainsavarietyofgenes,includingatlanddnaC(DNAhelicase).AnNS-SNVin g u atlandadeletionofdnaCwereidentifiedintheagr-defectivevariantfromthispatient, e suggesting parallel evolution. Additionally, prophage (cid:2)Sa3 was excised in the agr- st defective blood strain of patient 53. (cid:2)Sa3 excision occurs frequently in S. aureus, particularlyduringinfectionandantimicrobialtreatment(33–35).(cid:2)Sa3insertsintothe beta-toxingene,inactivatingthegeneinthemajorityofS.aureusclonalgroups(36,37). Excisionof(cid:2)Sa3restoresbeta-toxinproductionbutatthesametimeresultsintheloss of (cid:2)Sa3-borne virulence factors, such as sak and scn. As such, (cid:2)Sa3 mobilization is thoughttoaltervirulencepropertiesofthestrains. In2controlpatientsand1casepatient,aplasmidpresentincolonizingstrainswas absent from infecting strains. Thus, plasmids followed the pattern of prophage- associated gene loss during infection. The 3 deleted plasmids contained a variety of genes involved in the stress response, virulence, and resistance to antimicrobials and metals(Table2). Naturally occurring non-agr-associated mutations ameliorate agr-defective phenotypes. To obtain a more detailed assessment of how mutation remodels agr- defective mutants, we screened for phenotypes in isolates from patient 53 after controllingforthestatusoftheagrregulon.Wefocusedouranalysesonthisstrainset, October2018 Volume86 Issue10 e00331-18 iai.asm.org 7 Altmanetal. InfectionandImmunity TABLE2Structuralvariantsandplasmidlossesininfectingcomparedtocolonizingstrainsineachpatient Strain agr Fragment No.of Patient type statusa Typeofevent length(bp) genes Eventdescription Cases 53 Blood (cid:3) Insertion 4,156 7 Insertionof4paralogsofessIand4genesencodinghypothetical proteinsintheesslocus Repeatexpansion 120 1 ExpansioningenesdrD Repeatcontraction 90 1 ContractioningenesdrE Deletion 21 0 Deletioninintergenicregion Repeatcontraction 69 0 350bpupstreamofsetC Repeatexpansion 57 0 Intergenicregion Repeatcontraction 56 0 Intergenicregion Deletion 1,674 0 Deletionof4genesencodinghypotheticalproteinsandapartial deletionof1geneencodingahypotheticalprotein Repeatexpansion 59 0 Intergenicregion Deletion 43,046 66 Deletionofa(cid:2)Sa3prophagecontainingscn,sak,lytN,dnaC,xerC, D and61genesencodinghypotheticalproteins;excisionrestores o hlb w Repeatcontraction 100 0 Intergenicregion n Repeatexpansion 6 1 ExpansioninswrC lo Insertion 1,152 0 Intergenicregion a d Repeatexpansion 128 1 ExpansioninclfB e Plasmidloss 23,160 24 LossofplasmidcontainingracA,entD,entA,entG,acuI,ohrR, d bin3,cadC,and16genesencodinghypotheticalproteins fr 60 Blood (cid:3) None om 73 Blood (cid:3) Repeatexpansion 90 1 Expansioningenebbp Repeatcontraction 23 1 Expansioninageneencodingahypotheticalprotein h t Insertion 1,074 1 Insertionofageneencodingahypotheticalprotein tp Insertion 60 0 Insertionintheintergenicregion :/ 117 Focus (cid:2) None /ia 117 Blood (cid:3) Deletion 27 1 IngenepepF i. a Deletion 30 1 Inageneencodingahypotheticalprotein s 135 Focus (cid:3) Insertion 462 1 Insertionaltersageneencodingahypotheticalprotein m Deletion 462 1 Deletionofageneencodingahypotheticalprotein .o Deletion 43,757 69 Prophagedeletion;containsatl,dnaC,hin,lytN,pezA,andssb r g Insertion 20 0 Insertionof20bpintheintergenicregion / Deletion 125 1 Deletionaltersageneencodingahypotheticalprotein o n Repeatcontraction 22 1 Inageneencodingahypotheticalprotein A Insertion 1,332 2 InsertionindpiB;containsageneencodingahypothetical p protein r Insertion 1,332 24 Insertionofageneencodingahypotheticalproteinintoplasmid il 6 pPS00077.1A.1 , 135 Blood (cid:3) Insertion 462 1 Insertionaltersageneencodingahypotheticalprotein 2 0 Deletion 462 1 Deletionofageneencodingahypotheticalprotein 1 Deletion 43,757 69 Prophagedeletion;containsatl,dnaC,hin,lytN,pezA,andssb 9 Insertion 20 0 Insertionof20bpintheintergenicregion b y Deletion 125 1 Deletionaltersageneencodingahypotheticalprotein g Repeatcontraction 22 1 Inageneencodingahypotheticalprotein u Insertion 1,332 2 InsertionindpiBcontainsageneencodingahypotheticalprotein e s Plasmidloss 26,241 23 LossofaplasmidcontainingnhaX,dauA,hin,bin,tnsB,blaI, t blaR1,blaZ,repB,qacC,norG,and10genesencoding hypotheticalproteins Controls 35 Blood (cid:2) Repeatexpansion 56 0 238bpupstreamofthehslOgene Plasmidloss 39,353 41 Lossofaplasmidcontainingetb,hin,yxlF,ccr,lagD,ltnA2,cadC, and35genesencodinghypotheticalproteins 36 Blood (cid:2) Repeatexpansion 1,548 3 Altersageneencodingahypotheticalprotein 45 Blood (cid:2) None 63 Blood (cid:2) None 108 Blood None 152 Focus (cid:2) Insertion 1,332 2 Deletionofgeneencodinghypotheticalproteinaltersanother geneencodingahypotheticalprotein Deletion 1,332 1 Insertionaltersageneencodingahypotheticalprotein Variableregion 578/1,330 Deletionofageneencodingahypotheticalprotein;theinserted sequencealtersanothergeneencodingahypotheticalprotein Deletion 581 Partialdeletionofthemprgene (Continuedonnextpage) October2018 Volume86 Issue10 e00331-18 iai.asm.org 8 GenomePlasticityinInvasiveagr-DefectiveS.aureus InfectionandImmunity TABLE2(Continued) Strain agr Fragment No.of Patient type statusa Typeofevent length(bp) genes Eventdescription 152 Blood (cid:2) Insertion 1,332 1 Containsageneencodingahypotheticalprotein Deletion 1,332 2 Deletionofageneencodingahypotheticalprotein;alters anothergeneencodingahypotheticalprotein 158 Blood (cid:2) Inversion 6,939 1 ContainsaphA,aadK,ycgJ,and6genesencodinghypothetical proteins a(cid:2),functional;(cid:3),nonfunctional. reasoning that some of the complex mutations seen in the blood strain could com- pensatefortherequirementforagrforproducingwell-knownphenotypesinvitroand in vivo. We engineered an agr knockout of the wild-type nares strain (Δagr) and complementedthenaturallyoccurringagrmutantbloodstrain(Δagr::agr-I(cid:2))(seeFig. D S4inthesupplementalmaterial).Wild-typeagrgenesweretransducedinsinglecopies o w to the naturally occurring agr-defective variant by using the staphylococcal pathoge- n nicityisland1(SaPI1)att locusastheinsertionsite,asdescribedpreviously(38). lo C a We next characterized the naturally occurring and engineered agr(cid:2) and agr- d e defectivevariantsoftheinfectingstrainfrompatient53anditscolonizingcounterpart d forinvitrovirulenceproperties.Theagrlocusisrequiredfortheproductionofmanyof fr o theS.aureussecretedvirulencefactors,asexemplifiedbyS.aureusstrainLAC(Fig.3A) m (39). Similarly to the control isogenic strain LAC, the nares and blood agr-defective h mutants from patient 53 demonstrated nearly identical reduced-exoprotein profiles tt p (Fig. 3A). The protein banding pattern from the complemented agr(cid:2) blood infection :/ / mutantwassubtlydifferentfromthatofthewild-typeagr(cid:2)naresstrain,indicatingthat ia i. agr functionality did not entirely account for differences in relative exoprotein abun- a s dances. Cytotoxicity assays of cell extracts indicated that the nares and blood agr(cid:2) m strains were characterized by high cytotoxicity. In contrast, the naturally occurring .o r agr-defective mutant and the agr knockout strain showed similarly weak killing of g / neutrophils(Fig.3B),consistentwiththedownregulationofmanyexoproteingenesby o n theinactivationofagr(39–41).Collectively,thesedataindicatethatnon-agr-associated A mutations in the agr-defective strain had minor effects on the exoprotein expression p patternandcytotoxicitybeyondthoseassociatedwithagrinactivation. ril To determine whether the complex genetic alterations in the agr-defective blood 6 , straincouldmodulatevirulenceinvivo,weinfectedmicesystemicallywiththestrainset 2 0 frompatient53andmonitoredsurvivalduringthisbacteremicinfection.Incontrastto 1 9 its attenuated cytotoxicity phenotype in vitro, the naturally occurring agr-defective b bloodstraincausedsignificantlygreatermurinemortalitythantheagr-defectivenares y knockoutstrain(P(cid:6)2.4(cid:7)10(cid:3)3)andtheLACcontrol(P(cid:6)1.8(cid:7)10(cid:3)3)(Fig.3C).The g u integration of agr into the chromosomal SaPI1 insertion site (att ) led to a further e C s increaseinvirulence,suggestingthatadditionalmutationsintheagr-defectiveblood t strainwereresponsibleforrestoringmurinemortalitynearthelevelobservedforthe agr(cid:2)parentalstrain(Fig.3C).Altogether,thesedatasuggestthatgeneticchangesthat accompanyagr-inactivatingmutationsinthisstrainenhancedvirulencethroughpath- waysotherthanthoseinvolvedincytotoxicity. Gene expression profiling reveals a compensatory mutation that restores ess activity.Wenextsoughttoidentifysignalingpathwaysthatareactivatedorrepressed asaresultoftheadditionalmutationsfoundintheagr-defectivebloodstrainofpatient 53thatcouldexplainitsgreatlyincreasedvirulenceinthemurineinfectionmodel.To thisend,wecomparedtranscriptomesequencing(RNA-Seq)expressionprofilesofthe strain set from patient 53 under late-exponential-phase growth conditions. As ex- pected,weobservedrobustexpressionofagr(Fig.4A)andinductionandrepressionof known agr-regulated genes (42) (for example, protein A, fibronectin binding protein [downregulated],V8serineprotease,andsplA-splB[upregulated])inagr(cid:2)comparedto agr-defective strains (Fig. 4B), thereby indicating agr quorum-sensing activity. Some residualexpressionofagrBDCAoccurredinthenaturallyoccurringagr-defectiveblood October2018 Volume86 Issue10 e00331-18 iai.asm.org 9 Altmanetal. InfectionandImmunity A 170 M LAC, aLgrA+ C(, wat)gNr-ardeefs,e cNatiagrvree+ s((, ∆watBal)ggorr-)odd,e faBelgcotri-ovdde,e f(ae∆gcartig+v r()e a(grwt-I)+) BCell Titer)11702055 NBNLLBAAllaaooCCrrooee,,ddss aa,,,, ggaaaarrgggg+-rrdrr -+-+(eddw f(e(eeatwff)cegettc)rci-vttIiei+vv )ee(∆ ((wa∆gta)rg)r) 95 s ( 72 N 55 PM 50 43 h d 34 a e D 25 26 % 0 17 10 5 2.5 1.25 0.625 0.313 0.157 D % Culture filtrates o w C n lo 100 LAC, agr+ (wt) a d LAC, agr-defective (∆agr) e Nares, agr+ (wt) d 80 Nares, agr-defective (∆agr) f Blood, agr+ (agr-I+) ro Blood, agr-defective (wt) m al 60 viv h ur t S t % 40 p : / / ia 20 i. a s m 0 . o 0 50 100 150 200 r Time (hours) g / o FIG3 Phenotypiccharacterizationofclinicalandgeneticallymanipulatedstrainsfrompatient53.(A)Exoproteinprofilesof n strains grown in TSB for 5 h. Extracts were prepared from culture supernatants and analyzed by sodium dodecyl sulfate- A polyacrylamide gel electrophoresis and Coomassie blue staining. M, protein ladder. (B) Intoxication of primary human p nmeuuttarnotp)hailssa(hpPeMrcNesn)twagiteh(cvuollt/uvroel).filRterastuelstsfrroempretsheentintdhiecastteadndS.aradureerursorsstroafintsheanmdecaonnstr(oSlEsM(U)SoAf3d0a0taLAfrComwi5lddtoypneorasnadndag2r ril 6 independentcolonies.(C)Survivalamongmiceinfectedwiththeindicatedstrainsviaintravenousinoculation(1(cid:7)108CFU). , Mousesurvivalresultsarefor15micepergroup.PvaluesfordifferencesinsurvivalweredeterminedbyBonferroni-corrected 2 0 logrank(Mantel-Cox)tests(P(cid:6)1.03(cid:7)10(cid:3)1foragr-defectiveLACversusagr(cid:2)LAC,P(cid:6)1.20(cid:7)10(cid:3)3fortheagr-defectivenares 1 strain versus the agr(cid:2) nares strain, P (cid:6) 1.92 (cid:7) 10(cid:3)2 for the agr-defective blood strain versus the agr(cid:2) blood strain, 9 P(cid:6)1fortheagr-defectivenaresstrainversusagr-defectiveLAC,P(cid:6)1.80(cid:7)10(cid:3)3fortheagr-defectivebloodstrainversus b agr-defectiveLAC,andP(cid:6)2.40(cid:7)10(cid:3)3fortheagr-defectivebloodstrainversustheagr-defectivenaresstrain). y g u e s straincomparedtotheengineeredagr-defectivenaresstrain(Fig.4A),likelyrepresent- t ingthebasalactivityoftheagrP2promoter,activityseenwhentheagrautoinducing circuit is inactivated owing to a genotypic defect rather than to mobile element replacement(43).Nonetheless,theexpressionoftheRNAIIIagreffectorwasreducedby 4ordersofmagnitudeinboththebloodandnaresagr-defectivestrains,indicatingthat agrwasinactivated. Overall, the late-log-phase profiles from the agr-defective blood and nares strains hadsimilarexpressionprofilesdespitetheirsubstantialgeneticdifferences(Fig.4C).In total, 109 genes showed significant (false discovery rate [FDR] q value of (cid:3)0.05) expressionchangesinthenaturallyoccurringagr-defectivebloodstraincomparedwith the engineered agr-defective nares strain (33 upregulated and 77 downregulated). Manyofthedownregulatedgenes(41/77;53%)showedacompletelossofexpression intheagr-defectivebloodstrainduetothelossofprophage(cid:2)Sa3andaplasmid.For example,theexpressionofsakandscnwasabolished,andtheexpressionofbeta-toxin wasincreasedintheagr-defectivebloodstrain,consistentwith(cid:2)Sa3excision(Fig.4C, column1).Likewise,wedidnotobserveexpressionofplasmid-bornevirulencefactors, October2018 Volume86 Issue10 e00331-18 iai.asm.org 10

Description:
crossm. October 2018 Volume 86 Issue 10 e00331-18 iai.asm.org 1 expected from animal infection studies and from the in vitro cytotoxic properties of groups were balanced for MSSA/MRSA, each containing two patients with sequencing for all 27 isolates (5 pairs of case strains, 7 pairs of control
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.