GeneticsandMolecularBiology,32,1,96-103(2009) Copyright©2009,SociedadeBrasileiradeGenética.PrintedinBrazil www.sbg.org.br ResearchArticle Genetic diversity of carotenoid-rich bananas evaluated by Diversity Arrays Technology (DArT) EdsonP.Amorim1,AlbertoD.Vilarinhos1,KellyO.Cohen2,VanusiaB.O.Amorim1, JanayA.dosSantos-Serejo1,SebastiãoOliveiraeSilva1,KátiaN.Pestana1,VâniaJ.dosSantos1, NormaS.Paes2,DamaresC.Monte2andRonaldoV.dosReis1 1EmbrapaMandiocaeFruticulturaTropical,CruzdasAlmas,BA,Brazil. 2EmbrapaRecursosGenéticoseBiotecnologia,Brasília,DF,Brazil. Abstract Theaimofthisworkwastoevaluatethecarotenoidcontentandgeneticvariabilityofbananaaccessionsfromthe MusagermplasmcollectionheldatEmbrapaCassavaandTropicalFruits,Brazil.Forty-twosampleswereanalyzed, including21diploids,19triploidsandtwotetraploids.Thecarotenoidcontentwasanalyzedspectrophotometrically andgeneticvariabilitywasestimatedusing653DArTmarkers.Theaveragecarotenoidcontentwas4.73(cid:2)g.g-1,and rangedfrom1.06(cid:2)g.g-1forthetriploidNanica(Cavendishgroup)to19.24(cid:2)g.g-1forthetriploidSaney.Thediploids ModokGierandNBA-14andthetriploidSaneyhadacarotenoidcontentthatwas,respectively,7-fold,6-foldand 9-foldgreaterthanthatofcultivarsfromtheCavendishgroup(2.19(cid:2)g.g-1).Themeansimilarityamongthe42acces- sionswas0.63(range:0.24to1.00).DArTanalysisrevealedextensivegeneticvariabilityinaccessionsfromthe EmbrapaMusagermplasm bank. Keywords:diploids,germplasm,molecularmarkers,Musasp.,variability. Received:March25,2008;Accepted:July21,2008. Introduction sava and Tropical Fruits has an active banana germplasm bank created through the introduction of local germplasm Fruit consumption has increased markedly in recent and from international collections. This germplasm bank years,mainlybecauseofitsnutritionalvalueandtherapeu- consists of more than 400 accessions maintained in the ticeffects.Fruitscontaindistinctphytochemicals,manyof field,includingwilddiploids,triploidsandtetraploids. whichhaveantioxidantpropertiesthatdelayagingandpre- vent diseases, including certain types of cancer. Com- Determinationofthecarotenoidcontentandgenetic pounds such as (cid:3)-carotenes and vitamins C and E are variabilityofthesegenotypesusingDNAmolecularmark- erscanprovideinformationthatisusefulinparentalselec- important antioxidant components of fruits (Wang et al., tionforcrossesbetweendivergentgenotypesandfordevel- 1997). oping novel cultivars with functional properties. Several Bananasarewidelyconsumed,primarilybecauseof molecular markers, especially those associated with poly- their low cost and their potential as functional and nutra- merasechainreaction(PCR)-basedmethods,includingre- ceuticalfood.Brazilisthesecondlargestbananaproducer striction fragment length polymorphism (AFLP), random intheworld,withaproductionof7.1milliontonsin2006 amplified polymorphic DNA (RAPD) and microsatellites from ~500,000 hectares of plantations (FAO, 2008). Cur- orsimplesequencerepeats(SSR),havebeenwidelyusedto rently,commercialcultivars,especiallythoseoftheCaven- estimate genetic variability, choose genitors and investi- dish group, do not contain significant amounts of sub- gate phylogenetic relationships among bananas (Creste et stances with nutritional or therapeutic potential, such as al.,2003,2004;Wanetal.,2005;Ningetal.,2007;Wang polyphenols,vitaminCandcarotenoids.Incontrast,some etal.,2007;Jainetal.,2007;Ruangsuttaphaetal.,2007). bananagenotypesidentifiedingermplasmbankshavehigh contents of these substances (Setiawan et al., 2001; So- Diversityarraystechnology(DArT)isanovelgeno- meyaetal.,2002;Englbergeretal.2003a,b,c,2005;Melo typing technique that was originally developed for rice etal.,2006;Wall,2006;Daveyetal.,2007).EmbrapaCas- (Jaccoud et al., 2001) but has been applied to cassava, wheat and Arabidopsis thaliana (Wittenberg et al., 2005; Xia et al., 2005; Stodart et al., 2007; White et al., 2008). SendcorrespondencetoEdsonP.Amorim.EmbrapaCassavaand Tropical Fruits, 44380-000 Cruz das Almas, BA, Brazil. E-mail: DArTisaninexpensivetechniquethatisbasedonhybrid- [email protected]. izationandamplification,requiresonlyasmallamountof Amorimetal. 97 DNAandprovidedamplegenomecoverage(Stodartetal., Carotenoid analysis 2007). The carotenoid content was determined spectropho- The aims of this work were to quantify the total tometrically, as described by Rodriguez-Amaya (1999). carotenoid content of 42 accessions of the banana Bananasamples(10g)weremaceratedinamortarcontain- germplasm bank held at Embrapa Cassava and Tropical ingceliteandcoldacetoneandfilteredthroughasintered Fruits,includingdiploids(AA),triploids(AAA,AABand glass funnel. The extract was transferred to a separation ABB)andtetraploids(AAAB),andtoestimatethegenetic funnel containing petroleum ether and ethylic ether (1:1, variability by using DArT molecular markers to aid the v/v)andtheacetone:petroleumether:ethylicethermixture choiceofgenitorsforcrossesdoneinthebananabreeding waswashedrepeatedlywithdistilledwatertheacetonewas programatEmbrapa.Toourknowledge,thisisthefirstre- completely removed. The extract was dried with sodium portontheuseofDArTtoevaluatebananadiversity. sulfate, transferred to a suitable volumetric flask, and the volumewasadjustedwithpetroleumether.Thecarotenoid Material and Methods contentwasdeterminedspectrophotometricallyat450nm ina1-cmcuvette.Thesampleswereassayedinduplicate. Plant material Forty-two banana accessions were used, including Diversity analysis diploids(AA),triploids(AAA,AABandABB)andtetra- ploids(AAAB)maintainedintheactivebananagermplasm DNA extraction bank at Embrapa Cassava and Tropical Fruits (Cruz das Almas,BA,Brazil).Theaccessionsinvestigatedwereorig- GenomicDNAwasextractedfromleavesofthedif- inallyincludedinthegermplasmbankbasedontheirlevel ferentgenotypesbythecetyltrimethylammoniumbromide offunctionalcompoundssuchastotalcarotenoidcontent. (CTAB)methodproposedbyDoyleandDoyle(1990).Af- Thepresenceofnutraceuticalcompoundswasrecentlyin- terDNAextraction,thesampleswerestoredinmicrotiter troducedasanadditionalcriterionforbananaselectionin platesandshippedtoDiversityArraysTechnology(DArT breedingprogramsatEmbrapa.Table1showsthelevelof P/L, PO Box 7141, Yarralumba, ACT 2600, Australia), ploidy,origin,colorpulp,andcarotenoidcontentoftheac- wheretheDArTanalysesweredone.Thepreparationofthe cessionsusedinthiswork. PstI/TaqIgenomicrepresentationDNAsamplesforDArT Table1-Carotenoidcontentof42accessionsfromthebanana(Musa)germplasmcollectionatEmbrapaCassavaandTropicalFruits. Accession/ITC Ploidy Origin Pulpcolor CC Accession Ploidy Origin Pulpcolor CC ModokGier AA NewGuinea Orange 16.05(cid:4)0.41* Ambei AAA NewGuinea Orangish-yellow 4.22(cid:4)0.29 NBA14/0267 AA NewGuinea Orange 13.04(cid:4)0.05 Bakar/1064 AAA Indonesia Yellow 3.98(cid:4)0.62 Khai/0532 AA Thailand Orangish-yellow 9.02(cid:4)0.22 FigueRoseNaine/1159 AAA France Yellow 3.50(cid:4)0.32 Jaran/0678 AA Indonesia Orangish-yellow 8.23(cid:4)0.79 Highgate/0263 AAA Honduras Yellow 3.34(cid:4)0.51 SN2 AA NewGuinea Yellow 7.23(cid:4)0.71 Lacatan/0768 AAA France Yellow 3.18(cid:4)0.16 JariBuaya/0312 AA Honduras Yellow 7.01(cid:4)0.78 Wasolay AAA NewGuinea Yellow 3.15(cid:4)0.17 Malbut AA NewGuinea Yellow 6.87(cid:4)0.24 Canela AAA Brazil Yellow 2.86(cid:4)0.44 Ouro AA Brazil Yellow 5.91(cid:4)0.38 GrosMichel/0484 AAA Brazil Cream 2.81(cid:4)0.67 PAPhatthalung AA Thailand Yellow 3.59(cid:4)0.34 Nam/1303 AAA Thailand Yellow 2.77(cid:4)0.14 2803-01 AA Brazil Yellow 3.53(cid:4)0.14 Pagatow AAA NewGuinea Yellow 2.64(cid:4)0.25 M-48 AA Equador Yellow 3.51(cid:4)0.19 Valery/0048 AAA Indonesia Yellow 2.32(cid:4)0.24 KhaiNaiOn/0532 AA Thailand Yellow 3.42(cid:4)0.23 Markatooa AAA NewGuinea White 2.29(cid:4)0.25 M-61 AA Equador Yellow 3.37(cid:4)0.52 Nanica AAA Brazil White 1.06(cid:4)0.04 KhiMaeo AA Thailand Yellow 3.32(cid:4)0.15 P.Nangka/0004 AAB Thailand Yellow 4.59(cid:4)0.01 Tongat/0063 AA Honduras Yellow 3.01(cid:4)0.31 Saney AAB NewGuinea Orange 19.24(cid:4)3.22 Pipit/0685 AA Indonesia Beige 2.95(cid:4)0.14 AABnoname AAB Honduras Orange 8.40(cid:4)0.34 F3P4 AA Equador Yellow 2.52(cid:4)0.03 Terra AAB Brazil Orangish-yellow 5.83(cid:4)1.16 Lidi/0395 AA Honduras Beige 2.45(cid:4)0.08 ThapMaeo/1301 AAB Honduras Cream 3.77(cid:4)0.04 Sowmuk/0266 AA NewGuinea Yellow 2.23(cid:4)0.07 FigoCinza ABB Brazil Yellow 2.15(cid:4)0.01 Jambi AA Indonesia Beige 1.47(cid:4)0.01 OurodaMata/0261 AAAB Brazil Orangish-yellow 4.70(cid:4)0.02 Tuugia AA Hawaii White 1.41(cid:4)0.04 Porp AAAB NewGuinea Beige 2.34(cid:4)0.06 ITC:InternationalTransitCentre.CC:carotenoidcontent((cid:2)g.g-1).*:means((cid:4)standarderror)oftworeplicatesperaccession. 98 Geneticdiversityofcarotenoid-richbananas andthemethodologyforDArT,asprovidedbyDArTP/L, softwareautomaticallyrecognizesthearrayfeaturesusing aredescribedbelow. aseeded-region-growthalgorithmand,foreachfluorescent channel,reportstheaverageandstandarddeviation(SD)of DArT procedure pixel intensities within and around each array feature, the Restrictionenzymedigestionandadapterligation fractionofsaturatedpixels,andthenumberofpixelswithin Acombineddigestion/ligationreactionwasprepared eachfeature,amongotherparameters.Thelogarithmofthe byadding1(cid:2)LofDNAsampleto9(cid:2)Lofdigestion/liga- ratio between the background-subtracted averages of fea- tionmix.Thedigestion/ligationreactionmixturecontained ture pixels in the Cy3 and Cy5 channel 1 (cid:2)L of 10X RE buffer (100 mM Tris-acetate (OAc), (=log[Cy3target/Cy5reference])wasusedasameasureof thedifferenceintheabundanceofthecorrespondingDNA 500mMKOAc,100mMMg(OAc) ,50mMDTT,pH7.8), 2 0.1(cid:2)LofBSA(NewEnglandBiolabs),0.2(cid:2)Lof50mM fragmentfortherepresentationshybridizedtoanarray.The valuesoflog[Cy3/FAM]andlog[Cy5/FAM],approximate ATP,0.1(cid:2)Lof5(cid:2)MPstIadapter,0.1(cid:2)LofPstI(20U/(cid:2)L measuresoftheamountofhybridizationsignalperamount NEB), 0.1 (cid:2)L TaqI (20 U/(cid:2)L NEB), 0.2 (cid:2)L of T4 DNA ofDNAspottedonthearray,wereusedforqualitycontrol ligase (30 Weiss units/(cid:2)L NEB) and 7.2 (cid:2)L of ultrapure purposes. water.Thesampleswereincubatedat37°Cfor90minand Six hundred and fifty-three high-quality markers at60°Cfor90min,heatinactivatedat80°Cfor20minand were scored. The results of the DArT analysis were ex- storedat-20°Cuntilused. pressed as a matrix (0-1). The mean genetic similarity PCR amplification of the genomic representation (target among the genotypes was estimated by using a simple preparation) matchingcoefficient(SokalandMichener,1958).Cluster analysis was done by using the unweighted pair-group PCR was used to create a genomic representation methodwitharithmeticaverage(UPGMA)asimplemented containing PstI fragments that (i) showed no restriction in NTSYS-pc v. 2.1 (Rohlf, 2000). Principal component sites for the frequent cutter used for redigestion and analysis (PCA)-based clustering with the sub-routine (ii)wereshortenoughtobeefficientlyamplified.Thenum- EIGENwasusedtoassessandvisualizethelevelofploidy berofPCRcycleswaskepttoaminimumtolimitthebias (diploids, triploids and tetraploids) in diversity space (as towards fragments that were amplified more efficiently opposed to visualizing only the genetic similarity among than others. The starting parameters for optimization are theaccessions). describedbelowforthePstI/TaqImethod. Forty-nine microliters of PCR mix were added to Thecopheneticcorrelationcoefficientwascalculated 1 (cid:2)L of PstI/TaqI digestion/ligation reaction used as the and the Mantel test (Mantel, 1967) was used to check the fitness of a cluster analysis to the matrix on which it was PCRtemplate.ThePCRmixconsistedof(volumesperre- action):5(cid:2)Lof10xPCRbuffer(100mMTris-HClpH8.3, based.Bootstrapanalysiswasusedtoverifythenumberof DArTmarkersneededtopreciselydeterminetheestimates 500mMKCl,15mMMgCl ,0.1%gelatin;Sigma),1(cid:2)L 2 ofgeneticsimilarityamongthe42bananaaccessions.This of10mMdNTPs(Sigma),2(cid:2)Lof10(cid:2)MPstI+0,2(cid:2)Lof analysis was done with the statistical software GQMol REDTaq (1 U/(cid:2)L; Sigma) and 39 (cid:2)L of ultrapure water. (CruzandSchuster,2004)whichestimatesthecorrelation ThePCRamplificationprogramconsistedofaninitialstep betweenvaluesfromtheoriginaldistancematrixwiththose at94°Cfor1min,30cyclesat94°Cfor20s,58°Cfor40s, of other matrices obtained by re-sampling from different and 72 °C for 1 min, and a final step at 72 °C for 7 min. samplesizes(Amorimetal.,2006).Thesoftwarealsocal- Five microliters of PCR product were analyzed on 1.2% culatesavalueofstress(S)thatindicatesanadjustmentbe- agarosegelstoconfirmthatahomogeneoussmearoffrag- tween the original matrix and considers the 653 markers mentswasobtainedandtovisualisethesizedistribution. andre-samplingmatrices(Kruskal,1964). For hybridization and scanning, the targets were la- belledwithfluorescentdye(Cy3)andhybridizedwiththe Results reference (Topo) labeled with FAM (Carboxyfluorescein) andhybridizedtothearraycontaining6,000DArTclones. Genotypeswithapulpcolorrangingfromyellowto Clone information cannot be made available because of orangehadahighercontentoftotalcarotenoidscompared dataprotectionrecommendations.Afterovernighthybrid- tothosewithwhiteorbeigepulp(Table1andFigures1and ization at 62 °C, the arrays were washed and scanned at 2).Pulpcolorwasfoundtobeasuitablephenotypiccrite- 20(cid:2)mresolutionat543nm(Cy3)and488nm(FAM)onna rion for making inferences about variability in the total LS300confocallaserscanner(Tecan,Grödig,Austria). carotenoid content of segregating populations. The mean content of total carotenoids among the 42 accessions was DArT data analysis 4.73 (cid:2)g.g-1, and ranged from 1.06 (cid:2)g.g-1 for the triploid ArrayimageswereanalyzedusingDArTsoft7.4(Di- Nanica (Cavendish group) to 19.24 (cid:2)g.g-1 for the triploid versityArraysTechnologyP/L,Canberra,Australia).The Saney(Table1). Amorimetal. 99 Figure1-Bananaaccessionswithahighcarotenoidcontentandpulp color ranging from yellow to orange. Diploids: Modok Gier (a) and NBA-14(b),triploids:Saney(c)andAABnoname(d),tetraploids:Ouro daMata(e)andPorp(f). Figure2-Bananaaccessionswithalowcarotenoidcontentandbeigeor whitepulpcolor.(a)diploidJambiand(b)triploidMarkatooa.Detail: presenceofseeds. Within the diploid group, the mean carotenoid con- tent was 5.24 (cid:2)g.g-1, with high levels for the diploids Modok Gier (16.05 (cid:2)g.g-1), NBA-14 (13.04 (cid:2)g.g-1) and Khai(9.02(cid:2)g.g-1).Themeancontentamongtriploidsfrom thegenomicgroupsAAA,AABandABBwas2.93,8.37 and2.15(cid:2)g.g-1,respectively.Themeancarotenoidcontent fortetraploidswas3.52(cid:2)g.g-1(Table1).Triploidswiththe Figure3-Carotenoidcontentsof42banana(Musa)accessionsinthe genomiccompositionAABhadhighercontentsoftotalca- germplasmcollectionheldatEmbrapaCassavaandTropicalFruits. rotenoids compared to AAA triploids. In the Cavendish group of cultivars, the total carotenoid content was 1.06, andSaney)hadthesamegeographicorigin(NewGuinea), 3.18and2.32(cid:2)g.g-1fortheNanica,LacatanandValeryge- indicatingthepossibilityofgeneflowamongthem.Ourre- notypes, respectively, with a mean content of 2.19 (cid:2)g.g-1. sultsindicatethatitispossibletoobtainsegregatingdiploid The carotenoid content of the diploids Modok Gier and populationsforthetrait‘carotenoidcontent’thatcouldbe NBA-14 and the triploid Saney was, respectively, 7-fold, used to build genetic maps and identify quantitative trait 6-fold and 9-fold greater than the mean value for the loci(QTL)associatedwiththetrait.Inaddition,byselect- Cavendishgroup(2.19(cid:2)g.g-1). ingsuitablediploidandtriploidgenitorsitispossibletode- veloptetraploidcultivarswithhighcarotenoidcontents. Figure3showsthattherewasextensivegeneticvari- abilityinthecarotenoidcontentsofthebananaaccessions, Re-samplinganalysesshowedthat282DArTmark- particularlyamongdiploids.Thethreegenotypeswiththe ers(43%ofthetotal)weresufficienttoobtainaprecisees- highest total carotenoid content (Modok Gier, NBA-14, timate of the genetic divergence among the 42 banana 100 Geneticdiversityofcarotenoid-richbananas accessions.Thecorrelationbetweenthematrixconsidering similarity among the diploid accessions was 0.67, and all653markersandthematrixwith282markerswas0.96, rangedfrom0.24betweenNBA-14and2803-01to0.98be- with a square sum of the deviations (SQ ) of 0.51 and a tweenModokGierand2803-01.Theaccessionswereclus- d stressvalue(E)of0.052(Figure4).Thesefindingsindicate tered into three groups (Figure 5), although there was no thatthenumberofDArTmarkersanalyzedwassufficient clear separation between accessions with high and low topreciselyestimatethegeneticdivergenceamongthe42 carotenoid contents. The cophenetic value was high bananaaccessions.Moreover,~60%oftheDArTmarkers (r = 0.93, p < 0.0001, 10,000 permutations). As with the wereinferredtohavesimilarmolecularinformation,proba- carotenoidcontent(Figure3),DArTanalysisalsodetected blyasaresultofgeneticlinkageamongtheminthebanana significantgeneticvariabilityamongthe42bananaacces- genome.Themeangeneticsimilarityamongthe42acces- sionsmaintainedintheEmbrapagermplasmbank(Figures sionswas0.63,andrangedfrom0.24betweenthediploid 5and6). NBA-14andthetriploidCanelato1.00betweenthediploid Principal component analysis (PCA) reinforced the 2803-01andtheaccessionsCanela(AAB)andModokGier resultsobtainedwithclusteringanalysisbyUPGMA(Fig- (AA). Figure5showsthedendrogramofgeneticsimilarity obtainedbyUPGMAbasedonDArTamongthe42banana accessions investigated. The cophenetic value was high (r = 0.92, p < 0.0001, 10,000 permutations) and adequate since values of r (cid:5) 0.56 are considered ideal and reflect agreementwiththevaluesofgeneticsimilarity(VazPatto etal.,2004). Thecut-offvalueforthedendrogramwasassumedto bethemeangeneticsimilarityamongallaccessionsgeno- typedbyDArT(0.63).Basedonthisvalue,twomajorclus- ters were formed (Figure 5). The carotenoid contents showednotendencytoclustersinceaccessionswithhigher carotenoidlevelsoccurredequallyinbothclustersand,in some cases, with low genetic similarity, e.g., the diploids 2803-01andNBA-14(0.24).Similarly,DArTmarkersdid not cluster the accessions based on their genomic group, i.e., diploids (AA), triploids (AAA, AAB and ABB) and tetraploids(AAAB).Anumberoftheaccessionsclustered basedongeographicorigin,whereasothersshowednosuch correlation(Figure5andTable1). Figure6showsadendrogramofthe21diploidgeno- typesinvestigatedbyDArTmarkers.Theaveragegenetic Figure5-UPGMAdendrogramfor42banana(Musa)accessionsinthe Figure4-Bootstrapanalysisusedtoobtainapreciseestimateofthege- germplasmcollectionheldatEmbrapaCassavaandTropicalFruits.The neticsimilarityamong42banana(Musa)accessionsinthegermplasmcol- dendrogram was constructed with NTSYS version 2.0 software (Rohlf lectionheldatEmbrapaCassavaandTropicalFruits. 2000)usingthesimplematchingcoefficient. Amorimetal. 101 orange. Some genotypes with white and beige pulp were alsoanalyzedtoconfirmtheassociationbetweenpulpcolor and carotenoid content. Banana pulp color is directly re- lated to carotenoid content and can be classified into five categories: white, beige, yellow, orangish-yellow and or- ange (Englberger et al., 2003a,c). Hence, an orangish- yellowororangepulpmaybeusedasacriteriontoselect suitablegenotypestodevelopcultivarswithahighercaro- tenoidcontent. The mean carotenoid contents obtained here agreed withtheresultsreportedbyothers.Setiawanetal.(2001) reportedthatthemean(cid:3)-carotenecontentofthreesamples of Musa paradisiaca was 1.00 (cid:2)g.g-1 (range: 0.72 to 1.22(cid:2)g.g-1).Englbergeretal.(2003b)quantifiedthetotal carotenoidcontentin21bananaaccessions,includingge- notypesfromthesectionsAustralimusaandEumusa.The meantotalcarotenoidcontentwas11.13(cid:2)g.g-1,withvalues rangingfrom0.60to53.7(cid:2)g.g-1.Theseauthorsreporteda similarvalueforanother17bananaaccessions(9.21(cid:2)g.g-1) (Englberger et al., 2003c) and Melo et al. (2006) found a value of 10.62 (cid:2)g.g-1 for the cultivar Comprida (Type Terra,AAB).Daveyetal.(2007)reportedthatgenotypes fromthegenomicgroupAABhadhighercontentsofcarot- Figure6-UPGMAdendrogramforthe21diploidbanana(Musa)acces- enoids compared to those from the AAA group, possible sionsinthegermplasmcollectionheldatEmbrapaCassavaandTropical because of the presence of the B genome. Similar results Fruits.ThedendrogramwasconstructedasdescribedinFigure5. werereportedbyEnglbergeretal.(2003a)andMeloetal. (2006). As shown here, the carotenoid content of some ba- nana genotypes differed from that of Cavendish cultivars byupto9-fold.Inagreementwiththis,otherstudiesofba- nanaaccessionsingermplasmbankshavereportedcaroten- oidcontentsupto25-foldhigherthanfoundincommercial cultivars from the Cavendish group (Englberger et al., 2003a,b,c;Wall,2006). Thecarotenoidcontentmaybeinfluencedbyseveral factors,includingthedegreeofmaturation,typeofsoil,cli- matic conditions, storage conditions, geographic location and,especially,genotype(SharrockandLutsy,2000;Setia- wanetal.,2001;Souzaetal.,2004).Inthepresentwork, themostimportantfactorwasthegenotypeandtheorigin (geographic location) since all of the other factors were Figure7-ClusteringobtainedbyPCAbasedonpooledDArTdataof42 constant for the accessions in the Embrapa germplasm banana(Musa)accessionsinthegermplasmcollectionheldatEmbrapa bank,i.e.,theaccessionswereanalyzedatthesamestageof CassavaandTropicalFruits.1-diploids,2-triploidsand3-tetraploids. maturation,storedunderthesameconditionsandkeptun- ure7).Thefirstandthesecondcomponentswereresponsi- derthesameenvironmentalconditions. ble for 74.7% and 10.8% of the genetic variation, respec- Re-sampling analyses indicated that the number of tively.Thesetwocomponentswereresponsiblefor85.5% DArT markers used was more than sufficient to precisely ofthevariationobservedamongthelevelsofploidy(dip- genotypethe42bananaaccessions.Thestressvalue(E)of loids,triploidsandtetraploids). 0.052reinforcedthisconclusion,sinceEvalues(cid:6)0.05are consideredidealforpreciseestimationofthegeneticvaria- tioninagivenpopulation(Kruskal,1964). Discussion Extensivegeneticvariabilitywasobservedamongthe In this work, 42 banana accessions were initially 42accessionsgenotypedusingDArT.Similarresultswere screenedbasedonpulpcolor,whichrangedfromyellowto obtained by Creste et al. (2003, 2004) who used micro- 102 Geneticdiversityofcarotenoid-richbananas satelliteorSSRmarkerstoevaluatediploidandtriploidac- CarreelF,De-LeonDG,LagodaPJL,LanaudC,JennyC,Horry cessions from the Embrapa germplasm bank. The lack of JP and Du-Montcel HT (2002) Ascertaining maternal and geneticcorrelationbetweenaccessionsofcommongenetic paternallineagewithinMusabychloroplastandmitochon- drialDNARFLPanalyses.Genome45:679-692. originisprobablyrelatedtorecentanthropicactionthathas CresteS,Tulmann-NetoA,SilvaSOandFigueiraA(2003)Ge- influencedgenotypedispersion(Jarretetal.,1993). neticcharacterizationofbananacultivars(Musaspp.)from Inthepresentstudy,severaltriploidcultivarsshared Brazil using microsatellite markers. Euphytica 132:259- high similarity values with diploid genotypes, e.g., the 268. triploidNanica,whichshowed91%similaritywiththedip- CresteS,Tulmann-NetoA,VencovskyR,SilvaSOandFigueira loid M-48, 84% similarity with the diploids Khai Nai On A(2004)GeneticdiversityofMusadiploidandtriploidac- andTuugiaand80%similaritywiththediploidsSowmuk, cessionsfromtheBrazilianbananabreedingprogramesti- JaranandNBA-14.SinceNanicaisanexport-typetriploid mated by microsatellite markers. Gen Res Crop Evol cultivar(Cavendish)andexhibitscompletefemalesterility, 51:723-733. the high level of similarity with diploids provides novel Cruz CD and Schuster I (2004) GQMOL – Aplicativo Compu- breedingpossibilities. tacionalparaAnálisedeDadosMolecularesedeSuasAsso- ciaçõescomCaracteresQuantitativos.UFV,Viçosa. Molecular analyses have revealed extensive genetic Davey MW, Stals E, Ngoh-Newilah G, Tomekpe K, Lutsy C, diversityinMusaacuminata(Lannaudetal.,1992;Carreel MarkhamR,SwennenRandKeulemansJ(2007)Sampling etal.,1994,2002;Udeetal.,2002;Ruangsuttaphaetal., strategiesandvariabilityinfruitpulpmicronutrientcontents 2007). In contrast, analyses using RAPD, SSR and AFLP ofWestandCentralAfricanbananasandplantains(Musa molecular markers have revealed lower levels of genetic sp.).JAgricFoodChem55:2633-2644. variation among banana accessions (Nsabimana and Sta- DoyleJJandDoyleJL(1990)IsolationofplantDNAfromfresh den,2007;Ningetal.,2007;Wangetal.,2007).Inthiscon- tissue.Focus12:13-15. text,theuseofDArTmarkerstoclearlydefinetherelation- EnglbergerL,AalbersbergW,RaviP,BonninE,MarksGC,Fitz- ships among and within wild material and to improve gerald MH and Elymore J (2003a) Further analyses on diploid and triploid cultivars in germplasm collections Micronesian banana, taro, breadfruit and other foods for couldfacilitatethepredictionofhowhybridswillperform, provitaminA,carotenoidsandminerals.JFoodCompAnal 16:219-236. therebyincreasinggeneticgains. EnglbergerL,Darnton-HillI,CoyneT,FitzgeraldMHandMarks Ourresultsprovideadditionalinformationforbanana GC (2003b) Carotenoid-rich bananas: A potential food genetic breeding programs by allowing the selection of sourceforalleviatingvitaminAdeficiency.FoodNutrBull carotenoid-rich diploids for crosses with triploids to pro- 24:303-318. vide novel tetraploid cultivars with improved functional EnglbergerL,SchierleJ,MarksGCandFitzgeraldMH(2003c) properties. Nutritional (biofortification) and functional Micronesian banana, taro, and other foods: Newly recog- breeding,alliedwithimprovedproductivityanddiseasere- nized sources of provitamin A and others carotenoids. J sistance,shouldresultinbetternutritionalvalue.Sinceba- FoodCompAnal16:3-19. nanas are the most consumed fruit in the world, the EnglbergerL,MarksGC,FitzgeraldMHandLippweK(2005) ingestionofnutritionallyenhancedcultivarscouldsignifi- FoodcompositiondatafromFederatedStatesofMicronesia. cantlyimproveconsumershealthbyreducingtheincidence Micronesica37:195-213. of diseases and indirectly decrease spending on public JaccoudD,PengK,FeinsteinDandKilianA(2001)Diversityar- health,whichiscurrentlysignificantlyelevatedworldwide. rays:Asolidstatetechnologyforsequenceinformationin- dependentgenotyping.NucleicAcidsRes29:e25. JainPK,SainiML,PathakHandGuptaVK(2007)Analysisof Acknowledgments geneticvariationindifferentbanana(Musaspecies)variety This work was funded by the Generation Challenge usingrandomamplifiedpolymorphicDNAs(RAPDs).AfrJ Programme/Genotyping Support Service (GSS). S. Silva Biotech6:1987-1989. was supported by a fellowship from CNPq. The authors JarretRL,VuylstekeDR,GawelNJ,PimentelRBandDunbarLJ (1993)Detectinggeneticdiversityindiploidsbananasusing thank V. Quecini (Embrapa Grape and Wine) for help in PCRandprimersfromahighlyrepetitiveDNAsequence. draftingthemanuscript. Euphytica68:69-76. KruskalJB(1964)Multidimensionalscalingbyoptimizinggood- References nessoffittoanometrichypothesis.Psychometrika29:1-27. AmorimEP,AmorimVBO,SantosJB,SouzaAPandSouzaJC LannaudC,Du-MontcelHT,JolivotMP,GlszmannJCandDe (2006) Genetic distance based on SSR and grain yield of LeonDG(1992)Variationofribosomalgenespacerlength inter and intrapopulational maize single cross hybrids. amongwildandcultivatedbanana.Heredity68:147-156. Maydica51:507-513. MantelN(1967)Thedetectionofdiseaseclusteringandagener- CarreelF,FauréS,De-LeonDG,LagodaPJL,PerrierX,BakryF, alizedregressionapproach.CancerRes37:209-220. Du-MontcelHT,LanaudCandHorryJP(1994)Évaluation Melo EA, Lima VLAG and Maciel MIS (2006) Polyphenol, deladiversitégénétiquechezlesbananiersdiploids(Musa ascorbicacidandtotalcarotenoidcontentsincommonfruits sp.)GenSelEvol26:125s-136s. andvegetables.BrazJFoodTechnol9:89-94. Amorimetal. 103 Ning SP, Xu LB, Lu Y, Huang BZ and Ge XJ (2007) Genome Vaz Patto MC, Satovic Z, Pêgo S and Fevereiro P (2004) As- compositionandgeneticdiversityofMusagermplasmfrom sessing the genetic diversity of Portuguese maize germ- China revealed by PCR-RFLP and SSR markers. Sci plasmusingmicrosatellitemarkers.Euphytica137:63-72. Horticult114:281-288. WallM(2006)Ascorbicacid,vitaminA,andmineralcomposi- NsabimanaAandStadenJV(2007)Assessmentofgeneticdiver- tion of banana (Musa sp.) and papaya (Carica papaya) sity of Highland bananas from the National Banana cultivarsgrowninHawaii.JFoodCompAnal19:434-445. Germplasm Collection at Rubona, Rwanda using RAPD Wan Y, Watanabe JA, Yi SS, Htaik T, Win K, Yamanaka S, markers.SciHorticult113:293-299. Nakamura I and Watanabe KN (2005) Assessment of ge- Rodriguez-AmayaDB(1999)AGuidetoCarotenoidAnalysisin neticdiversityamongthemajorMyanmarbananalandraces. Foods,1stedition.ILSIPress,City,64pp. BreedSci55:365-369. Rohlf FJ (2000) NTSys-pc: Numerical Taxonomy and Multi- WangH,CaoGandPriorRL(1997)Oxygenradicalabsorbing variate Analysis System, v. 2.1. Exceter Software, New capacityofanthocyanins.JAgricFoodChem45:304-309. York. WangXL,ChiangTY,RouxN,HaoGandGeXJ(2007)Genetic Ruangsuttapha S, Eimert K, Schoder MB, Silayoi B, Den- diversityofwildbanana(MusabalbisianaColla)inChina duangborinpat J and Kanchanapoom K (2007) Molecular as revealed by AFLP markers. Genet Res Crop Evol phylogeny of banana cultivares on HAT-RAPD. Gen Res 54:1125-1132. CropEvol54:1565-1572. WhiteJ,LawJR,MackayI,ChalmersKJ,SmithJSC,KilianA andPowellW(2008)ThegeneticdiversityofUK,USand Setiawan B, Sulaeman A, Giraud DW and Driskell JA (2001) Australian cultivars of Triticum aestivum measured by Carotenoid content of selected Indonesian fruits. J Food DArT markers and considered by genome. Theor Appl CompAnal14:169-176. Genet116:439-453. Sharrock S and Lutsy C (2000) Nutritive value of banana. In: WittenbergAH,VanDerLeeT,CaylaC,KilianA,VisserRGand INIPABAnnualReport.INIPAB,Montpellier,pp28-31. Schouten HJ (2005) Validation of the high-throughput SokalRRandMichenerCD(1958)Astatisticalmethodforevalu- markertechnologyDArTusingthemodelplantArabidopsis ating systematic relationships. Univ Kansas Sci Bull thaliana.MolGenGenet274:30-39. 38:1409-1438. XiaL,PengK,YangS,WenzlP,VicenteMC,FregeneMand Someya S, Yoshiki Y and Okubo K (2002) Antioxidant com- Kilian A (2005) DArT for high-throughput genotyping of pounds form bananas (Musa cavendish). Food Chem cassava (Manihot esculenta) and its wild relatives. Theor 79:351-354. ApplGenet110:1092-1098. Souza SL, Moreira APB, Santana HM and Alencar ER (2004) Conteúdo de carotenos e provitamina A em frutas comer- Internet Resources cializadas em Viçosa, Estado de Minas Gerais. Acta Sci Agron26:453-459. FoodandAgricultureOrganization(FAO)oftheUnitedNations, StodartBJ,MackayMCandRamanH(2007)Assessmentofmo- www.faostat.fao.org/site/340/default.aspx. (March 19, lecular diversity in landraces of bread wheat (Triticum 2008). aestivumL.)heldinanexsitucollectionwithDiversityAr- raysTechnology(DArT).AustJAgricRes58:1174-1182. AssociateEditor:EveraldoGonçalvesdeBarros Ude G, Pillay M, Nwakanma DC and Tenkouano GUA (2002) AnalysisofgeneticandsectionalrelationshipsinMusaus- Licenseinformation:Thisisanopen-accessarticledistributedunderthetermsofthe CreativeCommonsAttributionLicense,whichpermitsunrestricteduse,distribution,and ingAFLPmarkers.TheorApplGenet104:1239-1245. reproduction in any medium, provided the original work is properly cited.