RESEARCHARTICLE Genetic diversity and accession structure in European Cynara cardunculus collections MarioA.Pagnotta1,2*,JuanA.Ferna´ndez3,4,GabriellaSonnante5,CatalinaEgea- Gilabert2,4 1 DipartimentodiScienzeAgrarieeForestali(DAFNE),TusciaUniversity,Viterbo,Italy,2 Cienciay Tecnolog´ıaAgraria,E.T.S.Ingenier´ıaAgro´noma,UniversidadPolite´cnicadeCartagena,Cartagena(Murcia), Spain,3 Produccio´nvegetal,E.T.S.Ingenier´ıaAgro´noma,UniversidadPolite´cnicadeCartagena,Cartagena (Murcia),Spain,4 InstitutodeBiotecnolog´ıaVegetal(IBV),UniversidadPolite´cnicadeCartagena,Cartagena (Murcia),Spain,5 InstituteofBiosciencesandBioresources,NationalResearchCouncil(CNR),Bari,Italy a1111111111 a1111111111 *[email protected] a1111111111 a1111111111 a1111111111 Abstract Understandingthedistributionofgeneticvariationsandaccessionstructuresisanimportant factorformanaginggeneticresources,butalsoforusingpropergermplasminassociation mapanalysesandbreedingprograms.Theglobeartichokeisthefourthmostimportanthor- OPENACCESS ticulturalcropinEurope.Here,wereporttheresultsofamolecularanalysisofacollection Citation:PagnottaMA,Ferna´ndezJA,SonnanteG, includingglobeartichokeandleafycardoongermplasmpresentintheItalian,Frenchand Egea-GilabertC(2017)Geneticdiversityand accessionstructureinEuropeanCynara Spanishgenebanks.Theaimsofthisstudywereto:(i)assessthediversitypresentinEuro- cardunculuscollections.PLoSONE12(6): peancollections,(ii)determinethepopulationstructure,(iii)measurethegeneticdistance e0178770.https://doi.org/10.1371/journal. betweenaccessions;(iv)clustertheaccessions;(v)properlydistinguishaccessionspresent pone.0178770 inthedifferentnationalcollectionscarryingthesamename;and(vi)understandthediversity Editor:RobertoPapa,UniversitàPolitecnicadelle distributioninrelationtothegenebankandthegeographicoriginofthegermplasm.Atotal Marche,ITALY of556individualsgroupedinto174accessionsofdistincttypologieswereanalyzedbydiffer- Received:January10,2017 enttypesofmolecularmarkers,i.e.dominant(ISSRandAFLP)andco-dominant(SSR). Accepted:May18,2017 Thedataofthetwocrops(globeartichokeandleafycardoon)wereanalyzedjointlyandsep- Published:June1,2017 aratelytocompute,amongotheraims,thegenediversity,heterozygosity(He,Ho),fixation indexes,AMOVA,geneticdistanceandstructure.Thefindingsunderlinethehugediversity Copyright:©2017Pagnottaetal.Thisisanopen accessarticledistributedunderthetermsofthe presentintheanalyzedmaterial,andtheexistenceofallelesthatareabletodiscriminate CreativeCommonsAttributionLicense,which amongaccessions.Theaccessionswereclusterednotonlyonthebasisoftheirtypology, permitsunrestricteduse,distribution,and butalsoonthebasisofthegenebanktheycomefrom.Probably,theenvironmentalcondi- reproductioninanymedium,providedtheoriginal authorandsourcearecredited. tionsofthedifferentfieldgenebanksaffectedgermplasmconservation.Theseoutcomes willbeusefulinplantbreedingtoselectaccessionsandtofingerprintvarieties.Moreover, DataAvailabilityStatement:Allrelevantdataare withinthepaperanditsSupportingInformation theresultshighlighttheparticularattentionthatshouldbepaidtothemethodusedtocon- files. servetheCynaracardunculusgermplasmandsuggesttothepreferenceofusingacces- Funding:AGRIGENRESCommunityProgramme sionsfromdifferentgenebankstorunanassociationmap. (EuropeanCommission,Directorate-Generalfor AgricultureandRuralDevelopment,underCouncil Regulation(EC)No870/2004)financially supportedtheproject.Financialsupportwasalso providedbyTheSenecaFoundationforitsprogram "EstanciasdeInvestigadoresVisitantes",for mobility,cooperationandinternationalization. PLOSONE|https://doi.org/10.1371/journal.pone.0178770 June1,2017 1/23 Cynarastructure Competinginterests:Theauthorshavedeclared Introduction thatnocompetinginterestsexist. Cynaracardunculusisadiploidspecieswith2n=2x=34belongingtotheAsteraceaefamily. Arecentbotanicalclassificationgroupedtwovegetablecropsandtheirwildprogenitor,which werepreviouslyconsidereddistinctspecies,underC.cardunculus.Thethreetaxawithinthe speciesare:wildcardoon(C.cardunculusvar.sylvestris(Lamk)Fiori),globeartichoke(C.car- dunculusvar.scolymus(L.)Fiori),andcultivatedorleafycardoon(C.cardunculusvar.altilis DC).Inlinewiththisclassification,theupdatedCPVO/UPOVprotocol(enteredintoforceon 27.02.2013)totestsondistinctness,uniformityandstability,hasbecomethesameforboththe globeartichokeandtheleafycardoon[1]. Globeartichokegermplasmcanbeclassifiedaccordingtodifferentcriteria,themost importantofwhichare(i)theharvestingtimeand(ii)theheadshape.(i)Thefirstdividesthe globeartichokeinto(a)autumnandspring(earlyor“re-bloom”varieties)or(b)onlyspring (lateor“spring”varieties).(ii)Thesecondcriterionclassifiestheglobeartichokeonthebasis ofthemorphologyofitscommercialpart,theimmatureflowers(buds)called“capitula”or “heads”.Inparticular,thecharacteristicstakenintoconsiderationare:shape,color,andthe presenceofspines.Itisthereforepossibletoidentifyfourgroups:"Spiny"withlongsharp spinesonbothbractsandleaves,"Violet"withviolet-coloredcapitula,"Romanesco"with sphericalorsub-sphericalnon-spinycapitula,and"Catanese"withrelativelysmall,elongated non-spinycapitula[2].SpinyandCatanesetypesarenormallyre-bloomingtypologies,while VioletandRomanescovarietiesareusuallyharvestedinspring. Theglobeartichokeiscultivatedallaroundtheworld,butitisparticularlywelladaptedto thedifferentpedo-climaticconditionsoftheMediterranean[3].Itiswidelygrownthroughout theMediterraneanBasin,inSouthAmerica(Chile,ArgentinaandPeru)andinCalifornia (USA).ItisthefourthmostimportanthorticulturalcropinEuropewithaproductionof815 kt,[4]afterpotato,tomato,andleafyvegetables.Theleafycardoonisaminorcropandis mainlygrowninNorthernItaly,SouthernFranceandinSpain,forlocalconsumption.The speciesisalsoimportantsinceithasnutraceutical,biochemicalandmedicinalproperties(see [5]andreferencestherein). ThecenteroforiginoftheglobeartichokeistheMediterraneanBasin,probablysouthern Italy.Evidencebasedonitsdiversityandonmorphologicalandmoleculardataindicatesthat theglobeartichokewaspossiblydomesticatedinSicilyatthebeginningofthefirstmillennium [6–8],whilecardoonprobablyoriginatedintheIberianPeninsulaandtheSouthofFrance[8, 9].Infact,Italyhastherichestbiodiversityofglobeartichokeandcardoon,whichhasresulted inthelocalcultivationofmanytypesofvarietiesandlandraces,veryoftenwelladaptedtospe- cificlocalclimaticconditions[5].However,despitethiswidebiodiversity,thegreatestpartof Italianglobeartichokecultivationisbasedonveryfewclones[10]. ThemainC.cardunculusgermplasmcollectionsareheldbyItaly,FranceandSpain,where traditionalglobeartichokecultivarsarepredominant.However,cultivationsofsingleuniform varietieshaveexpandedwithaconsequentreductionindiversitycomparedwiththeoriginal. Indeed,inspiteofthehugegermplasmdiversityavailableinItaly,onlyafewvarietiesareculti- vatedoverlargeareas:‘ViolettodiSicilia’,‘Brindisino’,‘VioletdeProvence’(allthreebelong- ingtothesameCatanesegroup),‘Romanesco’(mainlythecloneC3,nowsubstitutedbysome clonesderivedfrommicro-propagation),and‘SpinosoSardo’.InFrance,onlyaboutfiveorsix varietiesarecommonlycultivated.AlmostallFrenchproductionisbasedontheglobearti- chokes‘CamusdeBretagne’,‘GrosVertdeLaon’,‘BlancHyerois’,‘VioletduGapeau’,‘Castel’ andthesmallcylinderglobeartichoke‘PetitVioletdeProvence’.InSpain,the‘Blancade Tudela’ecotyperepresents90%ofthewholeproduction. PLOSONE|https://doi.org/10.1371/journal.pone.0178770 June1,2017 2/23 Cynarastructure InordertounderstandandpreserveC.cardunculusgeneticdiversityitisimportanttoknow thepropagationsystem,whichdiffersbetweenglobeartichokeandcardoon.Theyareboth allogamousplants,butthefirstismainlypropagatedvegetativelybymeansofbasalshootsor semi-dormantshootswithalimitedrootsystem[11],whilethesecondisseedpropagated.Asa result,thelevelofheterozygosityinglobeartichokeishigherthanincardoon,bothwildand cultivated[5,9,12,13];moreover,theglobeartichokeoftenhasamulti-clonalstructure.One probleminC.cardunculusconservationandcharacterizationisthatthelocalvarietiesareoften namedonthebasisoftheareawheretheyarecultivated[14],regardlessoftheirrealgenetic diversityorsimilarity.Asaresult,thenamesofaccessionsorlocalvarietiesarenotalwaysuniv- ocalandinsomecasescangeneratesynonymiesorhomonymies.Inaddition,previousstudies havedemonstratedthatthehugediversitywithineachbotanicalvarietyisquiteoftennotrelated withthecorrespondinggeographicorigin(e.g.[15–19]).Consideringallthis,itisclearthatthe characterizationofC.cardunculusisessentialforitscorrectconservationandutilization. Moreover,itissometimedifficulttodefineglobeartichokevarietiessince,aftercultivation overseveraldecadesinvariousgeographicalareas,theymightbesubjectedtodivergentselec- tion.Thus,theaccessionsstoredingenebankfieldcollectionsneedtoberationalizedby improvingcorecollectionsandavoidingduplications[20–22]. Molecularmarkersarepowerfultoolsthatcanbeusedtoidentify,cluster,andfingerprint individualsoraccessions[23].Severaltypesofmolecularmarkershavebeenusedforcardoon andglobeartichokecharacterizationinthelastfifteenyears.Theseincludebothdominant markers,whichdonotrequireaprioriDNAsequenceinformation,andco-dominantmarkers, forwhichsequenceknowledgeisnecessary.ThedominantmarkersincludeRAPD(Random AmplifiedPolymorphicDNA,[24–27]),AFLP(AmplifiedFragmentLengthPolymorphism), andISSR(InterSimpleSequencesRepeats),whichwereusedwithglobeartichokevarieties andcardoon[28],orspecificglobeartichokevarietalgroups,suchasSpiny[29],Romanesco [15,30,31],VioletandCatanese[32–35],globeartichokehybrids[36]andcardoon[37]. Amongco-dominantmarkers,SSRs(SimpleSequenceRepeats)[8,34,38–42]andSRAP (Sequence-RelatedAmplifiedPolymorphism)havebeenusedforglobeartichokes,andinboth cultivatedandwildcardoon[43]. Theassociationbetweengenotypeandphenotypecanbeachievedeitherbycontrolledbipa- rentalcrosses(linkagemapping)orviaassociationmapping,controllingthelinkagedisequilib- rium,i.e.thenon-randomassociationofallelesbetweenloci,regardlessoftheirpositionacross thechromosomes[44].Theassessmentofgeneticvariationandpopulationstructureisapre- requisitebeforeperformingassociationmapping.Linkagemappinghasaseriesoflimitations, includingitshighcost,lowresolution,theneedforpolymorphismbetweentheparentsused, largesegregantpopulationandthedistributionofchiasmaacrossthegenome.Conversely,an associationmap,usingaccessionsthatarenotrelatedbycommonparents,candetectseveral allelesateachlocusandahigherlevelofpolymorphism.Associationmappingisatoolthatcan beusedtoinvestigateelitegenesbystructuringthenaturalvariationpresentinagermplasm. Possibleerrorsinassociationmapsmayariseduetounequalallelefrequencydistribution betweensubgroups,whichmayleadtospuriousassociationsbetweenmolecularmarkersand thetraitsofinterest[45].Inordertoreducesucherrors,beforeperforminganassociationanaly- sisinapopulation,itisessentialtodeterminethepopulationstructure,aswedointhisstudy. PreviousworksonC.cardunculuscharacterizationwereaddressedatspecificaccession typologiesandusedlimitedcollectionsbelongingtorestrictedgeographicareas.Theonly exceptionisourpreviouspaper,whichreportedpreliminarydatausingonlysomeofthedomi- nantmarkersintheEuropeancollection[18].Theaimsofthepresentpaperare(i)toassess,for thefirsttime,thediversitypresentinC.cardunculusEuropeancollections,usingbothdominant andco-dominantmarkers,(ii)todeterminethepopulationstructure,(iii)tomeasurethe PLOSONE|https://doi.org/10.1371/journal.pone.0178770 June1,2017 3/23 Cynarastructure geneticdistancebetweenaccessions;and(iv)toclustertheaccessionsaccordingtothemolecu- lardata.Moreover,twootherquestionsareaddressed:(v)aretheaccessionspresentinthedif- ferentnationalcollectionsandcarryingthesamenamereallythesamematerial?and(vi)howis diversitydistributedinrelationtothegeographicoriginofthegermplasm? Materialandmethods Plantmaterial Atotalof556individualsbelongingtoItalian(264)(CNR-IBBR,Bari;CNRISAFOMCatania; ARSIALRome),French(162)(GEVES,Cavaillon)andSpanish(130)(ITGA,Navarra)collec- tions,andrepresenting174accessionswerejointlyanalyzed.Theaccessionlistisreportedin S1Tabletogetherwiththeirtypologyandcountryofconservation.Theaccessionsaredivided accordingtothefourtypologiesdescribedintheintroductionandidentifiedbyPorceddu etal.[2]:Romanesco(225individuals),Violet(34individuals),Catanese(116individuals)and Spiny(11individuals),plustheaccessionsbelongingtoleafycardoon(72individuals).More- over,twoadditionalglobeartichokecategorieswereadded:theBlancadeTudelatypology(39 individuals)duetoitsimportanceintheIberianPeninsula,andOFF(59individuals),which includestheaccessionsnotunivocallyclassifiableasbelongingtotheprevioustypologies. Molecularmarkers TotalgenomicDNAwasextractedfrom100mgoffrozentissue,usingtheQiagenDNeasy PlantMiniKitandsharedamonglaboratoriestoperformmarkeramplifications.FortheISSR markers,11primerswereused:810,818,827,834,840,841,855,857,857c,857gand872,all developedbytheUniversityofBritishColumbia,Canada.Thereactionswereperformedin 10μlcontaining10ngDNA,0.3μMprimer,100μMdNTP,10mMTris-HCl(pH9.0)and1U Taqpolymerase.Amplificationconditionswere94˚C/5min,followedby35cyclesof94˚C/1 min,43–59˚C(specificforeachprimer;seeS2Table)/1min60˚C/1minand72˚C/2min,and endingwithanextensionstepof72˚C/10min. ForAFLPanalysis,MseIandPstIorEcoRIandMseIwereusedtodigesttheDNAtemplate. FollowingtheproceduredescribedbyVosetal.[46],pre-amplificationwasperformedwith non-selectiveprimers,while7primercombinationswereusedfortheselectiveamplification step:EcoACC/MseCTA,EcoACG/MseCTT,EcoAGC/MseCTT,MseAC/PstCA,MseAC/ PstCG,MseGC/PstCAandMseGC/PstCG. For19SSRmarkersdevelopedbyAcquadroetal.[47](CMAL06,CMAL-108,CMAL11, CMAL117,CMAL21,CMAL24,CMAL-25),Acquadroetal.[48],(CDAT-01,CLIB-02,CLIB- 12),Acquadroetal.[40](CMAFLP-01,CMAFLP-04,CMAFLP-05,CMAFLP-18),Sonnante etal.[39](CsCiCaCa05,CsPal02,CsPal03,CsEST03)andFA2-GAT(Primers,F:GCCGAAGA AGACGGAAGAATCTGA,R:CATCACGCTTGGTTAAAGATCGGG)wereused. ForallamplificationstheforwardprimerswerefluorescentlylabeledtoresolvePCRampli- consonanABI3130xl(AppliedBiosystems)oraCEQ8800(BeckmanCoulter)sequencer. Thedetectedbandswerecheckedforreproducibilityevenifthevisualizationbysequencer showedhighsensitivityandprecision.Fortheco-dominant(SSR)markers,eachallelewas scoredinaccordancewithitsmolecularweightinbp,whileforthedominant(AFLPand ISSR)markers,0–1matriceswereobtained,withoutknowingtheallelicrelationships.Inthis case,eachpossiblebandwasconsideredasalocuswith2possiblealleles,0(absence)or1 (bandpresence).Insomecases,the0–1matrixwasconsideredashaplotype,whileinothersit wasconvertedintoaco-dominantmatrixwith1asdominanthomozygote(A/A)and0asthe otherhomozygote(a/a). PLOSONE|https://doi.org/10.1371/journal.pone.0178770 June1,2017 4/23 Cynarastructure Statisticalanalyses ThegenediversityindexwascalculatedforeachlocusandpopulationaccordingtoNei[49], usingtheHardy-Weinbergformula P He ¼1(cid:0) n p2: i¼1 i Thepolymorphisminformationcontent(PIC)wascomputedas[50]. Xn Xn(cid:0) 1Xn PIC ¼1(cid:0) p2(cid:0) 2p2p2 i i j i¼1 i¼1j¼iþ1 TocomparedifferencesamongandwithinaccessionsandgroupsWright’sfixationindices wereused[51].TheF-statisticsarebasedontheexpectedlevelofheterozygosity.Themeasure- mentswerecomputedforthedifferentlevelsoftheaccessionstructures,suchasthevariance ofallelefrequencieswithinaccessions(F ),varianceofallelefrequenciesamongaccessions IS (F ),inbreedingcoefficientwithinindividualtotaldiversity(F ),varianceamongacces- ST IT sionswithintypes(F )andvariancepermutingaccessionsamonggroups(F ),whichare SC CT relatedtothedegreeofheterozygosityatvariouslevelsoftheaccessionstructure.Theterms mentionedabovearerelatedthroughtheformula:1-F =1-F +1-F ,whereIindicatesthe IT IS ST individual,Sthesub-accessionandTthetotalaccession;F referstotheindividualcompared IT withthetotal;F istheindividualcomparedwiththesubaccession;andF isthesubacces- IS ST sioncomparedwiththetotal.ThetotalF,indicatedbyF ,canbepartitionedintoF (orf) IT IS andF (orθ).F canbecomputedusingtheformula:F =(H -H )/H whereH isthe ST ST ST T S T, T proportionoftheheterozygotesinfullaccessionsandH theaverageproportionofheterozy- S gotesinsub-accessions.TheFstatisticwasalsousedintheAMOVA(AnalysisofMOlecular Variance)tomeasurethepartitionofvariationamongtypologies,amongaccessionswithin typologies,amongindividualswithinaccessions,andwithinindividuals. Thegeneticdiversity(He)andgeneticidentity(JorHo)werealsousedtoestimatethe geneticdistance.If Xn J ¼ p2 x xi i¼0 istheprobabilityofidentityinthexaccessionand Xn J ¼ p2 y yi i¼1 istheprobabilityofidentityintheyaccession,theprobabilityofidentityinbothaccessionsis Xn J ¼ p p xy xi yi i¼1 asdescribedbyNei[52].Theprobabilityofidentityinthexaccessionforallnormalizedlociis qffiffiffiffiffiffiffi I ¼J (cid:4) J J xy x y and,inturn,thegeneticdistanceis: qffiffiffiffiffiffiffi D¼(cid:0) LnI(cid:0) LnJ (cid:4) J J xy x y PLOSONE|https://doi.org/10.1371/journal.pone.0178770 June1,2017 5/23 Cynarastructure ThedistancesbetweenaccessionswerealsocomputedusingtheEuclideandistance qffiffiffiffiffiffiffiffiffiffiffiffiffiffi d¼ ðp p Þ2 1 2 Theobtaineddistancewasthenusedtoclustertheaccessionsaccordingtodifferentcluster- ingmethodologiessuchastheUPGMAalgorithm.TheclusteringwasalsoperformedbyK- mean,whichisanon-hierarchicalmethodofclassificationthatpartitionsasetofsamplesinto themostappropriatenumberofclustersdecidedinadvance[53].Runlength,inSTRUCTURE software,wasgivenasa150kburningperiodlengthfollowedby150kMarkovChainMonte Carlo(MCMC)replications.Assuggested,severalanalyseswerefirstrunusingdifferentKval- uesfrom2to9.Finally,inaccordancewithlikelihood,ΔK[54]thatidentifiedtwopicksfor K=3andK=6(S1Fig),F distributionamonggroupsandwiththefactthatthegermplasm ST couldbedividedinto6groupsonthebasisoftypology(Romanesco,Violet,Catanese,Spiny, Cardoon,andOFF),bothK=3andK=6wereadoptedandarepresentedbelow.Individuals wereassignedtosubgroupsbythe“Noadmixturemodel”.Theoutputreportsthesubsequent probabilitythatindividualiisfromaccessionk.Thepriorprobabilityforeachaccessionis1/ K.Thismodelisappropriateforstudyingfullydiscreteaccessions.The“admixturemodel” wasalsorun,butnobetterresolutionwasobservedwiththismodel(datanotshown).Linkage disequilibriumbetweenloci,whichmeasuresthedeviationfromrandomassociationbetween allelesatdifferentloci[55],anditssignificance(Pvaluesofχ2with1000permutations),was alsocomputed. Insomecases,theco-dominantanddominantdatatypologieswereanalyzedseparately, sinceitwasnotpossibletocomputesomeparametersforthedominantmarkers.Inaddition, analyseswererunbothjointlyandseparatelyforglobeartichokeandcardoonaccessions. Tocomputetheabovementionedparameters,GenAlEx[56,57],PowerMarker[58],Arle- quin[59],andSTRUCTUREv2.3[45]softwarewereused. Results Geneticdiversity Theidentifiedco-dominantalleleswere147intotal,fromthe556individualsanalyzed.For eachco-dominantmarker,theallelesrangedfrom1to15withanaverageof7.4allelesper marker(Table1).Nevertheless,mostofthealleles(about62%)wererare,havingafrequency lowerthan5%;asaresult,themajoralleleshadanoverallaveragefrequencyof70%.Forthe co-dominantmarkers,themajorallelesforeachmarkerhadafrequencyrangingfromabout 23%toaround87%,excludingtheCMAFLP-05marker,whichwasmonomorphic.Someof theSSRalleleswerespecificforasingleaccession(Table2).Intotal,33privatealleleswere foundin24accessions.Asexpected,thefrequencywashigherandmoreconstantinthedomi- nantmarkerswithonlytwoalleles.Infact,averagefrequencyofprivatealleleswas0.816and 0.805forAFLPandISSRrespectivelyversus0.700forSSR,whileitrangedfrom0.743to0.878 andfrom0.232to0.869fordominantandco-dominantmarkersrespectively. Thegenediversitycomputedasexpectedheterozygosity(He)andthepolymorphisminfor- mationcontent(PIC)provideinformationofamarker’sabilitytodeterminepolymorphism. Inthepresentstudy,Hevaluesforthedominantmarkerswerequiteuniform,withanaverage ofaround0.26and0.28forAFLPandISSR,respectively(Table1).ForSSR,thegenediversity rangedfrom0.24(FA2-GATandCLIB-02II)to0.83(CLIB-02I)(Table1).Notethatthe markerCLIB-02identified2loci,herelabeledasCLIB-02IandCLIB-02II,sothatCLIB-02 altogetherhadhighervalues.ThePICvalueshadasimilarbutnotequalrankingamongmark- erscomparedwiththegenediversityparameter.PICrangedfrom0.21ofFA2-GATto0.80of PLOSONE|https://doi.org/10.1371/journal.pone.0178770 June1,2017 6/23 Cynarastructure Table1. Markersusedtogenotype556Cynaracardunculusindividuals,withtheirgeneticdiversityparameters. Marker Alleles PAF He PIC Ho Fis Fit Fst F AFLP EaccMcta 0.799 0.255 0.203 EacgMctt 0.801 0.291 0.242 EagcMctt 0.835 0.219 0.176 MacPca 0.796 0.283 0.231 MacPcg 0.820 0.257 0.213 MgcPca 0.828 0.249 0.207 MgcPcg 0.832 0.244 0.204 Mean 0.816 0.257 0.211 ISSR 810 0.848 0.245 0.210 818 0.781 0.310 0.250 827 0.766 0.331 0.271 834 0.884 0.203 0.181 840 0.756 0.333 0.267 841 0.852 0.231 0.197 855 0.817 0.279 0.234 857 0.878 0.201 0.175 857c 0.757 0.341 0.277 857g 0.780 0.321 0.263 872 0.743 0.332 0.264 Mean 0.805 0.284 0.235 SSRloci CsCiCaCa05 10 0.829 0.306 0.298 0.243 -0.287 0.228 0.400 -0.252 CDAT-01 7 0.311 0.768 0.734 0.806 -0.930 -0.048 0.457 -0.923 CLIB-02I 7 0.232 0.825 0.800 0.391 -0.655 0.446 0.665 -0.635 CLIB-02II 4 0.869 0.236 0.223 0.049 0.079 0.817 0.801 0.110 CLIB-12 3 0.365 0.663 0.589 0.790 -0.977 -0.232 0.377 -0.956 CMAFLP-01 6 0.741 0.425 0.397 0.375 -0.850 0.154 0.543 -0.804 CMAFLP-04 13 0.632 0.554 0.516 0.123 -0.554 0.815 0.881 -0.507 CMAFLP-05 1 1.000 0.000 0.000 0.000 1.000 1.000 CMAFLP-18 12 0.500 0.605 0.532 0.750 -0.894 -0.301 0.313 -0.895 CMAL06 13 0.474 0.633 0.568 0.532 -0.749 0.050 0.457 -0.723 CMAL-108 4 0.561 0.582 0.513 0.628 -0.958 -0.090 0.444 -0.936 CMAL11 3 0.619 0.473 0.363 0.478 -0.612 -0.024 0.365 -0.555 CMAL117 14 0.737 0.415 0.371 0.240 -0.407 0.307 0.507 -0.336 CMAL21 10 0.632 0.553 0.515 0.527 -0.732 -0.024 0.409 -0.705 CMAL24 6 0.366 0.683 0.617 0.164 -0.511 0.649 0.767 -0.423 CMAL-25 2 0.504 0.500 0.375 0.992 -0.995 -0.925 0.035 -0.994 CsPal02 15 0.604 0.562 0.508 0.317 -0.476 0.372 0.575 -0.432 CsPal03 5 0.512 0.637 0.580 0.723 -0.851 -0.189 0.358 -0.836 CsEST03 8 0.666 0.484 0.418 0.403 -0.314 0.124 0.333 -0.289 FA2-GAT 4 0.864 0.236 0.209 0.244 -0.764 -0.024 0.419 -0.696 Mean 7.4 0.601 0.507 0.456 0.439 -0.655 0.155 0.505 -0.620 Overallmean 0.700 0.397 0.347 NumberofallelesinthecaseofSSR(Alleles),frequencyoftheprincipalallele(PAF),GenediversityandExpectedHeterozygosity(He),polymorphism informationcontent(PIC),observedheterozygosity(Ho),varianceofallelefrequencieswithinaccessions(Fis),inbreedingcoefficientwithinanindividual totaldiversity(Fit),varianceofallelefrequenciesamongaccessions(Fst),Wright’sfixationindices(F). https://doi.org/10.1371/journal.pone.0178770.t001 PLOSONE|https://doi.org/10.1371/journal.pone.0178770 June1,2017 7/23 Cynarastructure Table2. Summaryofprivateallelesbyaccession. Accession Locus Allele Frequency Ascolano CMAFLP-04 262 0.313 BlancHye´rois CLIB-02I 221 0.333 BlancoPeralta CMAFLP-04 253 1.000 BlancoValencia EST03 195 0.100 BlancoValencia EST03 198 0.100 Brindisi CLIB-02II 223 0.500 Camard FA2-GAT 187 0.100 CamusBretagneI FA2-GAT 223 0.250 Caribou CMAL117 168 0.100 Caribou CMAFLP-04 272 0.125 CaribouSp EST03 183 0.250 Chrysanthème CMAL117 192 0.100 Chrysanthème CsPal03 331 0.100 DelCortijo EST03 201 0.100 DelCortijo EST03 204 0.100 Mola CMAL06 137 0.038 MonteluponeA CsPal02 381 0.250 Paestum CsPal02 343 0.063 Pertosa CsPal02 355 0.125 Pisa CMAL117 174 0.063 PuvisAme´liore´ CMAL-108 101 0.167 PuvisAme´liore´ CMAFLP-04 286 0.375 SErasmo CMAL117 170 0.250 VerdeCalahorra CMAL06 157 0.125 VerdePeralta CsPal02 361 0.400 VertVaulxVelin CMAL06 147 0.750 VertVaulxVelin CsPal02 349 1.000 VertVaulxVelin CMAFLP-01 224 0.167 VertVaulxVelin CMAFLP-01 323 0.333 VertVaulxVelin CMAFLP-04 273 0.250 ViolettoSicilia13 CMAL06 140 0.250 ViolettoSicilia98 CMAL11 275 0.250 ViolProvence41S CMAL24 236 0.500 https://doi.org/10.1371/journal.pone.0178770.t002 CLIB-02I,followedbyCDAT-01with0.73(Table1).Thevalueswere,onaverage,lowerin leafycardoonthaninglobeartichoke(S3andS4Tables). Fortheco-dominantmarkers,itisalsopossibletocomputetheobservedheterozygosity (Ho)andtheWrightfixationindicesbyconsideringbothHeandHo.Theobservedheterozy- gosityrangedfrom5%forCLIB-02IIto99%forCMAL-25,withanaverageof44%(Table1). Asaconsequence,thepartitionofvariation,intoitscomponentsi.e.withinaccessions(F ), IS withinindividuals(F ),andamongaccessions(F )wasquitedifferentfromonemarkerto IT ST another.TheaveragevaluesfortheF ,F andF were-0.66,0.16and0.51,respectively IS IT ST (Table1).Generally,thevalueswerelowerinleafycardoonthaninglobeartichoke(S3andS4 Tables).Ingeneral,thelociwereinLDwitheachother(S5Table)exceptforCMAL-25,which wasnotinLDwithCMAL11,CMAL117,CMAL24,CsCaCa05,CsEST03andCsPal02. Theaccessionsanalyzedhadquitedifferentlevelsofdiversity,asdetectedusingbothdomi- nantandco-dominantmarkers,asshowninS6andS7Tables.Thepolymorphismranged PLOSONE|https://doi.org/10.1371/journal.pone.0178770 June1,2017 8/23 Cynarastructure from0toabout55%,withanaverageof20%,forthedominantmarkersandfrom10to85%, withanaverageof54%,fortheco-dominantmarkers.Theexpectedheterozygosityranged from0to17%,withanaverageof7%,fordominantandfrom5to42%,withanaverageof 26%,forco-dominantmarkers.Theobservedheterozygosityrangedfrom10to67%,withan averageof45%.Thefixationindexwasmainlynegative,rangingfrom-1to0.24,withanaver- ageof-0.74.Theaccessionshadonaveragemorethanoneallelebut,inspiteofthehighnum- berofallelesidentifiedbythemarkers,theallelesweregenerallyspecificforeachaccession. Thealleleswithafrequencyhigherthan5%inasingleaccessionrangedfrom0.6to2.3,and thenumberoflocallycommonallelesfoundinlessthan25%oftheaccessionsbutpresentin morethan5%inthespecificaccessionrangedfrom0to1.2,withanaverageof0.2.Some accessionshadmorethanasingleprivateallele,reachingamaximumoffiveprivateallelesspe- cificforVertVaulxVelin(Table2).TheShannonInformationIndexindicatedrichness,and theevennessrangedfrom0to0.26forthedominantandfrom0to0.66fortheco-dominant markers,withanaverageof0.11and0.36,respectively(S6Table).Onaverage,themarker parametersforeachaccessionrangedfrom0.403to3.286forthenumberofalleles;from1to 2.55forthenumberofeffectivealleles,from0to0.934fortheShannon’sInformationindex, from0to0.517fortheexpectedheterozygosity;from0to0.583fortheunbiasedexpectedhet- erozygosity;andfrom6to192forthenumberofampliconsofthedominantmarkers(S7 Table). Accessionstructureandgeneticrelationships Thestructureofthe174accessionswasanalyzedbymeansofaBayesianbasedapproachinthe STRUCTUREprogram,consideringonlytheco-dominantloci.AccordingtotheEvanno[54] calculation,themostprobableKwasthree(S1Fig).TheresultsobtainedusingSTRUCTURE withK=3identifiedafirstgroupwiththeleafycardoonaccessions,asecondgroupwith mainlytheCataneseandTudelaaccessionsandathirdgroupwithalltheotherglobeartichoke varieties(Fig1).Tobetterseparatethenon-Cataneseglobeartichokes,thestructureanalysis wasrepeatedwithKsetequalto6,whichwasthesecondmostprobableKintheEvannoanaly- sis(S1Fig).Fig2showstheQvalueforeachofthe556individualsanalyzed;thecoloredseg- mentshavelengthsproportionaltoeachoftheKinferredclusters. Thefirstsubgroup(SG1),labeledingreeninFig2,containedindividualsfrom1to72, whichcorrespondedtothefirst14accessions,allofthembelongingunequivocallytotheleafy cardoongroup.Thesecondsub-group(SG2),labeledinblue,includedmostoftheaccessions ofCatanesetypology,butalsosomeoftheTudela,someoftheViolet,andsomeoftheunas- signedindividualssuchasAquara,Francesco,MC12,MC14,MC6,MO10,MO5,andMT1. Thethirdsub-group(SG3),labeledinturquoise,includedalltheSpiny,someRomanescoand someVioletindividuals,andfourunassigned(BiancoOstuni,Calimera,NeroCastrignano,and NeroOstuni).Thefourthsub-group(SG4),labeledinpurple,groupedmostoftheRomanesco typesplusHydesandVelours(Violet),Cacique(Catanese),andCarlit(unassigned).Thefifth sub-group(SG5),labeledinyellow,contained12accessionsofRomanescotypes,twounas- signed(ItalianaandVertProvence),andtwoViolettypes(ViolettoToscanaandSErasmo). Finally,thesixthsub-group(SG6),labeledinred,includedtheTudelaaccessionsplussome Romanesco(Macau,CamusBretagneBH8)andCatanese(VioletProvenceF,VioletPro- vence41S).InthecaseofKequal3(Fig1)thefirstgroupcorrespondedtoSG1includingall theleafycardoonaccessions.ThesecondgroupwassimilartoSG2+SG6,whilethethird groupincludedSG3,SG4andSG5. Geographicallocalizationofsomeaccessionswasprovidedbythegenebanks,whichcol- lectedthem.Fortheaccessionsgeographicallylocalizedwithcertainty,theaverageproportions PLOSONE|https://doi.org/10.1371/journal.pone.0178770 June1,2017 9/23 Cynarastructure Fig1.STRUCTUREanalysesof556individualsbasedon150_000permutations,Noadmixturemodel andK=3.Theaccessionorderwas:PleinBlancInerme,PuvisAme´liore´,RougeAlger,VertVaulxVelin, PLOSONE|https://doi.org/10.1371/journal.pone.0178770 June1,2017 10/23
Description: